2019年丰台高三一模理数试卷及答案无水印
北京市丰台区2019届高三3月综合练习(一模)数学(理)试题 含答案

丰台区2019年高三年级第二学期综合练习(一)数 学(理科)2019. 03(本试卷满分共150分,考试时间120分钟)注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2. 本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。
4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数11iz =+的共轭复数是 (A )11i 22+(B )11i 22-(C )1i + (D )1i -2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为 (A ){1}(B )3(C ){1,1}-(D ){3,3}-3.设命题p :(0,),ln 1x x x ∀∈+∞-≤,则p ⌝为 (A )(0,),ln 1x x x ∀∈+∞>- (B )000(0,),ln 1x x x ∃∈+∞-≤ (C )(0,),ln 1x x x ∀∉+∞>-(D )000(0,),ln 1x x x ∃∈+∞>-4.执行如图所示的程序框图,如果输入的1a =,输出的15S =,那么判断框内的条件可以为 (A )6k <(B )6k ≤ (C )6k >(D )7k >5.下列函数中,同时满足:①图象关于y 轴对称;②1212,(0,)()x x x x ∀∈+∞≠,2121()()f x f x x x ->-的是(A )1()f x x -=(B )2()log ||f x x = (C )()cos f x x =(D )1()2x f x +=6.已知α和β是两个不同平面,l αβ=,12l l ,是与l 不同的两条直线,且1l α⊂,2l β⊂,12l l ∥,那么下列命题正确的是 (A )l 与12,l l 都不相交(B )l 与12,l l 都相交 (C )l 恰与12,l l 中的一条相交(D )l 至少与12,l l 中的一条相交7.已知12,F F 为椭圆22212x y M m +=:和双曲线2221x N y n-=:的公共焦点,P 为它们的一个公共点,且112PF F F ⊥,那么椭圆M 和双曲线N 的离心率之积为 (A 2(B )1(C 2(D )128.在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形.若ABC △是格点三角形,其中(0,0)A ,(4,0)B ,且面积为8,则该三a =-a开始输入a 结束输出S 否是k =k +1S =S+ak 2k =1, S =0角形边界上的格点个数不可能为 (A )6(B )8(C )10 (D )12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市丰台区2019届高考一模数学(理)试题含答案

丰台区2018年高三年级第二学期综合练习(一)数学(理科)2018.03(本试卷满分共150分,考试时间120分钟)注意事项:1•答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填 写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2•本次考试所有答题均在答题卡上完成。
选择题必须使用 2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字 迹签字笔书写,要求字体工整、字迹清楚。
3•请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、 草稿纸上答题无效。
4 •请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要 求的一项。
(2)已知命题p:-(A) V x > 1, X Al (B)<1, X !>1(C) ' x <1,「’ - -(D) - x > 1,--A-(1)已知全集U={x I x < 5},集合 x<2)(A)(B)(D)x-2^^0 £ ^-^4-2>0⑶设不等式组I x -° 表示的平面区域为 Q 则(A )原点0在八内 (B) 八的面积是1(C) 八内的点到y 轴的距离有最大值 (D) 若点 P(x o ,y o ) eQ ,贝U x o +y o ^ 0 (4)执行如图所示的程序框图,如果输出的 a=2,那么判断框中填入的条件可以是 (A) n > 5 (B) n > 6(C) n > 7(D) n > 8 (5)在平面直角坐标系xO y 中,曲线C 的参数方程为 (-;为参数)•若以射线Ox 为极轴建立极坐标系,则曲线 C 的极坐标方程为(A) "=si n :'(B) '=2si n :' (C) =cos 、 (D ) =2cos 、⑹某三棱锥的三视图如图所示,则该三棱锥的体积为248(A) 1 (B)1(C) 2(D) 1(7)某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为 (A)4(B)8(C) 12 (D) 24用9斤(8)设函数门Ff 「=;,若函数恰有三个零点x !, x 2, x 3 (x i <X 2 <X 3),则x i + x2 + X 3的取值范围是l+cosa= sind ;①当 _ 二-时,y的取值范围是____________ ;②如果对任意■- (b <0),都有疋卜2」],那么b的最大值是(14) 已知C是平面ABD上一点,AB丄AD,CB=CD=1.①若忑=3疋,则忑,^= _______________ .Sbr Ibr(A) ■: 1第二部分〔非选择题共110分)AO X1 ■——、加、填空题共6小题,每小题5分,共30分。
数学高三一模2019~2020试卷丰台区 含答案

丰台区2019—2020学年度第二学期综合练习(一)高三数学 2020.04 第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|12}A x x =∈-<<Z ,2{20}B x x x =-=,则AB =(A ){0} (B ){01}, (C ){012},,(D ){1012}-,,,2. 已知向量(2)(21)x ==-,,,a b ,满足a b ‖,则x =(A )1 (B )1-(C )4(D )4-3. 若复数z 满足i 1iz=+,则z 对应的点位于 (A )第一象限(B )第二象限(C )第三象限(D )第四象限4. 圆22(1)2x y -+=的圆心到直线10x y ++=的距离为(A )2(B(C )1(D)25. 已知132a =,123b =,31log 2c =,则 (A )a b c >> (B )a c b >>(C )b a c >> (D ) b c a >>6. “1a >”是“11a<”成立的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.的有8. 过抛物线22(0)C y px p =>:的焦点F 作倾斜角为60°的直线与抛物线C 交于两个不同的点A B ,(A )1个 (B )2个 (C )3个(D )4个俯视图左视图(点A 在x 轴上方),则AF BF的值为(A )13(B )43(C(D )39. 将函数()sin (0)f x x ωω=>的图象向左平移π2个单位长度后得到函数()g x 的图象,且(0)1g =,下列说法错误..的是(A )()g x 为偶函数(B )π()02g -=(C )当5ω=时,()g x 在π[0]2,上有3个零点(D )若()g x 在π[]50,上单调递减,则ω的最大值为910. 已知函数()e 100.x f x x k x x =⎧-≥⎨<⎩,,, 若存在非零实数0x ,使得00()()f x f x -=成立,则实数k 的取值范围是(A )1()-∞-,(B )1(]-∞-,(C )(10)-,(D )10[)-,第二部分 (非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 设数列{}n a 的前n 项和为n S ,21n a n =- ,则5S = . 12. 若1x >,则函数1()1f x x x =+-的最小值为 ,此时x = .13. 已知平面α和三条不同的直线m n l ,,.给出下列六个论断:①m α⊥;②m α‖;③m l ‖;④n α⊥;⑤n α‖;⑥n l ‖.以其中两个论断作为条件,使得m n ‖成立.这两个论断可以是 .(填上你认为正确的一组序号)14. 如果对某对象连续实施两次变换后的结果就是变换前的对象,那么我们称这种变换为“回归”变换.如:对任意一个实数,变换:取其相反数.因为相反数的相反数是它本身,所以变换“取实数的相反数”是一种“回归”变换. 有下列3种变换:① 对A ⊆R ,变换:求集合A 的补集; ② 对任意z ∈C ,变换:求z 的共轭复数;③ 对任意x ∈R ,变换:x kx b →+(k b ,均为非零实数).其中是“回归”变换的是 .注:本题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.15. 已知双曲线2213y M x -=:的渐近线是边长为1的菱形OABC 的边OA OC ,所在直线.若椭圆 22221(0)x y N a b a b+=>>:经过A C ,两点,且点B 是椭圆N 的一个焦点,则a = . 三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题共14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4c =,π3A =.(Ⅰ)当2b =时,求a ;(Ⅱ)求sin 3cos B C -的取值范围.17.(本小题共14分)如图,在四棱锥M ABCD -中,AB CD ‖,90ADC BM C ∠=∠=,M B MC =,122AD DC AB ===,平面BCM ⊥平面ABCD .(Ⅰ)求证:CD ‖平面ABM ; (Ⅱ)求证:AC ⊥平面BCM ;(Ⅲ)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为π4?若存在,求出AE AM的值;若不存在,请说明理由.18.(本小题共14分)在抗击新冠肺炎疫情期间,很多人积极参与了疫情防控的志愿者活动.各社区志愿者服务类型有:现场值班值守,社区消毒,远程教育宣传,心理咨询(每个志愿者仅参与一类服务).参与A ,B ,C 三个社区的志愿者服务情况如下表:社区 社区服务总人数服务类型现场值班值守社区消毒远程教育宣传 心理咨询A 100 303020 20B 120 40 35 20 25 C15050403030(Ⅰ)从上表三个社区的志愿者中任取1人,求此人来自于A 社区,并且参与社区消毒工作的概率;(Ⅱ)从上表三个社区的志愿者中各任取1人调查情况,以X 表示负责现场值班值守的人数,求X 的分布列; (Ⅲ)已知A 社区心理咨询满意率为0.85,B 社区心理咨询满意率为0.95,C 社区心理咨询满意率为0.9,“1A ξ=,1B ξ=,1C ξ=”分别表示A ,B ,C 社区的人们对心理咨询满意,“0A ξ=,0B ξ=,0C ξ=”分别表示A ,B ,C 社区的人们对心理咨询不满意,写出方差()AD ξ,()B D ξ,()C D ξ的大小关系.(只需写出结论)19.(本小题共15分)已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值; (Ⅱ)当0a =时,求证:()0f x ≥;(Ⅲ)若函数()f x 在区间(1)+∞,上存在极值点,求实数a 的取值范围.20.(本小题共14分)已知椭圆22221(0)y x C a b a b +=>>:2,点(10)P ,在椭圆C 上,直线0y y =与椭圆C 交于不同的两点A B ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)直线PA ,PB 分别交y 轴于M N ,两点,问:轴上是否存在点Q ,使得2OQN OQM π∠+∠=?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(本小题共14分)已知有穷数列A :*12(k n a a a a n ∈N ,,,,,且3)n ≥.定义数列A 的“伴生数列”B :12k n b b b b ,,,,,,其中111110k k k k k a a b a a -+-+≠==⎧⎨⎩,,,(12)k n =,,,,规定011n n a a a a +==,. (Ⅰ)写出下列数列的“伴生数列”:① 1,2,3,4,5; ② 1,−1,1,−1,1.(Ⅱ)已知数列B 的“伴生数列”C :12k n c c c c ,,,,,,且满足1(12)k k b k n c ==+,,,.x(i)若数列B中存在相邻两项为1,求证:数列B中的每一项均为1;(ⅱ)求数列C所有项的和.丰台区2019~2020学年度第二学期综合练习(一)高三数学 参考答案及评分参考2020.04二、填空题共5小题,每小题5分,共25分.11.25 12.3 ;2 13.①④(或③⑥)14. ①② 2三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题共14分)解:(Ⅰ) 由余弦定理2222cos a b c bc A =+-,得222π24224cos3a =+-⨯⨯⋅12=.所以a = …………6分 (Ⅱ) 由π3A =可知,2π3B C +=,即2π3B C =-.2πsin sin()3B C C C =-1sin 22C C C =+-1sin cos 22C C =-πsin()3C =-.因为2π3B C +=,所以2π(0,)3C ∈. 故πππ(,)333C -∈-.因此π33sin()()322C -∈-,. 于是33sin 3cos (,)22B C -∈-. …………14分17.(本小题共14分) 证明:(Ⅰ)因为AB CD ‖, AB ⊂平面ABM , CD ⊄平面ABM ,所以CD ‖平面ABM . …………3分(Ⅱ)取AB 的中点N ,连接CN . 在直角梯形ABCD 中,易知2AN BN CD ===,且CN AB ⊥. 在Rt △CNB 中,由勾股定理得2BC =. 在△ACB 中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD ,且平面BCM平面ABCD BC =,所以AC ⊥平面BCM . …………7分 (Ⅲ)取BC 的中点O ,连接OM ,ON .所以ON AC ‖, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则(001)M ,,,(010)B ,,,(010)C ,-,,(210)A -,,, =(211)AM -,,,=(020)BC -,,,=(220)BA -,,.易知平面BCM 的一个法向量为(100)=,,m .假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为π4.不妨设(01)AE AM λλ=≤≤,所以(222)BE BA AE λλλ=+=--,,, 设()x y z =,,n 为平面BCE 的一个法向量,则00BC BE ⋅=⋅=⎧⎪⎨⎪⎩,,n n 即20(22)0y x z λλ-=-+=⎧⎨⎩,,令x λ=,22z λ=-,所以(22)λλ=-,0,n .从而2cos 2m n m n⋅<>==⋅,m n .解得23λ=或2λ=.因为01λ≤≤,所以23λ=.由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为π4,此时23AE AM=. …………14分18.(本小题共14分)解:(Ⅰ)记“从上表三个社区的志愿者中任取1人,此人来自于A 社区,并且参与社区消毒工作”为事件D ,303()10012015037P D ==++. 所以从上表三个社区的志愿者中任取1人,此人来自于A 社区,并且参与社区消毒工作的概率为337. …………4分 (Ⅱ)从上表三个社区的志愿者中各任取1人,由表可知:A ,B ,C 三个社区负责现场值班值守的概率分别为3111033,,.X 的所有可能取值为0,1,2,3.7222814(0)10339045P X ==⨯⨯== ,322712721404(1)103310331033909P X ==⨯⨯+⨯⨯+⨯⨯==,31232171119(2)10331033103390P X ==⨯⨯+⨯⨯+⨯⨯=,31131(3)10339030P X ==⨯⨯==. X…………11分(Ⅲ)()()()A C B D D D ξξξ>> …………14分19.(本小题共15分)解:(Ⅰ)因为()()ln 1f x x a x x =+-+,所以'()ln a f x x x=+.由题知'(e)ln e 1ea f =+=,解得0a =. …………4分 (Ⅱ)当0a =时,()ln 1f x x x x =-+, 所以'()ln f x x =.当(01)x ∈,时,'()0f x <,()f x 在区间(01),上单调递减;当(1)x ∈∞,+时,'()0f x >,()f x 在区间(1)∞,+上单调递增; 所以(1)0f =是()f x 在区间(0)∞,+上的最小值.所以()0f x ≥. …………8分 (Ⅲ)由(Ⅰ)知,ln +'()ln a x x a f x x xx=+=.若0a ≥,则当(1)x ∈∞,+时,'()0f x >,()f x 在区间(1)∞,+上单调递增,此时无极值.若0a <,令()'()g x f x =, 则21'()=a g x xx-.因为当(1)x ∈∞,+时,'()0g x >,所以()g x 在(1)∞,+上单调递增. 因为(1)0g a =<,而(e )e (e 1)0a a ag a a a -=-+=->,所以存在0(1e )ax -∈,,使得0()0g x =.'()f x 和()f x 的情况如下:因此,当0x x =时,()f x 有极小值0()f x .综上,a 的取值范围是0()-∞,. …………15分20.(本小题共14分)解:(Ⅰ)由题意2222112.bc a a b c ⎧=⎪⎪⎪⎨=⎪⎪=+⎪⎩, 解得2221a b ==,.所以椭圆C 的方程为2212y x +=. …………5分(Ⅱ) 假设存在点Q 使得2OQN OQM π∠+∠=.设(0)Q m ,,因为2OQN OQM π∠+∠=,所以OQN OMQ ∠=∠.则tan tan OQN OMQ ∠=∠.即ON OQ OQOM=,所以OM ON OQ =2.因为直线0y y =交椭圆C 于A B ,两点,则A B ,两点关于y 轴对称.设0000()()A x y B x y -,,,0(1)x ≠±,因为(10)P ,,则直线PA 的方程为:)1(100--=x x y y .令0=x ,得100--=x y y M .直线PB 的方程为:)1(10-+-=x x y y .令0=x ,得10+=x y y N . 因为OM ON OQ =2, 所以12022-=x y m .又因为点00()A x y ,在椭圆C 上,所以22002(1)y x =-. 所以220202(1)21x m x -==-.即m =所以存在点(0)Q 使得2OQN OQM π∠+∠=成立.…………14分21.(本小题共14分)解: (Ⅰ)① 1,1,1,1,1;② 1,0,0,0,1.…………4分 (Ⅱ)(i )由题意,存在{}121k n ∈-,,,,使得11k k b b +==.若1k =,即121b b ==时,120c c ==.于是21311n b b b b ====,.所以30n c c ==,所以421b b ==.即2341b b b ===.依次类推可得11k k b b +==(231)k n =-,,,.所以1k b =(12)k n =,,,.若21k n ≤≤-,由11k k b b +==得10k k c c +==.于是111k k k b b b -+===.所以10k k c c -==. 依次类推可得121b b ==. 所以1k b =(12)k n =,,,. 综上可知,数列B 中的每一项均为1. …………8分 (ⅱ)首先证明不可能存在{}21k n ∈-,,使得110k k k b b b -+===. 若存在{}21k n ∈-,,使得110k k k b b b -+===, 则111k k k c c c -+===. 又11k k b b -+=得0k c =与已知矛盾. 所以不可能存在110k k k b b b -+===,{}21k n ∈-,,. 由此及(ⅱ)得数列{}n b 的前三项123b b b ,,的可能情况如下: (1)1231b b b ===时,由(i )可得1k b =(12)k n =,,,. 于是0k c =(12)k n =,,,. 所以所有项的和0S =. (2)123101b b b ===,,时,20c =, 此时220b c +=与已知矛盾.(3) 123100b b b ===,,时,123011c c c ===,,. 于是22401n b b b b ==≠=,. 故4531,0,0n c c b b ==== 于是1156010n b b c b -≠===,,, 于是142536b b b b b b ===,,,且21100n n n b b b --===,,. 依次类推3k k b b +=且n 恰是3的倍数满足题意. 所以所有项的和233n n S n =-= . 同理可得123010b b b ===,,及123001b b b ===,,时,当且仅当n 恰是3的倍数时,满足题意.此时所有项的和23nS = .综上,所有项的和0S =或23n S =(n 是3的倍数). …………14分(若用其他方法解题,请酌情给分)。
(完整word)2018-2019丰台区一模数学理科试题及答案,推荐文档

丰台区2019年高三年级第二学期综合练习(一)数 学(理科)2019. 03(本试卷满分共150分,考试时间120分钟)注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2. 本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。
4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数11iz =+的共轭复数是(A )11i 22+(B )11i 22-(C )1i + (D )1i -2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为 (A ){1}(B)(C ){1,1}-(D)3.设命题p :(0,),ln 1x x x ∀∈+∞-≤,则p ⌝为 (A )(0,),ln 1x x x ∀∈+∞>-(B )000(0,),ln 1x x x ∃∈+∞-≤(C )(0,),ln 1x x x ∀∉+∞>-(D )000(0,),ln 1x x x ∃∈+∞>-4.执行如图所示的程序框图,如果输入的1a =,输出的15S =,那么判断框内的条件可以为 (A )6k < (B )6k ≤ (C )6k >(D )7k >5.下列函数中,同时满足:①图象关于y 轴对称;②1212,(0,)()x x x x ∀∈+∞≠,2121()()0f x f x x x ->-的是 (A )1()f x x -= (B )2()log ||f x x = (C )()cos f x x =(D )1()2x f x +=6.已知α和β是两个不同平面,l αβ=I ,12l l ,是与l 不同的两条直线,且1l α⊂,2l β⊂,12l l ∥,那么下列命题正确的是(A )l 与12,l l 都不相交 (B )l 与12,l l 都相交(C )l 恰与12,l l 中的一条相交(D )l 至少与12,l l 中的一条相交7.已知12,F F 为椭圆22212x y M m +=:和双曲线2221x N y n-=:的公共焦点,P 为它们的一个公共点,且112PF F F ⊥,那么椭圆M 和双曲线N 的离心率之积为 (A(B )1(C(D )128.在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形.若ABC △是格点三角形,其中(0,0)A ,(4,0)B ,且面积为8,则该三角形边界上的格点个数不可能为(A )6 (B )8 (C )10 (D )12 第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
丰台区高三数学一模答案

易知 AN BN CD 2 ,且 CN AB .
在 Rt △ CNB 中,由勾股定理得 BC 2 . 在△ ACB 中,由勾股定理逆定理可知 AC BC . 又因为平面 BCM 平面 ABCD , 且平面 BCM 平面 ABCD BC , 所以 AC 平面 BCM . (Ⅲ)取 BC 的中点 O ,连接 OM , ON . 所以 ON‖ AC , 因为 AC 平面 BCM , 所以 ON 平面 BCM . 因为 BM MC , 所以 OM BC . 如图建立空间直角坐标系 O xyz ,
不妨设 AE AM (0 1) ,
所以 BE BA AE (2 2, 2,) ,
设 n (x,y,z) 为平面 BCE 的一个法向量,
…………3 分 …………7 分
丰台区高三数学综合练习(一)参考答案 2 / 7
则
n
BC
n BE
0, 0,
2 y 0, 即 (2 2)x
所以 f (1) 0 是 f (x) 在区间 (0,+) 上的最小值.
所以 f (x) 0 .
(Ⅲ)由(Ⅰ)知, f '(x) ln x a x ln x+a .
x
x
若 a 0 ,则当 x (1,+) 时, f '(x) 0 , f (x) 在区间 (1,+) 上单调递增,
此时无极值. 若 a 0 ,令 g(x) f '(x) ,
为3. 37
…………4 分
(Ⅱ)从上表三个社区的志愿者中各任取 1 人,由表可知:A,B,C 三个社区负责现场值班值守
的概率分别为 3 ,1 ,1 . 10 3 3
2019年北京丰台高考一模数学试卷(理)及答案

丰台区2019年高三年级第二学期综合练习(一)数 学(理科)2019. 03(本试卷满分共150分,考试时间120分钟)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数11iz =+的共轭复数是 (A )11i 22+(B )11i 22-(C )1i + (D )1i -2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为 (A ){1}(B)(C ){1,1}-(D)3.设命题p :(0,),ln 1x x x ∀∈+∞-≤,则p ⌝为 (A )(0,),ln 1x x x ∀∈+∞>- (B )000(0,),ln 1x x x ∃∈+∞-≤(C )(0,),ln 1x x x ∀∉+∞>- (D )000(0,),ln 1x x x ∃∈+∞>-4.执行如图所示的程序框图,如果输入的1a =,输出的15S =,那么判断框内的条件可以为 (A )6k <(B )6k ≤(C )6k >(D )7k >5.下列函数中,同时满足:①图象关于y 轴对称;②1212,(0,)()x x x x ∀∈+∞≠,2121()()0f x f x x x ->-的是(A )1()f x x -=(B )2()log ||f x x =(C )()cos f x x =(D )1()2x f x +=6.已知α和β是两个不同平面,l αβ=,12l l ,是与l 不同的两条直线,且1l α⊂,2l β⊂,12l l ∥,那么下列命题正确的是 (A )l 与12,l l 都不相交(B )l 与12,l l 都相交(C )l 恰与12,l l 中的一条相交(D )l 至少与12,l l 中的一条相交7.已知12,F F 为椭圆22212x y M m +=:和双曲线2221x N y n-=:的公共焦点,P 为它们的一个公共点,且112PF F F ⊥,那么椭圆M 和双曲线N 的离心率之积为 (A(B )1(C(D )128.在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形.若ABC △是格点三角形,其中(0,0)A ,(4,0)B ,且面积为8,则该三角形边界上的格点个数不可能为 (A )6(B )8(C )10(D )12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2019丰台高三一模数学理

2019 北京丰台区高三一模数学(理)2019.3第一部分(选择题共40 分)题共8 小题,每小题 5 分,共40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
一、选择1. 复数z= 的共轭复数是A. + iB. - iC. 1+ID. 1-i2. 已知集合A={-2,3,1}, 集合B={3,m2} 。
若 B A, 则实数m的取值集合为A. {1}B. { }C. {1,-1}D.{ ,- }3. 设命题P: ∈(0,+ ∞),lnx ≤x-1, 则为A. ∈(0,+ ∞) ,lnx >x-1B. ∈(0,+ ∞) ln ≤-1C. (0,+ ∞),lnx >x-1D. ∈(0,+ ∞)ln >-14. 执行如图所示的程序框图,如果输入的a=1, 输出的S=15,那么判断框图的条件可以为A. k<6B. k ≤ 6C. k>6D. k>75. 下列函数中,同时满足:①图像关于y轴对称:②,∈(0,+ ∞) (≠), >0 的是-1 B. f (x)= C. f (x)=cosx D. f (x)=A. f (x)=x6. 已知α和β是两个不同平面,α∩β=l, ,是不同的两条直线,且α, β,∥, 那么下列命题正确的是A. l 与,都不相交B. l 与,都相交C. l 恰与,中的一条相交D. l 至少与,中的一条相交1 / 42019.4已知为椭圆M: + =1 和双曲线N: - =1 的公共焦点,p 为它们的一个公共点,且P ⊥,那么椭圆M和双曲线N的离心率之积为A. B. 1 C. D.2019.5在平面直角坐标系中,如果一个多边形的顶点全诗格点(横纵坐标都是整数),那么称该多边形为格点多边形,若△ABC是格点三角形,其中A(0,0),B(4,0), 且面积为8,则该三角形边界上的格点个数不可能为A. 6B. 8C. 10D. 2第二部分(非选择题共110 分)二、填空题共 6 小题,每小题 5 分,共30 分。
丰台区高三期末(数学理)有答案.doc

正视图俯视图丰台区高三数学第一学期期末试卷(理科)201X.1一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.集合2{90}P x x =-<,{13}Q x x =∈-≤≤Z ,则P ∩Q =A .{33}x x -<≤B .{13}x x -≤<C .{10123}-,,,,D .{1012}-,,,2.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是A3225+π B.3225π C.3225π D.12825π 3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤D .1x ∃≤,210x -≤4.如果向量(,1)a k =与(61)b k =+,共线且方向相反,那么k 的值为 A .-3B .2C .17-D .175.有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有 A .24种B .48种C .96种D .120种6.设偶函数()f x 在[0)+∞,上为增函数,且(2)(4)0f f ⋅<,那么下列四个命题中一定正确的是A .(3)(5)0f f ⋅≥B .(3)(5)f f ->-C .函数在点(4(4))f --,处的切线斜率10k < D .函数在点(4(4))f ,处的切线斜率20k ≥7.程序框图如图所示,将输出的a 的值依次记为a 1,a 2,…,a n ,其中*n ∈N 且2010n ≤.那么数列{}n a 的通项公式为A .123n n a -=⋅B .31nn a =-C .31n a n =-D .21(3)2n a n n =+8.用m a x {}a b ,表示a ,b 两个数中的最大数,设2()max{f x x =1()4x ≥,那么由函数()y f x =的图象、x 轴、直线14x =和直线2x =所围成的封闭图形的面积是A .3512B .5924 C .578D .9112二、填空题:本大题共6小题,每小题5分,共30分 9.复数21ii+= . 10.在△ABC 中,如果::3:2:4a b c =,那么cos C = .11.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如右图所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 , .12.过点(34)-,且与圆22(1)(1)25x y -+-=相切的直线方程为 .13.已知x ,y 满足约束条件1260y y x x y ≥⎧⎪≤⎨⎪+-≥⎩,,, 那么3z x y =+的最小值为 .14.定义方程()()f x f x '=的实数根x 0叫做函数()f x 的“新驻点”,如果函数()g x x=,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共6小题,共80分 15.(本小题共13分)已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.16.(本小题共14分)直三棱柱ABC -A 1B 1C 1中,AB =5,AC =4,BC =3,AA 1=4,点D 在AB 上. (Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD ;(Ⅲ)当13BD AB =时,求二面角1B CD B --的余弦值.17.(本小题共13分)某校组织“上海世博会”知识竞赛.已知学生答对第一题的概率是0.6,答对第二AA 1BC DB 1C 1题的概率是0.5,并且他们回答问题相互之间没有影响. (I ) 求一名学生至少答对第一、二两题中一题的概率;(Ⅱ)记ξ为三名学生中至少答对第一、二两题中一题的人数,求ξ的分布列及数学期望E ξ.18.(本小题共13分)已知O 为平面直角坐标系的原点,过点(20)M -,的直线l 与圆221x y +=交于P ,Q 两点.(I )若12OP OQ ⋅=-,求直线l 的方程; (Ⅱ)若OMP ∆与OPQ ∆的面积相等,求直线l 的斜率.19.(本小题共14分)设函数2()(1)2ln(1)f x x x =+-+. (I )求()f x 的单调区间;(II )当0<a <2时,求函数2()()1g x f x x ax =---在区间[03],上的最小值.20.(本小题共13分)已知函数2()1f x x=+,数列{}n a 中,1a a =,1()n n a f a +=*()n ∈N .当a 取不同的值时,得到不同的数列{}n a ,如当1a =时,得到无穷数列1,3,53,115,…;当2a =时,得到常数列2,2,2,…;当2a =-时,得到有穷数列2-,0.(Ⅰ)若30a =,求a 的值;(Ⅱ)设数列{}n b 满足12b =-,1()n n b f b +=*()n ∈N .求证:不论a 取{}n b 中的任何数,都可以得到一个有穷数列{}n a ; (Ⅲ)若当2n ≥时,都有533n a <<,求a 的取值范围.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区高三数学第一学期期末理科参考答案及评分标准201X.1一、选择题:本大题共8小题,每小题5分,共40分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分
(非选择题
共 110 分)
二、填空题共 6 小题,每小题 5 分,共 30 分。 9.已知平面向量 a (1, 3) , b (2, m) ,且 a∥b ,那么 m ____. 10.从 4 名男生、2 名女生中选派 3 人参加社区服务.如果要求恰有 1 名女生,那么不同的选 派方案种数为____.
*
①当 a1 8 时, a2019 ____; ②若存在 m N* ,当 n m 且 an 为奇数时, an 恒为常数 p ,则 p ____. 三、解答题共 6 小题,共 80 分。解答应写出文字说明、演算步骤或证明过程。 15. (本小题 13 分)
已知函数 f ( x) cos(2 x ) 2sin 2 x a(a R) ,且 f ( ) 0 . 3 3
i 1 i 1 n n
, xn ) | x1 | 1,| xi1 | 2 | xi | (i 1, 2,
, n 1)} .
; , n) ”
n
(Ⅲ)设集合 Tn { xi | ( x1 , x2 ,
i 1
, xn ) Sn } ,求 Tn 中所有正数之和.
丰台区 2018—2019 学年度第二学期综合练习(一) 高三数学(理科)答案
因为 f ( ) 0 , 3 所以 a 1 .
π π (Ⅱ)解法 1:因为 函数 y sin x 的增区间为 [2kπ , 2kπ ], k Z . 2 2
π π π 由 2kπ ≤ 2 x ≤ 2kπ , k Z , 2 3 2
所以 kπ
5π π ≤ x ≤ kπ , k Z . 12 12
20. (本小题 13 分) 设 n N* 且 n ≥ 2 ,集合 Sn {( x1 , x2 , (Ⅰ)写出集合 S 2 中的所有元素; (Ⅱ)设 (a1 , a2 , 是“ ai bi (i 1, 2,3,
, an ) , (b1 , b2 , , bn ) S n ,证明: “ ai bi ”的充要条件
(Ⅰ)求 a 的值; (Ⅱ)若 f ( x) 在区间 [0, m] 上是单调函数,求 m 的最大值.
16. (本小题 13 分) 随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、 留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在 15
个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.
(Ⅰ)当 a 0 时,求函数 f ( x) 的单调区间; (Ⅱ)当 a ≤ e 时,求证: x 1 是函数 f ( x) 的极小值点.
19. (本小题 14 分) 已知抛物线 C : y 2 2 px 过点 M (2, 2) , A, B 是抛物线 C 上不同两点,且 AB∥OM (其中 O 是坐标原点) ,直线 AO 与 BM 交于点 P ,线段 AB 的中点为 Q . (Ⅰ)求抛物线 C 的准线方程; (Ⅱ)求证:直线 PQ 与 x 轴平行.
6
14. 2 ; 1
三、解答题(共 6 小题,共 80 分) 15.(共 13 分)
2 解: (Ⅰ) f ( x) cos(2 x ) 2sin x a
3
1 3 cos 2 x sin 2 x cos 2 x 1 a 2 2 3 3 cos 2 x sin 2 x 1 a 2 2 3 1 3( cos 2 x sin 2 x) 1 a 2 2 3 sin(2 x ) 1 a . 3
是 S=S+ak2 a=-a k=k+1 否 输出S 结束
(A) f ( x) x1 (C) f ( x) cos x
(B) f ( x) log2 | x | (D) f ( x) 2x1
l2 , l1∥l2 , l1,l2 是与 l 不同的两条直线, l , 且 l1 ,
,则 AB AC ____. 3
0) . 2
①函数 f ( x) 的最小正周期为____; ②若函数 f ( x) 在区间 [ ,
4 ] 上有且只有三个零点,则 的值是____. 3 3
*
3an 1, an为奇数, 14.已知数列 an 对任意的 n N ,都有 an N ,且 an1 an an为偶数. , 2
所以 X ~ B(2, ) . (Ⅲ) s12 s2 2 . 17.(共 14 分) 解: (Ⅰ)因为 平面 ABCD 平面 ABB1 A1 ,平面 ABCD BC 平面 ABCD , 所以 BC 平面 ABB1 A1 . 因为 AA1 平面 ABB1 A1 , 所以 BC AA1 .
(Ⅰ)求证: BC AA1 ; (Ⅱ)求二面角 D AA1 B 的余弦值; (Ⅲ)在线段 DB1 上是否存在点 M ,使得 CM∥平面 DAA1 ?若存在,求
DM 的值;若不存 DB1
在,请说明理由.
C1 C D1 D B A1 A M B1
18. (本小题 13 分)
1 1 已知函数 f ( x) ( x 2)e x ax3 ax 2 . 3 2
所以 函数 f ( x) 的单调递增区间为 [kπ
5π π , kπ ] , k Z . 12 12
因为 函数 f ( x) 在 [0, m] 上是单调函数, 所以 m 的最大值为
. 12
解法 2:因为 x [0, m] , π π 所以 ≤ 2 x ≤ 2m . 3 3 3
3.设命题 p : x (0, ),ln x ≤ x 1 ,则 p 为 (A) x (0, ) ,ln x x 1 (C) x (0, ), ln x x 1 (B) x0 (0, ), ln x0 ≤ x0 1 (D) x0 (0, ) ,ln x0 x0 1
(Ⅰ)若某大学毕业生从这 15 座城市中随机选择一座城市就业,求该生选中月平均收入薪 资高于 8500 元的城市的概率; (Ⅱ)现有 2 名大学毕业生在这 15 座城市中各随机选择一座城市就业,且 2 人的选择相互 独立. 记 X 为选中月平均收入薪资高于 8500 元的城市的人数, 求 X 的分布列和数学期望 E ( X ) ; (Ⅲ)记图中月平均收入薪资对应数据的方差为 s12 ,月平均期望薪资对应数据的方差为
2 2 ,判断 s12 与 s2 的大小. (只需写出结论) s2
17. (本小题 14 分) 如图,四棱柱 ABCD A1B1C1D1 中,底面 ABCD 为直角梯形, AB∥CD , AB BC ,平面
ABCD 平面 ABB1 A1 , BAA1 60 , AB=AA1 2BC =2CD 2 .
丰台区 2019 年高三年级第二学期综合练习(一)
数
注意事项:
学(理科)
2019. 03
(本试卷满分共 150 分,考试时间 120 分钟)
1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔 填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。 2. 本次考试所有答题均在答题卡上完成。选择题必须使用 2B 铅笔以正确填涂方式将各小题对 应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。非选择题必须使用标准黑色字迹签字 笔书写,要求字体工整、字迹清楚。 3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、 草稿纸上答题无效。 4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
x 2cos , 11. 直线 y kx 1 与圆 ( 为参数) 相交于 M , N 两点. 若 | MN | 2 3 , 则 k ____. y 3 2sin
12.若 △ABC 的面积为 2 3 ,且 A 13.已知函数 f ( x) cos(2 x )(
4.执行如图所示的程序框图,如果输入的 a 1 ,
S 15 ,那么判断框内的条件可以为
开始 输入a k=1, S=0
输出的
(A) k 6 (B) k ≤ 6 (C) k 6 (D) k 7 5. 下列函数中, 同时满足: ①图象关于 y 轴对称;
f ( x2 ) f ( x1 ) 0 的是 ② x1 , x2 (0, )( x1 x2 ) , x2 x1
6. 已知 和 是两个不同平面,
那么下列命题正确的是 (A) l 与 l1 , l2 都不相交 (C) l 恰与 l1 , l2 中的一条相交
(B) l 与 l1 , l2 都相交 (D) l 至少与 l1 , l2 中的一条相交
x2 y 2 x2 1 和双曲线 N:2 y 2 1 的公共焦点, P 为它们的一个公共点, 7.已知 F1 , F2 为椭圆 M: 2 m 2 n
第一部分
(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求 的一项。 1.复数 z
1 的共轭复数是 1 i
1 1 (A) i 2 2
1 1 (B) i 2 2
(C) 1 i
(D) 1 i
2.已知集合 A {2,3,1} ,集合 B {3, m2 } .若 B A ,则实数 m 的取值集合为 (A) {1} (B) { 3 } (C) {1, 1} (D) { 3, 3}
2
4 25
平面 ABB1 A1 AB , AB BC ,
(Ⅱ)取 A1B1 的中点 N ,连结 BN . 平行四边形 ABB1 A1 中 AB AA1 , BAA1 60 .易证 BN A1B1 . 由(Ⅰ)知 BC 平面 ABB1 A1 . 故以为 B 原点, BA,BN,BC 所在直线为坐标轴, 建立如图所示空间直角坐标系 B xyz . D 依题意, A(2,0,0), A1 (1, 3,0), D(1,0,1) , 设平面 DAA1 的一个法向量为 n ( x, y, z) 则 AA1 ( 1,3,) ,0 , AD ( 1,0,1)