高中数学圆锥曲线解题技巧方法总结7558
(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
高中数学圆锥曲线题解题方法

高中数学圆锥曲线题解题方法圆锥曲线是高中数学中的重要内容,涉及到椭圆、双曲线和抛物线三种类型。
在解题过程中,我们需要掌握各种曲线的特点和性质,并且熟练运用相关的公式和定理。
本文将以具体的题目为例,介绍高中数学圆锥曲线题的解题方法和技巧。
一、椭圆题解题方法椭圆是一个非常常见的圆锥曲线,其特点是离心率小于1,呈现出闭合的形状。
在解椭圆题时,我们需要掌握以下几个关键点。
1. 椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
2. 椭圆的离心率椭圆的离心率e的计算公式为e = √(1 - b²/a²),其中a和b分别为椭圆的长半轴和短半轴。
3. 椭圆的焦点和准线椭圆的焦点是指离心率上的两个点,准线是指离心率上的两条直线。
椭圆的焦点和准线与椭圆的参数有一定的关系,可以通过参数的值来确定。
下面以一个具体的椭圆题目为例,说明解题方法。
【例题】已知椭圆C的标准方程为(x-2)²/9 + (y+1)²/4 = 1,求椭圆C的离心率、焦点和准线方程。
解题思路:1. 根据标准方程,可以得出椭圆C的长半轴为3,短半轴为2。
2. 利用离心率的计算公式,可以得出椭圆C的离心率为e = √(1 - 4/9) = √(5/9)。
3. 根据离心率的定义,可以得出椭圆C的焦点坐标为(F1,F2) = (2±3√5, -1)。
4. 利用焦点和准线的定义,可以得出椭圆C的准线方程为x = 2±3√5。
通过以上步骤,我们成功求解了椭圆C的离心率、焦点和准线方程。
在解题过程中,我们需要熟练掌握椭圆的标准方程和相关公式,以及灵活运用相关的定义和定理。
二、双曲线题解题方法双曲线是另一种常见的圆锥曲线,其特点是离心率大于1,呈现出两支无限延伸的形状。
圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
(完整版)圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
高中数学圆锥曲线解题十招全归纳

高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。
2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。
3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。
4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。
5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。
6. 对于椭圆和双曲线的对称性要有充分的认识。
7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。
8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。
9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。
10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。
- 1 -。
圆锥曲线求解技巧

圆锥曲线求解技巧圆锥曲线是数学中重要的一个分支,包括圆、椭圆、抛物线和双曲线。
它们都具有各自独特的性质和方程形式。
在求解圆锥曲线的问题时,有一些常见的技巧和方法可以帮助我们简化计算和理解问题。
下面是一些圆锥曲线求解技巧的介绍。
1. 几何特征:首先,了解每种圆锥曲线的几何特征是非常重要的。
圆是所有圆锥曲线中最简单的一种,其方程形式为x²+ y²= r²,其中r是圆的半径。
椭圆具有中心点和两个焦点,其方程形式为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是中心点的坐标,a和b是椭圆在x轴和y轴上的半径。
抛物线则有焦点和直线的焦点形式,其方程形式为y²= 4ax或x²= 4ay,其中a是抛物线的焦距。
双曲线也有焦点和直线的形式,其方程形式为(x - h)²/a² - (y - k)²/b² = 1或者(y - k)²/b² - (x - h)²/a² = 1,其中(h, k)是中心点的坐标,a和b 是双曲线在x轴和y轴上的半径。
2. 参数化表示:参数化是一种将一个曲线表示为参数的函数的方法。
通过引入新的参数,我们可以简化对曲线的表示和求解。
例如,对于椭圆,我们可以引入参数化坐标x = a cosθ和y = b sinθ,其中a和b是椭圆的半径。
这样,我们可以将椭圆的方程简化为极坐标形式r = a(1 - e²)/(1 + e cosθ),其中e是椭圆的离心率。
同样地,对于抛物线,我们可以引入参数化坐标x = at²和y = 2at。
通过参数化,我们可以更容易地计算和理解曲线的性质。
3. 极坐标表示:极坐标是一种将点表示为距离和角度的方式。
对于圆锥曲线,极坐标表示是很有用的,特别是当涉及到对称性和角度的问题时。
高中数学圆锥曲线解题技巧方法总结

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程2222(6)(6)8x y x y -+-++=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。
通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。
2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。
通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。
3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。
每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。
4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。
通过使用参数方程,可以简化圆锥曲线的分析和解题过程。
5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。
利用这些对称性可以简化问题的分析和解题过程。
6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。
了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。
7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。
通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。
8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。
利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。
9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。
通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线
1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆122
22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0
202y a x b ;
在双曲线22
221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0
202y a x b ;在抛物线
22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0
p
y 。
提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!
2.了解下列结论
(1)双曲线1222
2=-b y a x 的渐近线方程为02222
=-b
y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222
=-b
y a x 为参数,λ≠0)。
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22
1mx ny +=;
(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2
2b a
,焦准距(焦点到相应准线
的距离)为2
b c
,抛物线的通径为2p ,焦准距为p ;
(5)通径是所有焦点弦(过焦点的弦)中最短的弦;
(6)若抛物线2
2(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++;
②2
21212,4
p x x y y p ==- (7)若OA 、OB 是过抛物线2
2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p
3、解析几何与向量综合时可能出现的向量内容:
(1)在ABC ∆中,给出()
12
AD AB AC =+u u u r u u u r u u u r
,等于已知AD 是ABC ∆中BC 边的中线; (2)在ABC ∆中,给出2
22OC OB OA ==,等于已知O 是ABC ∆的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);
(3)在ABC ∆中,给出=++,等于已知O 是ABC ∆的重心(三角形的重心是三角形三条中线的交点);
(4)在ABC ∆中,给出⋅=⋅=⋅,等于已知O 是ABC ∆的垂心(三角形的垂心是三角形三条高的交点);
(5) 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=r
r 使;③若存在实数
,,1,OC OA OB αβαβαβ+==+u u u r u u u r u u u r
且使,等于已知C B A ,,三点共线.
(6) 给出0=⋅,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m ,等于已
知AMB ∠是钝角, 给出0>=⋅m ,等于已知AMB ∠是锐角,
(8)给出=⎫⎛+λ,等于已知MP 是AMB ∠的平分线/
(9)在平行四边形ABCD 中,给出0)()(=-⋅+,等于已知ABCD 是菱形;
(10) 在平行四边形ABCD 中,给出||||AB AD AB AD +=-u u u r u u u r u u u r u u u r
,等于已知ABCD 是矩形;
4.圆锥曲线中线段的最值问题:
例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为
______________
(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。
(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。
解:(1)(2,
2)(2)(1,4
1
)
1、已知椭圆C 1的方程为14
22
=+y x ,双曲线C 2的左、右焦点分别为C 1顶点分别是C 1的左、右焦点。
(1) 求双曲线C 2的方程; (2) 若直线l :2+
=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A
和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围。
解:(Ⅰ)设双曲线C 2的方程为12
222=-b y a x ,则.1,31422222
==+=-=b c b a a 得再由 故C 2的方程为2
2 1.3
x y -=(II )将.0428)41(14
22222
=+++=++=kx x k y x kx y 得代入
由直线l 与椭圆C 1恒有两个不同的交点得
,0)14(16)41(16)28(22221>-=+-=∆k k k 即 21
.4
k > ①
0926)31(13
22222
=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个
不同的交点A ,B 得2
22
222
2130,1 1.3()36(13)36(1)0.
k k k k k ⎧-≠⎪≠<⎨∆=-+-=->⎪⎩即且
22223715136,0.3131k k k k +-<>--于是即解此不等式得22
131.153
k k ><或 ③
由①、②、③得
.115
13
314122<<<<k k 或 故k
的取值范围为11(1,()(22--U U U 2.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA?AB = MB?BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以MA u u u r =(-x,-1-y ), MB u u u r =(0,-3-y), AB u u u r
=(x,-2).再由愿意得知(MA u u u r +MB u u u r )??AB u u u r
=0,即(-x,-4-2y )??(x,-2)=0.
所以曲线C 的方程式为y=14x 2-2. (Ⅱ)设P(x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12
x,所以l 的斜率为12x 0因此直线l 的方程为0001()2
y y x x x -=-,即2
00220x x y y x -+-=。
则O 点到l
的距离2
d
=
.又2
0124
y x =
-
,所以2
014
12,2x d +==≥
当2
0x =0时取等号,所以O 点到l 距离的最小值为2.
3.设双曲线22221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2
+1相切,则该双曲线的离心率等于( )
4.过椭圆22
221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若
1260F PF ∠=o ,则椭圆的离心率为
5.已知双曲线
)0(122
2
2>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF =( )0
6.已知直线
()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若
||2||FA FB =,则k =( )
7.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点。
若AB 的中点为(2,2),则直线l 的方程为_____________.
8.椭圆22
192
x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 .。