初一上册数学有理数复习题
初一数学上册 有理数及其运算

有理数及其运算(复习)一、正负数有理数的分类:_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
正确理解非负数和非正数。
练习:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …} 负整数集{ …};自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、数轴规定了 、 、 的直线,叫数轴练习:1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 03、下列语句中正确的是( )A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-26、画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:⑴ 1,-2,3,-4 ⑵31,0,3,-0.2三、相反数1、像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a2、相反数的相关性质:a 、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
精品 七年级数学上册 有理数综合复习题

x 2 ( a b cd ) x ( a b) 2010 ( cd ) 2011 的值。
10.已 知 有 理 数 ( 1) 求
在数轴上的位置如图所示且 ( 2)
24.数轴上表示整数的点称为整点,一数轴规定单位长度为 1 厘米,若在这条数轴上随意画出一条 10 厘 米长的线段 AB,则线段 AB 盖住的整点有( A.8 个或 9 个 B.9 个或 10 个 ) C.10 个或 11 个 ) D.±7 或±3 D.11 个或 12 个
25.已知│m│=5,│n│=2,│m-n│=n-m,则 m+n 的值是( A.-7 B.-3 C.-3 或-7
2 2 2 2
2
5.计算下列各题: (1)
11 7 3 13 (48) 12 6 4 24
1 5 5 1 1 5 (2) 1 2 2 7 7 2 2 7
4
1 1 1 1 6 (3) 32 5 3 5 2 3 4 7 4 7
1 1 小且比 大,则这个分数是 4 3
10 小的所有整数的和是 3
3
11.已知 a 2 ,且 | a 2 | 4 ,则 a 的倒数的相反数是_________ 12.若 x 与 z 互为倒数,|y|=7,则 xz+y= 13.已知有理数 a, b, c 满足
|a| |b| |c| abc 1 ,则 _________ a b c | abc |
2y = 3
(2)添括号后整理: ① 6
2 x 3 x = 2 3
② 12
6 x 24 3 x = 24 3
经典《有理数》总复习_拔高题及易错题精选附答案

) +( 3 )]+[ ( 4 )+ ( )+ (15 )]
37
37
37
4
4
2
=0
1 (2) 0.125 12 ( 16) ( 2 2 )
解:原式 =[- 0.125× (- 16) ]×[ 12× ( =2× (- 30) =- 60
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
10
15
1
51
9
解:原式 =( 12
1307
)+ (
3
5
37
)+(
15
4
4 )+ ( 137
)+ (15
9
21)+ (
4)
=[ ( 12 )+ (
它跳第 100 次落下时,落点处离 O 点的距离是
个单位.
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
1 (2) 0.125 12 ( 16) ( 2 2 )
2. (5 分)计算 1- 3+ 5- 7+ 9- 11+… +97- 99.
值.其中 x 和 y 满足 (x 12)2 |1 3 y | 0 .
1
1111
1
1
(4) 2 1 3 2 4 3 … 1000 999
5. (6 分) 已知 a 1 b 2 2 0 ,求 (a+ b) 2016+ a2017.
初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
人教版七年级数学上册第一章有理数习题十(含答案) (111)

人教版七年级数学上册第一章有理数复习试题十(含答案)一、单选题1.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.等于0 D.小于a【答案】A【解析】【分析】根据有理数的加法法则判断即可.【详解】由数轴可知:a<0,b>0,且a b根据有理数的加法法则:异号相加,取绝对值大的符号故a+b>0.故选A【点睛】此题考查的是有理数的加法,掌握有理数的加法法则:异号相加,取绝对值大的符号是解决此题的关键.2.如图,点A在数轴上表示的数是-16,点B在数轴上表示的数是8. 若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动. 问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】【分析】设运动t秒时,AB=8,然后分点B在点A左边和右边两种情况,根据题意列出方程求解即可.【详解】设运动t秒时,AB=8,(1)当点B在点A的左边时,由题意得:2t-24+6t=8,解得t=4.(2)当点B在点A的右边时,由题意得:2t+8+6t=24,解得t=2.故选C.【点睛】本题考查了数轴上两点之间的距离,根据题意分类讨论是解题的关键.3.(﹣2)5表示()A.5个﹣2相乘的积B.﹣2与5相乘的积C.2个5相乘的积的相反数D.5个2相乘的积【答案】A【解析】【分析】(−2)5表示5个−2相乘的积,再把各个选项表示成算式比较即可.【详解】A、(−2)5表示5个−2相乘的积,故本选项正确;B、(−2)5表示5个−2相乘的积,−2与5相乘的积表示为−2×5,故本选项错误;C、(−2)5表示5个−2相乘的积,2个5相乘的积的相反数表示为−5×5,故本选项错误;D、(−2)5表示5个−2相乘的积,5个2相乘的积表示为2×2×2×2×2,故本选项错误;故选A.【点睛】本题考查了对有理数的乘方的应用,关键是能把语言叙述表示成正确算式.4.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A.15×107B.0.15×109C.1.5×108D.1.5亿【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将150000000用科学记数法表示为:1.5×108.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.根据如图所示的程序计算,若输出的结果为5,则不是开始输入的值为()A.-2 B.0 C.-1 D.1【答案】B【解析】【分析】将各选项的数值,根据运算程序分别代入求解即可.【详解】A、(-2)×2+3=-1,(-1)×2+3=1,1×2+3=5,故-2是开始输入的数,不符合题意;B、0×2+3=3,输出的结果为3,而不是5,则0不是开始输入的值,符合题意;C、-1×2+3=1,1×2+3=5,故-1是开始输入的数,不符合题意;D、1×2+3=5,故1是开始输入的数,不符合题意.故选B.【点睛】本题考查了代数式求值,读懂图表信息,根据运算程序列式计算是解题的关键.6.点A在数轴上,到原点的距离是5,则点A表示的数是()A.5 B.-5 C.±5 D.±2.5【答案】C【解析】【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为5,即表示5和-5的点.【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C.【点睛】本题考查了数轴的知识,利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.7.下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数,a b互为相反数,则它们的和一定为0.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据相反数的定义,分别判断①②③④是否正确即可解答.【详解】①中0的相反数还是0,故错误;②如2和-6符号相反,但它们不是互为相反数,故错误;③互为相反数的两个数m ,n ,m=-n ,到原点的距离相等,故正确; ④互为相反数的性质:两数互为相反数,它们的和为0,故正确; 所以正确的个数是2;故选:B.【点睛】本题考查互为相反数的性质,熟练掌握互为相反数的性质是解题的关键.8.化简 -(-3)等于 ( )A .-3B .3C .13D .13【答案】B【解析】【分析】根据相反数的计算法则进行计算即可得到答案.【详解】-(-3)=3,故选择B.【点睛】本题考查相反数,解题的关键是掌握相反数的计算.9.绝对值等于本身的数有( )A .1个B .2个C .4个D .无数个 【答案】D【解析】【分析】根据绝对值的定义得出绝对值等于它本身的数进行解答即可.【详解】解:有理数分为正数、负数和0,其中绝对值等于本身为正数和0,即有无数个数的绝对值等于它本身,故选:D.【点睛】本题考查绝对值的运算,即正数和0的绝对值是其本身,负数的绝对值是它的相反数.10.下列四个数中最小的是( )A.-10 B.-1 C.0 D.0.1【答案】A【解析】【分析】根据正负数比较大小的法则比较出各数的大小即可.【详解】0.1>0>-1>-10,故答案选A.【点睛】本题考查有理数大小比较,解题的关键是熟练掌握有理数大小比较.。
七年级数学上册有理数计算题专题复习50道(含答案).doc

七年级数学上册有理数计算题专题复习50道一、计算题:1•计算:-4-28-(-19)+ (-24)2•计算:(|^) X (-24)5•计算:1004- (-2) 2- (-2) 一(-舟)6•计算:心1°•计算:-8?+3 X (-2) J (-6) 一(斗)$3-计算:37 74-计算:(;+ 右一匚)x(~60)4 12 67•计算:75) X (-24);9•计算:-2-1-31 + (-2) 211•计算:(-1) 2-r (-1) 4X (-1) 6- ( ) X48.4 2 11412•计算:(-l)4-{|-[(|)2+0.4x(-11)]^(-2)2}13•计算: -!»-(』扣宕■卜沪+1|14 •计算:15•计算:-6+ (-2)3X (斗一斗)一(暫)2* (-3). 乙B 016•计算:25.7+(-7.3) + (-13.7)+7・3・口•计算:(-2) 3+[18- (-3) X2] 一4(*+:•:)X9d+Hz(*)小(s l v (z l ) “«一4 &z(^皿—川—) x(ZII)麻44.O Zz +寸—9—“鋼士.s(m —) X 9+ (w —) X I寸&—H B —) X(6s.g —) “M 4T 9Z一帑工启+丁?》“芝留 9l ^d x ^+ «^7W + V W “芝寸Z1 o 9 31•计算:(-3)2-(1-)3X --6---32•计算:—2^(—1)2一专 ><[4-(-5)2]睨•计算:3 _ (_2) x (_ 1) _ 8 x (_ 丄)2 十 |一 3 +1|乙34计算J -专卜吕-”卜缶*29•计算:I”护(-存30・计算:99里x (- 72)360—)+(z・e (I I )—L (z l )l 2〕T X (g .0I I J I —“M 44・8g・z (z l )小 ZI<-!) X (egl )+zz — “M T k.zg(O I O Z —) X (寸—)小0+(1—)小1“源士 .舄〔z(g —)—z 〕X 『|二| “M 44 &寸S I R /e H -l s —%十十 +L O .0—麻七.0寸 g —(V I ) + (97)—ZI M 449X(9—) —寸x z — “M 44.6"&—X +于T 9I 芝•寸寸一6lzg —-+(r —) X9IZ(g二):!•'("1 二M 44 .g寸寸+U+XZJ x f )c o J X C Q麻+一・g寸區00体區9駅「(十)上9—)£亍)弓=—麻44.6寸参考答案1.解:原式=-32+19-24=-3715 72.解:X (-24)=-12-20+14=-1 &Z 0 1Z3.4. 5;4.原式二-45-35+70二TO;5.原式二22.6.答案为:-1;7.(g+lg-2. 75) X (-24) ( - 24)+寻X ( _ 24)+学X 24=-3-32+66=31;o J X J 4 ___8.-7;9.原式二-2-3+4二-110.解:原式=-64+3 X 4-6 -r +■=-64+12-54二-52-54二T 06 ;y11•原式二2x16X1-(¥><48丿X48-#X48) =1- (66+64-132) =1- (-2) =3.16 8 J 413.答案为:0;14.-1115.原式二10.16.解:原式二25. 7+7. 3+ [(-7. 3)+ (-13. 7)1=33-21=12.17.解:原式二-8+ (18+6)十4二-8+6二-2;18.原式二-10+7二-3;17619.一一720.(-12) X (-? 一厶谆)二(-12) X (一2)+(一12)X(-占)+(-12) xg二9+7-10二6;4 12 6 4 12 621.原式二-28+30-27二-25;22.原式=-8+13 X (-2) =-3423.解:原式=0 .24.答案为:13/12.25.答案为:-1;726.原式=-—X (-3. 59-2.41+6) =0.27.-42& _2_52 1 1 2 1 129.原式二(一 -一+—) X (-36) = - X (-36)-- X (— 36) + —X(-36)二一8+9-2二一1 ・9 4 18 9 4 18530.原式=(100 - —) x (一72)=-7200+10=-71909-A X2_6X28 9 231.= 9---9432.原式二3;33.0;34.-6;35.原式=-1+0=-136.原式二-72+37+22-17二-89+59二-30;o37.原式二-4+(-27) X (-看)-3二-4+8-3二138.解:原式二[10-4]-(-l)=-l-l+l=-l.39.原式二-48+30二-18;40.原式=-16.41.原式=28-4-5=1942.答案为:|43.2X2+6X+144.2545.原式二55.2 2 246 •原式=54X-X-X-=6;4 9 947.原式二36.48.原式二-9+6+25二22;49.原式=-85;50.16;。
七年级数学试卷有理数选择题复习题(及答案)
七年级数学试卷有理数选择题复习题(及答案)一、选择题1.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A. ﹣3B. ﹣4C. ﹣5D. ﹣6 2.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3B. 2C. 3或5D. 2或6 3.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A. 1个B. 2个C. 3个D. 4个4.a、b在数轴上的位置如图所示,则等于()A. -b-aB. a-bC. a+bD. -a+b5.已知有理数a,b,c,在数轴上的位置如图,下列结论错误的是()A. |a-b|=a-bB. a+b+c<0C. D. |c|-|a|+|-b|+|-a|=-c-b6.在数轴上表示有理数a,﹣a,﹣b-1的点如图所示,则()A. ﹣b<﹣aB. <C. >D. b-1<a 7.适合|2a+5|+|2a-3|=8的整数a的值有()A. 4个B. 5个C. 7个D. 9个8.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20, 20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A. 1990B. 2068C. 2134D. 30249.若方程:2(x-1)-6=0与的解互为相反数,则a的值为()A. B. C. D. -110.已知两数在数轴上的位置如图所示,则化简代数式的结果是()A. 1B.C. 2b+3D. -1 11.“幻方”最早记载于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”,则(x-y)m-n的值是()A. -27B. -1C. 8D. 16 12.有理数a、b、c 在数轴上对应的点的位置,如图所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四个结论正确的有()个A. 4B. 3C. 2D. 1 13.日常生活中我们使用的数是十进制数而计算机使用的数是二进制数,即数的进位方法是“逢二进一” 二进制数只使用数字0,1,如二进制数1101记为,通过式子可以转换为十进制数13,仿照上面的转换方法,将二进制数转换为十进制数是()A. 4B. 25C. 29D. 33 14.已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B.C. ﹣2D. 15.2017减去它的,再减去余下的,再减去余下的,…依次类推,一直减到余下的,则最后剩下的数是( )A. B. C. D.16.我们知道:在整数中,能被2整除的数叫做偶数,反之则为奇数,现把2017个连续整数1,2,3,…,2017的每个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得的结果必为()A. 正数B. 偶数C. 奇数D. 有时为奇数;有时为偶数17.在1、2、3、…99、100这100个数中,任意加上“+”或“-”,相加后的结果一定是()A. 奇数B. 偶数C. 0D. 不确定18.若,都是不为零的数,则的结果为()A. 3或-3B. 3或-1C. -3或1D. 3或-1或1 19.已知为实数,且,则代数式的最小值是()A. B. C. D.20.设实数a,b,c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x-a|+|x+b|+|x-c|的最小值为()A. B. |b| C. a+b D. -c-a 【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析: A【解析】【解答】解:∵a=b−1,3a=4b−3,∴b=0解得:c=1,a=−1,d=2,则原式=1-2×2=-3。
人教版数学七年级上册第1章有理数单元复习题(一)(含答案)
七年级上册第1章单元复习题(一)一.选择题1.一个数在数轴上对应的点与它的相反数在数轴上对应的点的距离是6个单位长度,则这个数是()A.6或﹣6B.﹣3或3C.6或3D.﹣6或﹣32.若|x|=|y|,则x与y的关系是()A.相等或互为相反数B.都是零C.互为相反数D.相等3.若a的相反数是2,|b|=3,且a,b异号,求a﹣b的值()A.﹣1B.5C.1D.﹣54.下列计算正确的是()A.1÷=B .÷2=C .÷=2D .÷=15.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.4第1页(共1页)6.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.47.如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣b C.﹣b>a>b>﹣a D.b>a>﹣b>﹣a 8.如果比例的两个外项互为倒数,那么比例的两个内项成()A.正比例B.反比例C.不成比例D.无法确定9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的效字序号对应(如图),如字母Q与效字序号0对应,当明文中的字母对应的序号为a时,将a+7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X”对应密文“W”.按上述规定,将密文“TKGDFY”解密成明文后是()第1页(共1页)A.DAISHU B.TUXING C.BAIYUN D.SHUXUE二.填空题11.若a=1,b是2的相反数,则|a﹣b|的值为.12.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣1℃,乙此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.6℃,那么这个山峰的高度大约是米.13.在数轴上A、B两点分别表示的数是2和8,在数轴上,点A右侧有另外一点P到A、B的距离和是10,则点P表示的数是.14.如果abc>0且ab<0,那么+﹣=.15.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.三.解答题16.计算:(1)20﹣11+(﹣10)﹣(﹣11)(2)(﹣1)6×4+8÷(﹣)第1页(共1页)17.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.18.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?第1页(共1页)19.某出租车一天下午某时间段以广场为出发点,在东西方向的大道上营运,规定向东为正,向西为负,单次行车里程依先后顺序记录如下:+9,﹣3,﹣5,+4,﹣8,+7,﹣2,﹣5,+8,﹣4(单位:km)(1)该出租车司机将最后一名乘客送到目的地后,出租车在广场的什么方向?距广场多远?(2)若每千米耗油0.08升,该出租车这个时间段共耗油多少升?20.规定一种新的运算△:a△b=a(a+b)+a﹣b.例如,1△2=1×(1+2)+1﹣2=2.(1)10△12=.(2)若x△3=﹣7,求x的值.(3)求代数式﹣2x△4的最小值.第1页(共1页)参考答案一.选择题1.解:因为互为相反数的两数的绝对值相等,设这个数为a,则|a|+|﹣a|=6,所以a=±3.故选:B.2.解:∵|x|=|y|,∴x=y或x=﹣y,∴x与y的关系是相等或互为相反数.故选:A.3.解:∵a的相反数是2,∴a=﹣2,∵|b|=3,且a,b异号,∴b=3,∴a﹣b=﹣2﹣3=﹣5.故选:D.4.解:A、1÷=1×=,故A错误;B 、÷2=×=,故B错误;第1页(共1页)C 、÷=×3=2,故C正确;D 、÷=×4=,故D错误.故选:C.5.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.6.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.7.解:∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>a,第1页(共1页)∴﹣b>a>﹣a>b.故选:A.8.解:如果比例的两个外项互为倒数,那么比例的两个内项成反比例.故选:B.9.解一:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.解二:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴≤≤,即≤≤6,∴的一切值中属于整数的有2,3,4,5,6.故选:B.10.解:由“明文”与“密文”的转换规则可得:故选:C.第1页(共1页)11.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.12.解:[5﹣(﹣1)]÷0.6×100=(5+1)÷0.6×100=6÷0.6×100=10×100=1000(米),即这个山峰的高度大约是1000米,故答案为:1000.13.解:∵数轴上A、B两点分别表示的数是2和8,∴AB=|8﹣2|=6,又∵点A右侧有另外一点P到A、B的距离和是10,∴点P在点B的右侧,设点P所表示的数为x,则(x﹣2)+(x﹣8)=10,解得x=10,故答案为:10.14.解:∵abc>0且ab<0,第1页(共1页)对a的值分类讨论如下:①设a>0,∵ab<0,∴b<0,bc>0,∴+﹣=++=1﹣2﹣=﹣;②设a<0,∵ab<0,∴b>0,bc<0,∴+﹣=++=﹣1+2+=;故答案为:﹣或.15.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.三.解答题16.解:(1)20﹣11+(﹣10)﹣(﹣11)=20+(﹣11)+(﹣10)+11=10;(2)(﹣1)6×4+8÷(﹣)=1×4+8×(﹣)第1页(共1页)=4+(﹣14)=﹣10.17.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.18.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB ′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,第1页(共1页)所以点C在数轴上对应的数为﹣6.故答案为:9;﹣6.5.19.解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣8)+(+7)+(﹣2)+(﹣5)+(+8)+(﹣4)=9﹣3﹣5+4﹣8+7﹣2﹣5+8﹣4=(9+4+7+8)﹣(3+5+8+2+5+4)=28﹣27=1(km).所以出租车司机将最后一名乘客送到目的地后,出租车在广场的东面,距广场1km;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+7|+|﹣2|+|﹣5|+|+8|+|﹣4|=9+3+5+4+8+7+2+5+8+4=55千米.55×0.08=4.4升.所以该出租车这个时间段共耗油4.4升.20.解:(1)∵a△b=a(a+b)+a﹣b,∴10△12=10×(10+12)+10﹣12=218.(2)∵x△3=﹣7,∴x(x+3)+x﹣3=﹣7,第1页(共1页)∴x2+4x+4=0,解得x=﹣2.(3)∵a△b=a(a+b)+a﹣b,∴﹣2x△4=﹣2x(﹣2x+4)﹣2x﹣4=4x2﹣10x﹣4=(2x﹣2.5)2﹣10.25∴2x﹣2.5=0,即x=1.25时,﹣2x△4的最小值是﹣10.25.故答案为:218.第1页(共1页)。
七年级数学上册有理数复习
第一单元检测一、选择题(共20小题,每小题分,共0分)1.用四舍五入法按要求对0.060287分别取近似值,下列各项中错误的是()A. 0.06(精确到百分位)B. 0.06(精确到千分位)C. 0.1(精确到0.1)D. 0.0603(精确到0.0001)2.计算(-6)÷(-2)的结果是()A. 3B. -3C. 4D. -43.甲、乙、丙三家超市为了促销一种定价为100元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买种商品,若想最划算应到的超市是()A.甲B.乙C.丙D.三个超市一样划算4.-5的绝对值的相反数的倒数是()A.B. -5C. 5D. -5.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A. 18B. -2C. -18D. 26.下列运算错误的是()A. 2-7=(+2)+(-7)B. 8-(-2)=8+2C.(-1)×(-4)=4D.(−3)÷(−)=(−3)×(−3)=−97.某天广州气温是18℃,长春气温是-15℃,这天长春比广州气温低()A. 3℃B. -3℃C. 33℃D. -33℃8.计算2×(-3)3+4×(-3)的结果等于()A. -18B. -27C. -24D. -669.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C. 0是最小的有理数D.整数和分数统称有理数10.下列说法中正确的是()A.两个数的差一定小于被减数B.若两数的差为0,则这两数必相等C.两个相反数相减必为0D.若两数的差为正数,则此两数都是正数11.一个数用科学记数法表示为3.386×108,则这个数是()A. 338 600 000 000B. 338 600C. 338 600 000D. 3386000012.计算0-2+4-6+8所得的结果是()A. 4B. -4C. 2D. -213.在3,-2,0,-1.5中,属于负整数的是()A. 3B. -2C. 0D. -1.514.若两个有理数的和是正数,那么一定有结论()A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数15.计算:-4×[-(-2)]的结果是()A. -8B. 8C. 2D. -216.下列化简错误的是()A. -(+2.7)=-2.7B. -[-(-8)]=-8C. +[-(-)]=-D. -[-(-4)]=-417.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路全长99500米,则数据99500用科学记数法表示为()A. 0.995×105B. 9.95×105C. 9.95×104D. 9.5×10418.化简-(+4)的结果是()A. -4B. -C.D. 419.计算(-)÷(-5)×(-)的结果是()A.B. -C. -D.20.已知|x|=3,|y|=2,且x>y,则x+y的值为()A. 5B. -1C. -5或-1D. 5或1分卷II二、填空题(共20小题,每小题分,共0分)21.我们可以把-1,9,10,-5,7,-8分为正整数和________________22.计算:-30×-20×(-)=___________.23.近似数1.02×105精确到了___________位24.有理数中,是整数而不是正数的数是 __________,是负数而不是分数的是_____________.25.化简:-[+(-3)]=____________.26.计算:(-)×××(-)=___________.27.如果在东西向的马路上把出发点记为0,向东走的路程记做正数,那么走-15米的意思是________________.28.有理数3.645精确到百分位的近似数为___________.29.把(+4)-(-6)-(+7)写成省略加号和的形式为___________.30.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______________.31.某厂检测员对编号①、②、③、④、⑤的五只手表进行走时准确性测试,一天24小时比标准时间快记为正,慢记为负,单位:秒.记录如下:仅从走时准确性来考虑,第_____________号手表质量好一些.32.绝对值不大于5的所有负整数的积是___________.33.计算:32=___________.34.如果-30表示逆时针旋转30圈,那么50表示________________.35.每年的4~9月是张家界的汛期,2015年的汛期期间,张家界的降雨量相对历年略偏丰厚,对于澧水干流张家界站可能发生的洪涝灾害,相关部门制定了应急监测预案.澧水干流张家界站7月某天的上午6时的水位是252.6米,中午12时水位上升了-0.2米,下午6时水位又上升了0.3米,则这天澧水干流张家界站下午6时的水位是___________.36.计算:(--3+-)÷(-)=___________.37.-|-2|的倒数的相反数是____________.38.新时代服装大世界上半年的盈亏情况如下:盈128.5万元、亏140万元、亏95.5万元、盈140万元、盈168万元、盈122万元,则新时代服装大世界上半年盈利_________万元.39.数据361 000 000用科学记数法表示为___________。
《易错题》七年级数学上册第一单元《有理数》-填空题专项经典复习题(含答案)
一、填空题1.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.2.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.3.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.4.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 5.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.6.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.7.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.8.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.9.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.10.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.11.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.13.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.15.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.16.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积abcde=,则它们的和a b c d e2000++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.18.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12) =1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 19.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 20.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n ,其中1≤a <10,n 为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n ,其中1≤a <10,n 为正整数.21.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.22.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.23.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.24.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.25.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =7⨯.1.61026.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.27.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.28.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.29.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.30.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上册数学有理数复习题
一、选择题每小题4分,共12分
1.2021•丽水中考如果零上2℃记作+2℃,那么零下3℃记作
A.-3℃
B.- 2℃
C.+3℃
D.+2℃
2.国家食品药品监督管理局对某品牌火腿抽检中, 有四包真空小包装火腿,每包以标准克数450克为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是
A.+2
B.-3
C.+3
D.+4
3.已知下列各数:-7,3.6, ,
4.7,0,-2.5,10,-1,其中非负数有
A.2个
B.3个
C.4个
D.5 个
二、填空题每小题4分,共12分
4.诺贝尔文学奖首位中国获奖作家莫言出生于1955年,若用+1955年表示,则孔子出生于公元前 551年表示为 ________年.
5.某综艺节目有一个环节是竞猜游戏:两人搭档,一人用语言描述,一人回答.要求描述者不能说出答案中的字或数.若现在给你的数是0,那么你给搭档描述的是________.
6.2021•巴中中考观察下面一列数:1,-2,3, -4,5,-6…根据你发现的规律,第2021个数是________.
三、解答题共26分
7.8分把-6,0.3, ,9, - 分成两类,使两类的数具有不同的特征,写出你的分法.
8.8分把下列各数填入表示它所在的数集的圈里:
- ,1.414,-3.14,360,-2021, ,-1,-51%,0.
【拓展延伸】
9.10分设A,B表示两个数集,我们规定“A∩B”表示A与B的公共部分,并称之为A与B的交集.例如,若A= {4, ,0.5,80%},B={6,-5,4,3},则A∩B={4}.
如图所示,现有A,B,C三个数集,每个数集包含的数如下:A={1,2,3, 4,5,15},B={-
2 ,-1,0,1,2,3},C={-5,-4,0,1,2, 7}.
1请把A,B,C三个数集的数分别填入对应的圈内.
2写出A,B,C三个数集的交集里的数.
答案
1.【解析】选A.一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.如果零上2℃记作+2℃,那么零下3℃记作-3℃.
2.【解析】选A.这四包火腿的实际克数分别为:452克,447克,453克,454克,因此最接近标准克数的是452克.
3.【解析】选D.因为正数和0均为非负数,所以3.6 , ,
4.7,0,10都是非负数.
4.【解析】公元1955年用+1955年表示,则公元前551年表示为-551年.
答案:-551
【变式训练】某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10
时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,依此类推,上午7:45应记为________.
【解析】以10时为0,每向前一个45分钟为“-1”,因为 7:45到10:00共135分钟, 含3个45分钟,所以7:45应记为-3.
答案:-3
5.【解析】既不是正数也不是负数的数或最小的自然数或最小的非负数等.
答案:既不是正数也不是负数答案不唯一
6.【解析】观察这列数可知,奇数位是正数 ,偶数位是负数,因此第2021个数是-2021.
答案:-2021
7.【解析】方法一:可分为整数和分数两类,其中-6,9属于整数,0.3, ,- 属于分数.
方法二:可分为正数和负数两类,其中0.3, ,9属于正数,-6,- 属于负数.答案不唯一,其他分法合理均可
8 .【解析】
9.【解析】1如图所示:
2A,B,C三个数集的交集里的数是:1,2.
感谢您的阅读,祝您生活愉快。