实验3 日光灯电路及功率因数的提高

合集下载

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告1.实验目的:本实验主要是为了了解日光灯的电路原理,以及通过不同方式提高日光灯的功率因数,从而达到节能的目的。

2.实验原理:日光灯是一种比较常见的照明灯具,其原理是通过放电管中的气体放电来产生紫外线,同时紫外线通过荧光粉的激发产生可见光线。

在电路方面,日光灯的电路主要包括电源电路、点火电路和预热电路。

其中,电源电路主要是为了提供足够的工作电压和电流,电路中通常采用交流电源。

点火电路则是为了在启动时提供足够的高压,以便放电管内部形成气体放电和紫外线辐射,最终点亮日光灯。

预热电路则是为了提供足够的预热电流,以便减小放电管的点火电压。

在实验中,我们主要关注提高日光灯的功率因数,其中功率因数是指电路中所消耗的有用功率与视在功率之比。

功率因数越高,电路的能量利用效率也就越高。

在日光灯电路中,功率因数主要受到电容器的影响。

常规日光灯中的电容器通常采用交流电容器,其功率因数较低,只有0.5-0.7左右。

因此,为了提高日光灯的功率因数,我们需要通过改进电路中的电容器来实现。

有几种提高日光灯功率因数的方法,其中较为常见的包括:(1)更换电容器:我们可以通过更换高效的交流电容器或相控交流电容器来提高电路的功率因数。

相控交流电容器比较适合纠正交流电路因为电感而导致功率因数下降的问题。

(2)串联电感:我们可以在电路中增加合适的电感,以降低电路中负载电流的频率,从而提高功率因数。

(3)使用电子镇流器:电子镇流器相对传统的电子镇流器来说,具有更高的效率和功率因数,可以大大减小电路中的损耗和浪费。

3.实验过程:本次实验主要选用更换电容器和串联电感两种方法来提高日光灯的功率因数。

具体步骤如下:(1)连接电路:我们首先按照实验装置要求,连接好日光灯的电路。

(2)记录数据:我们记录下日光灯启动前和启动后的功率因数、功率、电流、电压等数据,作为基准数据。

(3)更换电容器:接下来我们将原来的电容器更换为高效的相控交流电容器,再次记录相关数据。

实验3 日光灯电路及功率因数的提高

实验3  日光灯电路及功率因数的提高

实验三 交流电路的研究一、实验目的1、学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器;2、学习用交流数字仪表测量交流电路的电压、电流和功率;3、学会用交流数字仪表测定交流电路参数的方法;4、加深对阻抗、阻抗角及相位差等概念的理解。

5、研究提高感性负载功率因数的方法和意义;二、实验原理1、交流电路的电压、电流和功率的测量正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。

计算的基本公式为:电阻元件的电阻:I U R R =或2IP R =电感元件的感抗I U X L L =,电感fX L π2L =电容元件的容抗IU X C C =,电容C21fXC π=串联电路复阻抗的模IU Z =,阻抗角 RX arctg =ϕ其中:等效电阻 2IP R =,等效电抗22RZX -=在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。

电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线圈的同名端(标有*号端)必须连在一起,如图3-1所示。

本实验使用数字式功率表,连接方法与电动式功率表相同,电压、电流量程分别选500V 和3A 。

2、提高感性负载功率因数的研究供电系统由电源(发电机或变压器)通过输电线路向负载供电。

负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。

由于电感性负载有较大的感抗,因而功率因数较低。

若电源向负载传送的功率ϕcos UI P =,当功率P 和供电电压U 一定时,功率因数ϕcos 越低,线路电流I 就越大,从而增加了线路电压降和线路功率损耗,若线路总电阻为l R ,则线路电压降和线路功率损耗分别为l l IR U =∆和l l R I P 2=∆;另外,负载的功率因数越低,表明无功功率就越大,电源就必须用较大的容量和负载电感进行能量交换,电源向负载提供有功功率的能力就必然下降,从而降低了电源容量的利用率。

实验日光灯电路及功率因数的提高

实验日光灯电路及功率因数的提高

实验日光灯电路及功率因数的提高
日光灯电路是利用线圈产生的磁场去振荡电容,从而产生交流电子供电。

它可以实现
电源节省,减少维护费用,延长寿命,同时提高质量。

首先要提高日光灯电路的功率因数,就要充分利用电容和磁场的峰值。

当磁场的能量
大于电容的电荷时,需要在线圈上加电容,这样可以使电路的功率因数得到提高。

另一部分是采用电容式滤波器来降低共振频率和降低电磁兼容性。

对于逆变器来说,
可以采用拓扑电路,加大线圈抗线圈电容的电容,使逆变器线圈的抗热能力变得越来越高。

此外,还可以使用变频技术,使振荡电路的周期性变化。

由于变频波形的功率因数小,所以可以提高整个系统的稳定性,减少热散离的发生,同时满足灯具的质量要求。

最后要考虑的是,应该采用适宜的驱动电压,选择外部组件,如电容器、开关设备、
控制电路和散热器等,以提高电路发挥的能力。

调节电压和电流,使日光灯具的电流得到
控制,减少日光灯电路中电池的功耗,进一步提升日光灯电路的功率因数。

总之,想要提高日光灯电路的功率因数,就要通过利用线圈滤波器、变频技术以及外
部组件的优势来加强对磁场和电容的利用,使整个系统的能力不断提升,从而达到提高功
率因数的有效目的。

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告一、引言引言部分主要介绍日光灯电路及功率因数的背景信息,并阐述实验的目的和意义。

二、实验原理本部分详细介绍日光灯电路的基本原理和功率因数的概念,包括电路结构、工作原理和功率因数的定义与计算方法。

2.1 日光灯电路概述日光灯电路由电源、镇流器、日光灯管和启动装置等组成,其工作原理是通过电流和电压的相互作用,将电能转化为光能。

2.2 功率因数的定义与计算方法功率因数是衡量电路效率的重要指标,其定义为有功功率和视在功率之比。

常见的提高功率因数的方法有补偿电路的设计和无功功率的补偿等。

三、实验步骤本部分详细说明实验的具体步骤和操作流程,并列出实验所需材料和仪器设备清单。

3.1 实验材料与设备•日光灯管•电阻器•电容器•电源•电压表•电流表3.2 实验操作流程1.连接电源和电流表,并调节合适的电流值。

2.依次连接电阻器和电容器,并记录电压和电流的数值。

3.根据记录的数据,计算功率因数。

4.反复进行多组实验,以验证实验结果的准确性。

四、实验结果与分析本部分详细介绍实验所得结果,并进行数据分析和讨论。

4.1 实验数据记录使用表格形式列出各组实验数据,并对数据进行标注。

4.2 数据分析与讨论根据实验数据,计算得到各组实验的功率因数,并进行结果分析和讨论。

五、实验结论本部分总结实验的目的、步骤和结果,给出实验结论,并对实验中遇到的问题和改进方法进行讨论。

六、实验心得本部分讨论实验过程中遇到的困难和挑战,总结实验经验和心得,并提出对今后实验改进的建议。

七、参考文献列出参考的相关文献、教材和网站等。

八、附录提供实验中的原始数据记录表和实验装置的照片等附加信息。

实验3 日光灯电路及功率因数的提高

实验3  日光灯电路及功率因数的提高

实验三日光灯电路及功率因数的提高一、实验目的1、了解日光灯电路的工作原理与接线。

2、了解提高功率因数在工程上的意义。

3、掌握提高感性负载功率因数的方法。

4、熟悉功率表、功率因数表的使用方法。

二、实验内容1、日光灯电路及其功率因数的改善。

2、感性负载功率因数的提高。

四、实验原理1、日光灯电路原理日光灯电路由灯管、镇流器及启辉器三部分组成。

其原理如图3.1所示。

灯管在工作时可认为是一个电阻负载R。

镇流器是一个交流铁心线圈,可等效为一个电感很大的感性负载(r、L串联)。

灯亮后,启辉器就不起作用了。

故实际上是一个R、L串联电路,等效电路如图3.2所示。

其工作原理如下:当接通220V交流电源时,电源电压通过镇流器施加于启辉器两电极上,使极间气体导电,可动电极(双金属片)与固定电极接触。

由于两电极接触不再产生热量,双金属片冷却复原使电路突然断开,此时镇流器产生一较高的自感电动势经回路施加于灯管两端,而使灯管迅速起燃,电流经镇流器、灯管而流通。

灯管起燃后,两端压降较低,启辉器不工作,日光灯正常工作。

图3.1 日光灯原理电路 图3.2日光灯等效电路2、 功率因数的提高电力系统中的大多数负载,如异步电动机、日光灯等都是感性负载,功率因数较低,对电力系统的运行不利。

一是使电源设备的利用率减低,二是降低了输电线路的输电功率。

也就是说,负载的有功功率一定时,有关系式I=P/UC osφ,可见,功率因数低,线路电流就大,输电线路上的功率消耗I 2r 也就增大(r 为线路等值电阻),使输电功率降低。

因此提高负载的功率因数有着重要的经济意义。

提高功率因数即在不改变原负载工作状态的条件下,设法减小线路电流。

常用的方法是感性负载并联电容补偿之,容性负载并联电感补偿之。

图3.3感性负载电路 图3.4相量图在感性负载两端并联电容器后的相量图如图3.4所示。

若忽略线路阻抗,并联电容后并不改变原负载的工作状况,但却通过容性电流对感性电流的补偿,提高了功率因数,降低了对电源输出电流的要求,可增加一定容量电源的带载能力。

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告日光灯电路与功率因数的提高实验报告引言:在现代社会中,电能的消耗已成为一个重要的问题。

为了提高能源利用率和减少能源浪费,我们需要关注电路的功率因数。

本实验旨在研究日光灯电路中功率因数的提高方法,以期能为实际应用提供一定的参考。

一、实验目的本实验的主要目的是探究日光灯电路中功率因数的提高方法,并通过实验验证相关理论。

二、实验原理1. 功率因数的定义功率因数是指电路中有用功与视在功之比,用来衡量电路的有效使用程度。

功率因数的理论范围在0到1之间,数值越接近1,说明电路的有用功越高,能源利用效率越好。

2. 日光灯电路日光灯电路是一种常见的照明电路,由电源、镇流器和灯管组成。

在传统的日光灯电路中,功率因数通常较低,这会导致电能的浪费。

三、实验步骤1. 搭建传统日光灯电路按照传统的日光灯电路连接方式,搭建一个基础电路,包括电源、镇流器和灯管。

2. 测量功率因数使用功率因数测试仪,测量传统日光灯电路的功率因数,并记录测量结果。

3. 安装功率因数改善装置在电路中加入功率因数改善装置,该装置可以通过电容器或电感器来提高电路的功率因数。

根据实验要求选择合适的装置并进行安装。

4. 测量改进后的功率因数使用功率因数测试仪,再次测量改进后的日光灯电路的功率因数,并记录测量结果。

四、实验结果与分析通过实验测量,我们得到了传统日光灯电路和改进后电路的功率因数。

根据测量结果,我们可以得出以下结论:1. 传统日光灯电路的功率因数较低,通常在0.5左右。

这是由于电路中存在电感元件,导致电流与电压之间存在相位差,使得功率因数降低。

2. 安装功率因数改善装置后,电路的功率因数得到了明显提高。

改进后的电路功率因数通常能达到0.9以上,有些甚至可以接近1。

这是因为功率因数改善装置通过补偿电路中的电感元件,使得电流与电压之间的相位差减小,从而提高了功率因数。

3. 通过对比传统电路和改进后电路的功率因数,我们可以明显看出功率因数改善装置的有效性。

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告实验目的本次实验的目的是通过使用电容矫正技术,改善日光灯电路的功率因数,提高电路的效率,降低能源消耗。

实验原理日光灯电路中,对于电感型补偿器,其所产生的反向电路能量,会导致电路中出现较大的无功功率,从而使得整个电路的功率因数降低。

这会导致电网负荷增加,影响电网稳定性。

因此,日光灯电路采用电容矫正技术,将无功功率转化为有功功率,提高功率因数。

电容矫正技术的原理是,在电路中添加一定电容,使得电路中所产生的无功功率,可以通过电容的储能作用,转化为有功功率。

这样,整个电路的功率因数得以提高。

实验步骤1. 将实验所需的设备接好,包括信号发生器、示波器、电阻、电容等。

2. 将日光灯电路连接到电阻和电容上,使其能够产生大量的无功功率。

3. 记录电路的电压、电流、功率等参数,并且利用示波器来观测电路的波形。

4. 随后,将电容矫正电路添加到日光灯电路中,并再次记录电路的电压、电流、功率等参数。

5. 通过对两次实验数据的对比,分析电容矫正技术对于日光灯电路功率因数的提高能够产生的影响。

实验结果经过对实验数据的收集和分析,我们得到了如下结果:没有电容矫正电路时,电路中的无功功率约占总功率的35%。

而添加电容矫正电路之后,这一比例下降到了约10%。

同时,整个电路经过电容矫正之后,功率因数明显提高了。

经过分析,我们得到的结构是,电容矫正技术能够使得日光灯电路的功率因数得以提高,从而降低能耗。

另一方面,电容矫正技术也能够改善电路中的无功功率问题,促进电路的稳定性。

实验结论通过本次实验,我们得到了如下结论:- 电容矫正技术能够提升日光灯电路的功率因数,降低能耗,提高电路的效率。

- 电容矫正技术能够改善电路中的无功功率问题,促进电路的稳定性。

- 通过实验,我们进一步了解了日光灯电路中的相关知识,对电路的运行原理和变化有了更深入的了解。

总之,本次实验结果表明,电容矫正技术对于日光灯电路的提升有着显著的效果,它能够改善电路的功率因数和稳定性,从而降低能源消耗,更好地满足了能源节约的需求。

实验3:日光灯电路及对感性负载提高功率因数补偿的方法

实验3:日光灯电路及对感性负载提高功率因数补偿的方法

实验3:日光灯电路及对感性负载提高功率因数补偿的方法
一、实验目的
1、了解荧光灯的结构及工作原理。

2、掌握对感性负载提高功率的方法及意义。

二、实验原理
荧光灯管A,镇流器L,启动器S组成,当接通电源后,启动器内发生辉放电,双金属片受热弯曲,触点接通,将灯丝预热使它发射电子,启动器接通后辉光放电停止,双金属片冷却,又把触电断开,这是镇流器感应出高电压加在灯管两端使荧光灯管放电,产生大量紫外线,灯管同壁的荧光粉吸收后辐射出可见光,荧光灯就开始正常的工作,启动器相当一只自动开关,能自动接通电路和开端电路。

设若功率因数过低,一方面没有充分利用电源容量,另一方面又在输电电路中增加损耗。

为了提高功率因数,一般最常用的方法是在伏在两端并联一个补偿电容器,抵消负载电流的一部分无功分量。

三、实验内容
1、按图二接线,经老师检查无误,开启电源。

2、用交流电压表测总电压U,镇流电路两端电压Ul及灯管两端电压UA,用交流电流表测总电流I,灯光支路电流Ia及电容支路电流Ic,用功率表测其功率P。

3、按表一中所定电容值逐渐加大电容C的值测量并记录数据到表一中:
4·荧光灯正常工作时
四、实验结论
随着功率因数的提高,负载电流明显降低。

五、实验心得
1注意电容值,以免接入大电容时,电流过大。

2不能带电操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 交流电路的研究
一、实验目的
1、学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器;
2、学习用交流数字仪表测量交流电路的电压、电流和功率;
3、学会用交流数字仪表测定交流电路参数的方法;
4、加深对阻抗、阻抗角及相位差等概念的理解。

5、研究提高感性负载功率因数的方法和意义;
二、实验原理
1、交流电路的电压、电流和功率的测量
正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。

计算的基本公式为:
电阻元件的电阻:I
U R R
=或2I P R =
电感元件的感抗I
U X L
L =
,电感f X L π2L =
电容元件的容抗I
U X C C =
,电容C 21
fX C π=
串联电路复阻抗的模I U Z =
,阻抗角 R
X
arctg =ϕ 其中:等效电阻 2
I P
R =
,等效电抗2
2
R Z X -=
在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。

电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线
圈的同名端(标有*号端)必须连在一起,如图3-1
方法与电动式功率表相同,电压、电流量程分别选500V 和3A 。

2、提高感性负载功率因数的研究
供电系统由电源(发电机或变压器)通过输电线路向负载供电。

负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。

由于电感性负载有较大的感抗,因而功率因数较低。

若电源向负载传送的功率ϕcos UI P =,当功率P 和供电电压U 一定时,功率因数ϕcos 越低,线路电流I 就越大,从而增加了线路电压降和线路功率损耗,若线路总电阻为l R ,则
线路电压降和线路功率损耗分别为l l IR U =∆和l l R I P 2=∆;
另外,负载的功率因数越低,表明无功功率就越大,电源就必须用较大的容量和负载电感进行能量交换,电源向负载提供有功功率的能力就必然下降,从而降低了电源容量的利用率。

因而,从提高供电系统的经济效益和供电质量,必须采取措施提高电感性负载的功率因数。

通常提高电感性负载功率因数的方法是在负载两端并联适当数量的电容器,使负载的总无功功率Q =Q L -Q C 减小,在传送的有功率功率P 不变时,使得功率因数提高,线路电流减小。

当并联电容器的Q C =Q L 时,总无功功率Q =0,此时功率因数ϕcos =1,线路电流I 最小。

若继续并联电容器,将导致功率因数下降,线路电流增大,这种现象称为过补偿。

负载功率因数可以用三表法测量电源电压U 、负载电流I 和功率P ,用公式
UI
P
=
=ϕλcos 计算。

本实验的电感性负载用铁心线圈,(日光灯镇流器)电源用220V 交流电经自耦调压器调压供电。

三.实验设备
1.交流电压表、电流表、功率表(在控制屏) 2.自耦调压器(输出可调的交流电压)
3.NEEL —17(或EEL —52、EEL —55或MEEL —001、MEEL —02)—30W 镇流器,630V/4.3μF 电容器,电流插头,40W/220V 白炽灯,30W 日光灯
四.实验内容
1.测量日光灯电路
日光灯电路如图3-2所示,功率表的连接方法见图3-1,交流电源经自耦调压器调压后向负载日光灯供电。

将电压U 调到220V ,测量日光灯管两端电压U R 、镇流器电压U RL 和总电压U 以及电流和功率,并记入自拟的数据表格中。

2.提高感性负载功率因数实验 按图3-2组成实验电路经指导老师检查后,按下按钮开关,调节自耦变压器的输出电压为220V ,记录功率表、功率因数表、电压表和电流表的读数,接入电容,从小到大增加电容值,记录不同电容值时的功率表、功率因数表、电压表和电流表的读数,并记入表3-1中。

实验中用电流取样插头测量三个支路的电流。

在实验过程中,一直要保持负载电压U 2等于
210V ,以便对实验数据进行比较。

注意:日光灯启动时电流较大(约0.6A),工作时电流约为0.37A,注意仪表量程选择。

五.实验注意事项
1.通常,功率表不单独使用,要有电压表和电流表监测,使电压表和电流表的读数不超过功率表电压和电流的量程;
2.注意功率表的正确接线,上电前必须经指导教师检查;
3.自耦调压器在接通电源前,应将其手柄置在零位上,调节时,使其输出电压从零开始逐渐升高。

每次改接实验负载或实验完毕,都必须先将其旋柄慢慢调回零位,再断电源。

必须严格遵守这一安全操作规程。

六.预习与思考题
1.自拟实验所需的表格;
2.参阅课外资料,了解日光灯的电路连接和工作原理;
3.当日光灯上缺少启辉器时,人们常用一根导线将启辉器插座的两端短接一下,然后迅速断开,使日光灯点亮;或用一只启辉器去点亮多只同类型的日光灯,这是为什么?
4.了解功率表的连接方法;
5.了解自耦调压器的操作方法。

6.电感性的负载为什么功率因数较低?负载较低的功率因数对供电系统有何影响?为什么?
7.为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流支路,
试问电路的总电流是增大还是减小?此时感性负载上的电流和功率是否改变?
8.提高线路功率因数为什么只采用并联电容器法,而不用串联法?
七.实验报告要求
1.根据实验1的数据,计算镇流器的参数(电阻R和电感L);
2.根据实验2的数据,画出各个电压和电流的相量图,说明各个电压之间的关系。

3.根据实验2数据,计算出日光灯和并联不同电容器时的功率因数,并说明并联电容器对功率因数的影响。

绘制出功率因数与所并电容的曲线,所并电容是否越大越好?
4.根据表3-1中的电流数据,说明I=I C+I RL吗?为什么?
7.画出所有电流和电源电压的相量图,说明改变并联电容的大小时,相量图有何变化?
8.根据实验2数据,从减小线路电压降、线路功率损耗和充分利用电源容量两个方面说明提高功率因数的经济意义。

9.回答思考题6、7、8。

相关文档
最新文档