卡尔曼滤波应用实例
卡尔曼滤波算法在二维坐标的预测与平滑的应用实例

卡尔曼滤波算法在二维坐标的预测与平滑的应用实例卡尔曼滤波算法在二维坐标的预测与平滑的应用可以用于目标跟踪、无人机自主导航、移动机器人定位等领域。
以下是一个目标跟踪的应用实例:
假设有一个移动目标在二维平面上运动,通过传感器可以获取到目标的位置信息。
然而由于传感器的误差、测量噪声以及目标的运动不确定性等因素,获取到的位置信息可能存在一定的误差。
使用卡尔曼滤波算法对目标位置进行预测与平滑处理可以提高跟踪的准确性和
稳定性。
预测过程:
1. 状态变量:定义目标在二维平面上的位置状态变量,例如(x, y)表示目标的坐标。
2. 状态转移矩阵:根据目标的运动模型,创建状态转移矩阵F,例如简化的线
性模型可以使用单位矩阵。
3. 过程噪声协方差矩阵:根据目标的运动模型和运动的不确定性,创建过程噪声协方差矩阵Q,衡量预测过程中的不确定性。
4. 预测:根据上一时刻的状态估计和状态转移矩阵,使用卡尔曼滤波的预测公式进行预测。
更新过程:
1. 观测矩阵:定义观测矩阵H,将状态变量映射到实际的观测值。
例如,可以直接使用单位矩阵,表示观测值等于状态值。
2. 观测噪声协方差矩阵:根据传感器的精度和测量噪声,创建观测噪声协方差矩阵R,衡量测量过程中的不确定性。
3. 测量更新:根据当前时刻的观测值和预测结果,使用卡尔曼滤波的测量更新公式进行更新。
通过反复进行预测和更新过程,可以实现对目标运动的连续跟踪,并能有效抑制噪声,提高位置估计的准确性和稳定性。
扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)⽂章⽬录我们上篇提到的 (参见我的另⼀篇⽂章: )是⽤于线性系统,预测(运动)模型和观测模型是在假设⾼斯和线性情况下进⾏的。
简单的卡尔曼滤波必须应⽤在符合⾼斯分布的系统中,但是现实中并不是所有的系统都符合这样 。
另外⾼斯分布在⾮线性系统中的传递结果将不再是⾼斯分布。
那如何解决这个问题呢?扩展卡尔曼滤波就是⼲这个事的。
理论讲解扩展卡尔曼滤波(Extended Kalman Filter,EKF)通过局部线性来解决⾮线性的问题。
将⾮线性的预测⽅程和观测⽅程进⾏求导,以切线代替的⽅式来线性化。
其实就是在均值处进⾏⼀阶泰勒展开。
数学中,泰勒公式是⼀个⽤函数在某点的信息描述其附近取值的公式( ⼀句话描述:就是⽤多项式函数去逼近光滑函数 )。
如果函数⾜够平滑的话,在已知函数在某⼀点的各阶导数值的情况之下,泰勒公式可以⽤这些导数值做系数构建⼀个多项式来近似函数在这⼀点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
表⽰ 在第 阶导数的表达式,带⼊⼀个值计算后得到的结果(注意,它是个值)是⼀个系数(⼀个值),每⼀项都不同,第⼀项 ,第⼆项 …… 依此类推是⼀个以为⾃变量的表达式 。
是泰勒公式的余项,是 的⾼阶⽆穷⼩KF 和EKF 模型对⽐⾸先,让卡尔曼先和扩展卡尔曼滤波做⼀个对⽐。
在对⽐过程中可以看出,扩展卡尔曼是⼀个简单的⾮线性近似滤波算法,指运动或观测⽅程不是线性的情况,在预测模型部分,扩展卡尔曼的预测模型和量测模型已经是⾮线性了。
为了简化计算,EKF 通过⼀阶泰勒分解线性化运动、观测⽅程。
KF 与EKF 具有相同的算法结构,都是以⾼斯形式描述后验概率密度的,通过计算贝叶斯递推公式得到的。
最⼤的不同之处在于,计算⽅差时,EKF 的状态转移矩阵(上⼀时刻的状态信息)和观测矩阵(⼀步预测)都是状态信息的雅克⽐矩阵( 偏导数组成的矩阵)。
卡尔曼滤波算法的应用

卡尔曼滤波算法的应用
卡尔曼滤波算法是一种用于估计系统状态的算法,它采用一定的数学模型来预测未来
的状态,并根据测量结果进行纠正。
卡尔曼滤波算法具有广泛的应用,下面将介绍其中的
一些。
1.导弹制导
卡尔曼滤波算法可以用于导弹制导系统中,通过测量导弹的位置和速度来估计导弹的
加速度和方向,从而根据目标位置和导弹状态调整导弹轨迹,使其准确地击中目标。
2.机器人定位导航
在机器人定位导航中,卡尔曼滤波算法可以从机器人的传感器读数中推断出机器人的
位置并纠正定位误差。
这对于机器人完成特定任务和避免障碍非常重要。
3.交通流量估计
卡尔曼滤波算法可以用于交通流量估计。
通过分析交通流动的速度和密度,算法可以
预测接下来的交通状况并给出交通流量的估计值。
4.金融数据分析
卡尔曼滤波算法可以用于金融数据分析中,例如股票价格预测。
它可以通过历史价格
数据和其他因素(例如市场和经济环境)来估计未来股票价格。
5.飞行器控制
在飞行器控制中,卡尔曼滤波算法可以通过测量飞行器的位置、速度和姿态角度来确
定飞行器的状态。
然后,根据所得状态调整飞行器的运动,以避免碰撞和实现特定任务。
综上所述,卡尔曼滤波算法可以应用于很多领域。
它可以提高系统的鲁棒性和准确性,并在无法直接测量或者信号噪声较大的情况下提供指导。
由于其良好的性能,在各种应用
场景中广受欢迎。
运用无迹卡尔曼滤波的实例

运用无迹卡尔曼滤波的实例运用无迹卡尔曼滤波的实例无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种扩展卡尔曼滤波(EKF)的方法,它主要用于非线性系统的状态估计。
与EKF相比,UKF不需要对非线性系统进行线性化。
这里我们就来具体讲解一下UKF的应用案例。
案例背景在商店内部部署了一组摄像头接口,可以通过Wi-Fi辅助</span>掌握商店内部周转率、客户的购物习惯需要,了解商品的陈列效果,如何优化、提高顾客的购买意愿?商店决定要对消费者购买意愿进行分析,根据分析结果来调整商品的布局,提高销售额。
案例分析基于商店内的数百个客户的购物轨迹数据,可以得到客户在商店内的位置信息。
然而,由于摄像头的安装和环境等因素,所获取到的数据存在噪声和误差。
为了提高模型的准确性,需要使用UKF算法对客户的实际位置进行估算。
UKF与标准的EKF算法不同的是,UKF绕过了EKF中需要进行状态线性化的步骤。
UKF将未知的状态变量进行映射,通过计算与变量的协方差矩阵来实现。
在UKF中,预测和更新过程都有两个步骤。
首先需要通过对自身状态定义一个状态空间变量,然后需要使用方程计算新的均值和方差。
对于UKF,需要使用Sigma点来计算变量的协方差矩阵,从而得到均值和方差。
一旦有均值和方差值,系统就可以生成一个高斯分布估计,然后将该估计与实时采样的位置数据进行比较和校正。
通过采集商店内的顾客数据,UKF算法可以推断出客户的移动轨迹以及在任意位置的信任度评估。
通过对分析结果的评估,商店可以优化旧货架的陈列方式,提高一些新产品的展示率,从而增加商品的销售收入。
结论无迹卡尔曼滤波是可以应用于非线性系统状态估计中的,它可以提高状态变量的准确性并降低误差。
在商店内的客户数据分析中,UKF算法可以帮助商店提高布局效率,优化商品张贴方式,并增强客户的购买意愿。
卡尔曼滤波的原理与应用pdf

卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
卡尔曼滤波应用实例

卡尔曼滤波应用实例1. 介绍卡尔曼滤波是一种状态变量滤波技术,又称为按时间顺序处理信息的最优滤波。
最初,它是由罗伯特·卡尔曼(Robert Kalman)在国防领域开发的。
卡尔曼滤波是机器人领域中常用的滤波技术,用于估计变量,如机器人位置,轨迹,速度和加速度这些有不确定性的变量。
它利用一组测量值,通过机器学习的形式来观察目标,以生成模糊的概念模型。
2. 应用实例(1) 航迹跟踪:使用卡尔曼滤波可以进行航迹跟踪,这是一种有效的状态估计技术,可以处理带有动态噪声的状态变量跟踪问题。
它能够在航迹跟踪中进行有效的参数估计,而不受环境中持续噪声(如气动噪声)的影响。
(2) 模糊控制:模糊控制是控制系统设计中的一种重要方法,可用于解决动态非线性系统的控制问题。
卡尔曼滤波可用于控制模糊逻辑的控制政策估计。
它能够以更低的复杂性和高的控制精度来解决非线性控制问题,是一种高度有效的模糊控制方法(3) 定位和导航:使用卡尔曼滤波,可以实现准确的定位和导航,因为它可以将具有不确定性的位置信息转换为准确可信的信息。
这对于记录机器人的行走路径和定位非常重要,例如机器人搜索和地图构建中可以使用卡尔曼滤波来实现准确的定位和导航。
3. 结论从上文可以看出,卡尔曼滤波是一种非常强大的滤波技术,可以有效地解决各种由动态噪声引起的复杂问题。
它能够有效地解决估计(如机器人的位置和轨迹),控制(模糊控制)和定位(定位和导航)方面的问题。
而且,卡尔曼滤波技术具有计算速度快,参数估计效果好,能有效弥补传感器误差,还能够避免滤波状态混淆,精度较高等特点,可以在很多领域中广泛应用。
卡尔曼滤波计算举例全

卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。
系统的起始变量x [0]为随机变量,其均值为零,方差为。
2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。
220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波应用实例
卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。
在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。
同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。
实例
一。
已知一物体作自由落体运动,对其高度进行了20次测量,测量值如下表
设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h和速度0V也是高斯分布的随机变量,且0000019001000,var10/02EhhmPEVmsV。
试求该物体高度
和速度随时间变化的最优估计。
(2/80.9smg)
解:。