高考数学圆锥曲线的常用公式及结论(非常推荐)

合集下载

高中数学圆锥曲线性质与公式总结

高中数学圆锥曲线性质与公式总结


1 r22

1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2

y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2

A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC

b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.

圆锥曲线常用方法与结论(收藏)

圆锥曲线常用方法与结论(收藏)

FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

圆锥曲线知识要点及结论个人总结

圆锥曲线知识要点及结论个人总结

《圆锥曲线》知识要点及重要结论一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆.若212F F a =,点P 的轨迹是线段21F F .若2120F F a <<,点P 不存在.2 标准方程 )0(12222>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a bx a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上.若椭圆的标准方程为)0(12222>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a bx a y ,则a y a b x b ≤≤-≤≤-,.二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在.2 标准方程 )0,0(12222>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0,0(12222>>=-b a by a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心. 双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上.若双曲线的标准方程为)0,0(12222>>=-b a b y a x ,则R y a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a bx a y ,则R x a y a y ∈≥-≤,或.4 渐近线双曲线)0,0(12222>>=-b a b y a x 有两条渐近线x a b y =和x a by -=.即02222=-b y a x双曲线)0,0(12222>>=-b a b x a y 有两条渐近线x b a y =和x bay -=.即02222=-b x a y双曲线的渐进线是它的重要几何特征,每一双曲线都对应确定双曲线的渐进线,但对于同一组渐进线却对应无数条双曲线.与双曲线)0,0(12222>>=-b a b y a x 共渐进线的双曲线可表示为)0(2222≠=-λλby a x .直线与双曲线有两个交点的条件,一定要“消元后的方程的二次项系数0≠”和“0>∆”同时成立.5 等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线.等轴双曲线的标准方程为)0(12222>=-a a y a x 或)0(12222>=-a ax a y .等轴双曲线的渐近线方程为x y ±=.6 共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线.如:)0,0(12222>>=-b a b y a x 的共轭双曲线为)0,0(12222>>=-b a ax b y ,它们的焦点到原点的距离相等,因而在以原点为圆心,22b a +为半径的圆上.且它们的渐近线都是x a b y =和x ab y -=. 三、抛物线1 定义 平面内与一个定点F 和一条定直线F l (不在l 上) 的距离相等的点的轨迹叫做抛物线. 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2 标准方程(1) )0(22>=p px y ,焦点为)0,2(p ,准线方程为2px -=,抛物线张口向右.(2) )0(22>-=p px y ,焦点为)0,2(p -,准线方程为2p x =,抛物线张口向左.(3) )0(22>=p py x ,焦点为)2,0(p ,准线方程为2p y -=,抛物线张口向上.(4) )0(22>-=p py x ,焦点为)2,0(p -,准线方程为2p y =,抛物线张口向下.其中p 表示焦点到准线的距离.3 几何性质抛物线是轴对称图形,有一条对称轴.若方程为)0(22>=p px y 或)0(22>-=p px y ,则对称轴是x 轴,若方程为)0(22>=p py x 或)0(22>-=p py x ,则对称轴是y 轴. 若抛物线方程为)0(22>=p px y ,则R y x ∈≥,0. 若抛物线方程为)0(22>-=p px y ,则R y x ∈≤,0. 若抛物线方程为)0(22>=p py x ,则R x y ∈≥,0. 若抛物线方程为)0(22>-=p py x ,则R x y ∈≤,0.圆锥曲线的一些重要结论【几个重要结论】1 已知椭圆)0(12222>>=+b a by a x 的两焦点为)0,(),0,(21c F c F -,),(00y x P 为椭圆上一点,则)1()()(2222020201ax b c x y c x PF -++=++=a a cx a a cx a cx ax c +=+=++=020202202)(2 因为a x a ≤≤-0,c a a acxc a c a cx c +≤+≤-<≤≤-000,, 所以a a cx PF +=01. 同理,acxa PF a PF 0122-=-=. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(),0,(21c F c F -,),(00y x P 为双曲线上一点,则a a cx PF +=01,a acxPF -=02. 2 椭圆)0(12222>>=+b a b y a x 的两焦点为21,F F ,P 为椭圆上一点,若θ=∠21PF F ,则21PF F ∆的面积为2tan cos 1sin 22αααb b =+. 解:根据椭圆的定义可得a PF PF 221=+ ① 由余弦定理可得αcos 242122212212PF PF PF PF F F c -+== ②由①②得)cos 1(2442122α+=-PF PF c a .从而αcos 12221+=b PF PF 所以,21F PF ∆的面积为2tan cos 1sin sin 212221ααααb b PF PF =+=双曲线)0,0(12222>>=-b a b y a x 的两焦点为21,F F ,P 为其上一点,若α=∠21PF F ,则21PF F ∆的面积为2cot cos 1sin sin 212221ααααb b PF PF =-=. 3 已知椭圆)0(1:2222>>=+b a by a x C ,N M ,是C 上关于原点对称的两点,点P 是椭圆上任意一点,当直线PN PM ,的斜率都存在,并记为PN PM k k ,时,那么PM k 与PN k 之积是与点P 位置无关的定值.解:设),(),,(1100y x M y x P ,则),(11y x N --.01010101,x x y y k x x y y k PN PM----=--=,从而2120212001010101x x y y x x y y x x y y k k PN PM --=----⋅--=⋅. 又因为),(),,(1100y x M y x P 都在椭圆上,故1,1221221220220=+=+by a x b y a x .两式相减得,022********=-+-b y y a x x ,因而2221202120ab x x y y -=--即22a b k k PN PM -=⋅.已知双曲线)0,0(12222>>=-b a by a x .N M ,是C 上关于原点对称的两点,点P 是双曲线上任意一点,当直线PN PM ,的斜率都存在,并记为PN PM k k ,时,那么PM k 与PN k 之积是与点P 位置无关的定值.【常用方法】1 在求轨迹方程时,若条件满足圆、椭圆、双曲线、抛物线的定义,则可以用定义求轨迹方程,这是常用求轨迹的数学方法,称为定义法.2本章经常会碰到直线l 与圆锥曲线C 相交于两点的问题,若已知l 过定点),(00y x P ,则可设l 的方程为0x x =或)(00x x k y y -=-.然后分两种情况进行研究,一般处理方法是把直线方程代入曲线C 的方程中,整理得到关于x 或y 的一元二次方程(要注意二次项系数是否为零).韦达定理和判别式经常要用到!若l 的条件不明显时,则可设l 的方程为m x =或m kx y +=.3 本章还经常用到“点差法”:设直线l 与圆锥曲线C 交于点),(),,(2211y x B y x A ,则B A ,两点坐标都满足曲线C 的方程,然后把这两个结构相同的式子相减,整理可以得到直线AB 的斜率1212x x y y --的表达式,也经常会出现2121,y y x x ++,这样又可以与线段AB 的中点),(00y x P 联系起来!4 若三点),(),,(),,(002211y x P y x B y x A 满足以线段AB 为直径的圆经过点P 或BP AP ⊥时,常用处理方法有:①根据勾股定理可得222PB PA AB +=;②根据AP 的斜率与BP 的斜率之积为1-,可得120201010-=--⋅--x x y y x x y y ; ③根据),(),,(,002020101y y x x PB y y x x PA PB PA --=--==⋅可得0))(())((02010201=--+--y y y y x x x x .5求轨迹方程的方法常见的有:直接法、定义法、待定系数法、代入法(也叫相关点法).1 椭圆22221(0)x y a b a b +=>>的参数方程是sin y b θ⎧⎨=⎩.离心率c e a ==,△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.线到中心的距离为2a c,焦点到对应准线的距离(焦准距)2b p c =。

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常⽤结论圆锥曲线必背⼝诀(红字为⼝诀)-椭圆⼀、椭圆定义定点为焦点,定值为长轴.(定值=2a )椭圆.定点为焦点,定直线为准线,定值为离⼼率.(定值=e )定点为短轴顶点,定值为负值. (定值2k e 1=-)⼆、椭圆的性质定理长轴短轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 ep ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓正切连乘b ④注解:1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+2准线⽅程:2a x c= (a ⽅除以c )3椭圆的通径d :过焦点垂直于长轴的直线与椭圆的两交点之间的距离称为椭圆的通径.(通径22c b 2b 2a c ad 2ep =??==)过椭圆上00x y (,)点的切线⽅程,⽤00x y (,)等效代替椭圆⽅程得到.等效代替后的是切线⽅程是:0022x x y y1a b+=4、焦三⾓形计⾯积,半⾓正切连乘b焦三⾓形:以椭圆的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF θ=∠的⼀半.则焦三⾓形的⾯积为:2S b 2tanθ=证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理:222m n 2mn 4c cos θ+-?=22224a 4b m n 4b ()=-=+-即:22mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+.即:2122b mn PF PF 1||||cos θ==+故:12F PF 1S m n 2sin θ=??△2212b b 211sin sin cos cos θθθθ=?=++⼜:22221222sin cossin tan cos cosθθθθθθ==+ 所以:椭圆的焦点三⾓形的⾯积为122F PF S b 2tan θ=. 三、椭圆的相关公式切线平分焦周⾓,称为弦切⾓定理①1F2FOxyPmn切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓. 焦周⾓是焦点三⾓形中,焦距所对应的⾓.弦切⾓是指椭圆的弦与其切线相交于椭圆上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.2若000P x y (,)在椭圆2222x y 1a b+=外,则过0P 作椭圆的两条切线,切点为12P P ,,则点0P 和切点弦12P P ,分别称为椭圆的极点和极线.切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b+=(称为极线定理)3弦指椭圆内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c=-去除准焦距2bp c=,其结果是:2AB OM2c p b k k x a==- 4中点弦AB 的⽅程:在椭圆中,若弦AB 的中点为00M x y (,),弦AB 称为中点弦,则中点弦的⽅程就是2200002222x x y y x y a b a b+=+,是直线⽅程.弦中点M 的轨迹⽅程:在椭圆中,过椭圆内点000P x y (,)的弦AB ,其中点M 的⽅程就是22002222x x y y x y a b a b+=+,仍为椭圆.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-双曲线⼀、双曲线定义⼆、双曲线的性质定理基本同椭圆,有所区别:实轴虚轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 e p ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓余切连乘b ④注解:1实轴2a =,虚轴2b =,焦距2c =,则:222a b c +=2准线⽅程2a x c=± (a ⽅除以c )准焦距p :焦点到准线的距离:2b pc = (b ⽅除以c )3通径等于2 e p ,切线⽅程⽤代替双曲线的通径d :过焦点垂直于长轴的直线与双曲线的两交点之间的距离称为双曲线的通径.(通径22c b 2b 2a c ad 2ep =??==)过双曲线上000P x y (,)点的切线⽅程,⽤000P x y (,)等效代替双曲线⽅程得到,等效代替后的是切线⽅程是:0022x x y y1a b-=4焦三⾓形计⾯积,半⾓余切连乘b焦三⾓形:以双曲线的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF γ=∠的⼀半.双曲线2222x y 1a b-=的左右焦点分别为12F F ,,点P 为双曲线上异于顶点任意⼀点12F PF γ∠=,则双曲线的焦点三⾓形满⾜:2122b PF PF 1cos γ=- 其⾯积为;122F PF S b co 2t γ=.证明:设21PF m PF n ,==,则m n 2a -=在12F PF ?中,由余弦定理得:222121212PF PF 2PF PF F F cos γ+-=,即:222m n 2mn 4c cos γ+-?=22224a 4b m n 4b ()=+=-+ 即:2222m n 2mn m n 4b cos ()γ+-?=-+即:22mn 2mn 4b cos γ-?=,即:22b mn 1(cos )γ=-即:22b mn 1cos γ=-,即:2122bPF PF 1cos γ=-那么,焦点三⾓形的⾯积为:12F PF 1S mn 2sin γ?=?212b 21sin cos γγ=?-2222b 22b 122sin cossin cos sinγγγγγ==?-2b 2cot γ= 故:122F PF S b 2cot γ= 同时:12F PF 12P P 1S F F y c y 2?=?=?,故:2p b y c 2cot γ=±? 双曲线的焦点三⾓形的⾯积为:122F PF S b co 2t γ=.三、双曲线的相关公式切线平分焦周⾓,称为弦切⾓定理①切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓.焦周⾓是焦点三⾓形中,焦距所对应的⾓. 弦切⾓是指双曲线的弦与其切线相交于双曲线上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.如图,12F PF ?是焦点三⾓形,12F PF ∠为焦周⾓,PT 为双曲线的切线. 则PT 平分12F PF ∠.2若000P x y (,)在双曲线2222x y 1a b-=外,以包含焦点的区域为内,不包含焦点的区域为外,则过0P 作双曲选的两条切线,切点为1P 、2P ,则点0P 和切点弦12P P 分别称为双曲线的极点和极线,切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b-=(称为极线定理)3弦指双曲线内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c =去除准焦距2b p c=,其结果是:2AB OM2c p b k k x a==4中点弦AB 的⽅程:在双曲线中,若弦AB 的中点为00M x y (,),称弦AB 为中点弦,则中点弦的⽅程就是:2200002222x x y y x y aba b-=-,它是直线⽅程. 弦中点M 的轨迹⽅程:在双曲线中,过双曲线外⼀点000P x y (,)的弦AB ,其AB 中点M 的⽅程就是22002222x x y y x y a b a b-=-,仍为双曲线.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-抛物线⼀、抛物线定义抛物线,有定义,定点定线等距离12⼆、抛物线性质焦点准线极点线①,两臂点乘积不变②焦弦切线成直⾓,切点就是两端点③端点投影在准线,连结焦点垂直线④焦弦垂直极焦线⑤,切线是⾓平分线⑥直⾓梯形对⾓线,交点就是本原点⑦焦弦三⾓计⾯积,半个p ⽅除正弦⑧注解:1抛物线的焦点和准线是⼀对极点和极线.抛物线⽅程:2y 2px =,焦点(,)p F 02,准线p p x 2=-(抛物线的顶点(,)O 00到定点(,)p F 02和定直线p p x 2=-距离相等) 焦弦:过焦点的直线与抛物线相交于两点A 和B ,则AB 称为焦弦.弦中点(,)M M M x y ,A B M x x x 2+=,A B M y yy 2+= 焦弦⽅程:()p y k x 2=-,k 为斜率. 2焦点三⾓形两边OA 和OB 的点乘积为定值,且夹⾓是钝⾓. 证明:焦弦AB 满⾜的条件()2y 2pxp y k x 2?=??=- ()22p k x 2px 2-=? ()22222k p k x k 2px 04-++=由韦达定理得:2A B px x 4=2A B py y 22p p 2==-=-?=-,即:2A B p x x 4=,2A B y y p =- ①且:2A A B B A B A B 3OA OB x y x y x x y y p 04(,)(,)?=?=+=-<. 故:焦点三⾓形两边之点乘积为定值.3即:焦弦两端点的切线互相垂直. 证明:如图,由抛物线⽅程:2y 2px =得到导数:yy p '=,即:py y'=故:AEA p k y =,BE Bp k y = 于是:2AE BEA B A Bp p p k k y y y y ?=?=将①式2A B y y p =-代⼊上式得:AE BE k k 1?=-即:AE BE ⊥,故焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 4即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 证明:坐标B p C y 2(,)-,A p D y 2(,)-则:B CF p y (,)=-,A DF p y (,)=- 于是:2A B CF DF p y y ?=+将①式2A B y y p =-代⼊上式得:CF DF 0?= 故:CF DF ⊥即:焦弦端点A B ,在准线的投影点D C ,,则CF DF ⊥,即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形.5若焦弦AB 对应的极点E ,则EF 为极焦线,于是EF AB ⊥⽤向量⽅法可证.由于M 是AB 的中点,AEB ?为直⾓三⾓形,计算可得E 是DC 的中点,故:ED EF EC == 由向量法可证EF AB 0?=即:焦弦AB 与极焦线EF 互相垂直. 6即:切线平分焦弦的倾⾓(或倾⾓的外⾓) 如图:因为ADE ?和AFE ?都是直⾓三⾓形,且由定义知:AF AD =,AE AE =故ADE AFE ??≌,则对应⾓相等. 即:AE 是DAF ∠的⾓平分线同理,BE 是CBF ∠的⾓平分线 7即:直⾓梯形ABCD 对⾓线相交于原点即:A O C ,,三点共线;B O D ,,三点共线. ⽤向量法证明:OA CO //,OB DO //证明:坐标2A A y A y 2p (,),2B B y B y 2p (,),B p C y 2(,)-,A pD y 2(,)-向量:2A A y OA y 2p (,)=,B pCO y 2(,)=-各分量之⽐:2A2x A 2xy OA y 2p p p CO 2()()==,2y A AB A B y OA y y y y y CO ()()==--将①式2A B y y p =-代⼊上式得:22yA A2A By OA y y y y p CO ()()==- 故:y x xyOA OA OACO CO CO()()()()==,即:OA CO // 同理:OB DO //.直⾓梯形ABCD 对⾓线相交于原点. 8即:焦弦三⾓形的⾯积为:sin 2 AOBp S 2α= (α为焦弦的倾⾓)证明:AB AF BF =+A B A B p p x x x x p 22=+ ++=++M p2x 2()=+2EM = 如图:GF 2OF p == 则:2EF GF 1pEM sin sinsin sin αααα==?= E于是:22pAB sin α= 故:AOB1S OF AB 2sin α?=221p 2p p 222sin sin sin ααα==附:圆锥曲线必背----极坐标圆锥曲线的极坐标以准焦距p 和离⼼率e 来表⽰常量,以极径ρ和极⾓θ来表⽰变量.0ρ≥,[,)o 0360θ∈以焦点(,)F 0θ为极点(原点O ),以椭圆长轴、抛物线对称轴、双曲线的实轴为极轴的建⽴极坐标系.故准线是到极点距离为准焦距p 、且垂直于极轴的直线L . 极坐标系与直⾓坐标系的换算关系是:ρ=,arctan y xθ= 或者:cos x ρθ=,sin y ρθ= 特别注意:极坐标系中,以焦点为极点(原点),⽽直⾓坐标系中以对称点为原点得到标准⽅程. 如图,O 为极点,L 为准线,则依据定义,到定点(极点)和到定直线(准线)的距离之⽐为定值(定值e )的点的轨迹为圆锥曲线. 所以,对极坐标系,请记住:⑴极坐标系的极点O 是椭圆的左焦点、抛物线的焦点、双曲线的右焦点;⑵曲线上的点(,)Pρθ到焦点F的距离是ρ,到准线的距离是cospρθ+,根据定义:cosepρρθ=+即:cosep eρθρ+=,即:cosep eρρθ=-,即:1eρθ=-①这就是极坐标下,圆锥曲线的通式.⑶对应不同的e,呈现不同的曲线. 对双曲线,只是右边的⼀⽀;对抛物线,开⼝向右.将极轴旋转o180,α和θ分别对应变换前后的极⾓,即转⾓为o180θα=+,则极坐标⽅程变换前⽅程为:cosep1eρα=-变换后⽅程为:cosep1eρθ=+②此时的极坐标系下,此时有:⑵对应不同的e,呈现不同的曲线对双曲线,只是左边的⼀⽀;对抛物线,开⼝向左.⑴将极轴顺时针旋转o90,即:o 90θα=+,则情况如图.圆锥曲线的⽅程为:sin ep1e ρθ=- ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且极点O 对应于椭圆下⽅的焦点,双曲线上⽅的焦点,抛物线的焦点.对双曲线,只是y 轴上边的⼀⽀;对抛物线,开⼝向上. ⑵如果将极轴逆时针旋转o 90,即:o 90θα=-,则情况如图. 圆锥曲线的⽅程为:sin ep1e ρα=+ ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且对应于椭圆上⽅的焦点,双曲线下⽅的焦点,抛物线的焦点.对双曲线,只是y 轴下边的⼀⽀;对抛物线,开⼝向下.⑴在极坐标系中,圆锥曲线的通式为:=cos ep1e ρθ- ①即:cos e ep ρρθ-=,即:cos ep e ρρθ=+即:(cos )(cos )(cos )2222222ep e e p e 2e p ρρθρθρθ=+=++ ②将222x y ρ=+,cos x ρθ=代⼊②式得:2222222x y e p e x 2e px +=++即:()2222221e x 2e px y e p --+= ③当e 1≠时有:()[()]()()22222222222222--++=+---- 即:()()()22222 2222222e p e e p 1e x y e p 11e 1e 1e --+=+=--- 即:()()22222222222e px y 1e1e p e p1e 1e --+=-- ④⑴当e 1<时,令()22222e p a 1e =-,2222e p b 1e=-,22e p c 1e=-则:()222222222e p e p a b 1e 1e-=---[()]()()2222e p e p 11e 1e 1e =--=--⽽:()()2422222222e p e p c a b 1e 1e ===--- 代⼊④式得:()2222x c y 1ab-+= ⑤这是标准的椭圆⽅程. ⑵当e 1>时,令()222 22e p a e 1=-,2222e p b e 1=-,22e p c e 1=-则:()222222222e p e p a b e 1e 1+=+--[()]()()2242e p e p 1e 1e 1e 1=+-=-- ⽽:()()2422222222e p e p c a b e 1e 1===+-- 代⼊④式得:()2222x c y 1ab+-= ⑥这是标准的双曲线⽅程.⑶当e 1=时,由③式()2222221e x 2e px y e p --+=得:222px y p -+=即:()22p y 2px p 2p x 2=+=+ 即:()2p y 2p x 2=+ ⑦这是标准的抛物线⽅程.。

圆锥曲线常用结论(收藏版)

圆锥曲线常用结论(收藏版)

二、通径(垂直焦点所在轴的焦点弦):
①椭圆:通径=2b2/a, 焦点弦以通径最短;
②双曲线:通径=2b2/a, 同侧焦点弦以通径最短;
③抛物线:通径=2p 焦点弦以通径最短;
1.已知椭圆 x 2 y 2 1 ,过焦点的直线与椭圆交于 A,B 两点,则弦|AB|的长度范围是
;
42
解:显然,焦点弦|AB|为通径时最小,为 2b2/a=2;
= 0, AF1
• AF2
= c2,
则椭圆离心率 e=
;
6.椭圆
左右焦点分别为 F1,F2, 过 F1 的直线交椭圆于 A,B 两点,若|AF2|+|BF2|的最
大值为 8,则 b 的值是( )
2.√3; 3.2; 4.1+√2; 5.(√5-1)/2; 6.√6
三、斜率结论:垂径定理
C
O A
B ①AB 为弦,中点为 C,
A
C
则 KAB·KOC= - b2/a2
B O
P A
O
②AB 为中心弦,P 为椭 B
P
圆上任意点,则有
B
KAP·KBP= - b2/a2
A
O
①AB 为弦,中点为 C, 则 KAB·KOC= b2/a2 ②AB 为中心弦,P 为双 曲线上点,则有
KAP·KBP= b2/a2
1.4x2+9y2=144 内的一点 P(3,2), 过点 P 的弦以 P 为中点,那么这弦所在的直线方程是
为长轴时最大,为 2a=4;
∴2 ≤|AB|≤4
2.设直线 L 过双曲线 C:的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A,B 两点,|AB|为 C 的
实轴长的 2 倍,则 C 的离心率为

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如小学资料、初中资料、高中资料、大学资料、文言文、中考资料、高考资料、近义词、反义词、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides you with various types of practical materials, such as primary school materials, junior high school materials, senior high school materials, university materials, classical Chinese, senior high school examination materials, college entrance examination materials, synonyms, antonyms, other materials, etc. If you want to know different data formats and writing methods, please pay attention!圆锥曲线公式及知识点总结(详解)圆锥曲线的统一概念:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

(完整版)高中数学圆锥曲线结论(最完美版本)

(完整版)高中数学圆锥曲线结论(最完美版本)

圆锥曲线二级推论椭圆Q 两点, A 为椭圆长轴上一个顶点,连 结 AP 和 AQ 分别交相应于焦点 F 的椭 1. 点 P 处的切线 PT 平分△ PF 1F 2在点P 处的外角.2. PT 平分△ PF 1F 2在点 P 处的外角,则焦 点在直线 PT 上的射影 H 点的轨迹是以 圆准线于 M 、N 两点,则 MF ⊥NF.10.过椭圆一个焦点 F 的直线与椭圆交于 两点 P 、Q, A 1、 A 2为椭圆长轴上的顶 点,A 1P 和 A 2Q 交于点 M ,A 2P 和 A 1Q3. 4. 5. 6.长轴为直径的圆,除去长轴的两个端 点.以焦点弦 PQ 为直径的圆必与对应准线 相离.以焦点半径 PF 1 为直径的圆必与以长轴为直径的圆 内切 . 2 若P 0(x 0, y 0) 在椭圆 x2 a 的椭圆的切线方程是 2 yb 2x 0x 2a2yb 21上,则过P 0 y 0y1. b 02 1.1外 ,则过2若P 0(x 0, y 0) 在椭圆 x2 a Po 作椭圆的两条切线切点为 P 1、P 2, P 1P 2 的直线方程是 则切点弦x 0x y 0y22 ab 2 椭圆 x 2a 分别为 F 1, 点 F 1PF 2 积为 S F 1PF 222椭圆 x 2y 式:|MF 1 | a ex 0,|MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M (x 0,y 0)).1. 7. 8.交于点 N ,则 MF ⊥NF. 2y2 1的不平行于对称轴 b2 yb 2 1 (a >b > 0)的左右焦点 F2,点 P 为椭圆上任意一 ,则椭圆的焦点角形的面 b 2 tan . 22 1(a > b >0)的焦半径公 ab9. 设过椭圆焦点 F 作直线与椭圆相交 P 、2 11.AB 是椭圆 x2 a的弦, M (x 0,y 0)为 AB 的中点,则k OM k AB即 KABb 22, ab 2 x 02。

高考数学圆锥曲线常用8大结论

高考数学圆锥曲线常用8大结论

高考数学圆锥曲线常用8大结论1. 椭圆的性质椭圆的标准方程为:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$其中,a为椭圆的长半轴,b为椭圆的短半轴。

椭圆具有以下性质:(1) 光滑性:椭圆是一个连续的、光滑的曲线。

(2) 对称轴:椭圆具有两条对称轴,分别与长半轴和短半轴垂直并交于中心点。

(3) 焦点:椭圆有两个焦点F1和F2,且满足F1F2=2a。

(4) 直线:椭圆上的直线方程一般为$Ax+By+C=0$,其中,$A=\dfrac{a^2y^2}{b^2}+\dfrac{b^2x^2}{a^2}$,$B=-2\dfrac{a^2y}{b^2}$,$C=\dfrac{a^2y^2}{b^2}-a^2$。

(5) 参数方程:椭圆的参数方程为$x=a\cos\theta$,$y=b\sin\theta$,其中,$0\leq\theta<2\pi$。

2. 双曲线的性质(4) 渐进线:双曲线的渐进线是直线方程为$y=\pm\dfrac{b}{a}x$的两条直线。

$y=ax^2+bx+c$其中,a不等于0。

(2) 对称轴:抛物线的对称轴是$y=-\dfrac{b}{2a}$。

(3) 焦点:抛物线具有一个焦点F,满足到该点的距离等于焦距。

(5) 参数方程:抛物线的参数方程为$x=t$,$y=at^2+bt+c$。

5. 双曲线方程的标准形式其中,(h,k)为双曲线的中心点坐标,a为双曲线的半轴长,b为双曲线的半轴短。

7. 拋物線切线式拋物線的方程式為因此,在拋物線上一點$(x_0, y_0)$的斜率為則該點的切線方程為$y-y_0 = k(x-x_0)$8. 判别式公式判別式公式可以判別二次曲線的形状,公式如下:$D = \begin{vmatrix} A & B/2 \\ B/2 & C \end{vmatrix}$若$D>0$,則方程表示的圖形是双曲线;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学常用公式及结论
圆锥曲线
1.椭圆22
221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.
2.椭圆22
221(0)x y a b a b +=>>焦半径公式
)(21c a x e PF +=,)(2
2x c
a e PF -=.
3.椭圆的的内外部
(1)点00(,)P x y 在椭圆22
221(0)x y a b a b +=>>的内部22
00221x y a b ⇔+<.
(2)点00(,)P x y 在椭圆22
221(0)x y a b a b +=>>的外部22
00221x y a b
⇔+>.
4. 椭圆的切线方程
(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y
a b +=.
(2)过椭圆22
221(0)x y a b a b
+=>>外一点00(,)P x y 所引两条切线的切点弦方程

00221x x y y
a b
+=. (3)椭圆22
221(0)x y a b a b
+=>>与直线0Ax By C ++=相切的条件是
22222A a B b c +=.
5.双曲线22
221(0,0)x y a b a b -=>>的焦半径公式
21|()|a PF e x c =+,2
2|()|a PF e x c
=-.
6.双曲线的内外部
(1)点00(,)P x y 在双曲线22
221(0,0)x y a b a b -=>>的内部22
00221x y a b ⇔->.
(2)点00(,)P x y 在双曲线22
221(0,0)x y a b a b -=>>的外部22
00221x y a b
⇔-<.
7.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a b
y ±=.
(2)若渐近线方程为x a
b
y ±=⇔0=±b y a x ⇒双曲线可设为λ=-22
22
b y a x .
(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22
22b
y a x (0>λ,焦
点在x 轴上,0<λ,焦点在y 轴上).
8. 双曲线的切线方程
(1)双曲线22
221(0,0)x y a b a b
-=>>上一点00(,)P x y 处的切线方程是
00221x x y y
a b
-=. (2)过双曲线22
221(0,0)x y a b a b
-=>>外一点00(,)P x y 所引两条切线的切点弦
方程是
00221x x y y
a b
-=.
(3)双曲线22
221(0,0)x y a b a b
-=>>与直线0Ax By C ++=相切的条件是
22222A a B b c -=.
9. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02
p CF x =+. 过焦点弦长p x x p
x p x CD ++=+++=21212
2.
10.抛物线px y 22=上的动点可设为P ),2(2
y p y
或或)2,2(2pt pt P P (,)x y ,
其中 22y px =.
11.二次函数2
2
24()24b ac b y ax bx c a x a a
-=++=++(0)a ≠的图象是抛物线:
(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241
(,)24b ac b a a -+-;(3)
准线方程是241
4ac b y a
--=.
12.抛物线的内外部
(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>.
(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.
13. 抛物线的切线方程
(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+. (2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是
00()y y p x x =+.
(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.
14.两个常见的曲线系方程
(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是
12(,)(,)0f x y f x y λ+=(λ为参数).
(2)共焦点的有心圆锥曲线系方程22
2
21x y a k b k +=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.
15.直线与圆锥曲线相交的弦长公式 AB =
1212||||AB x x y y ==-=-(弦端点
A ),(),,(2211y x
B y x ,由方程⎩⎨⎧=+=0)y ,x (F b
kx y 消去y 得到02=++c bx ax ,0∆>,α为
直线AB 的倾斜角,k 为直线的斜率).
16.圆锥曲线的两类对称问题
(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是
00(2-,2)0F x x y y -=.
(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是
2222
2()2()
(,)0A Ax By C B Ax By C F x y A B A B
++++--=++.
17.“四线”一方程
对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用
002x y xy +代xy ,用02x x +代x ,用02y y
+代y 即得方程 0000000222
x y xy x x y y
Ax x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,
中点弦,弦中点方程均是此方程得到.。

相关文档
最新文档