广州市天河区2019-2020学年八年级上期末考试数学试题含答案新人教版
新人教版2019-2020学年初二上册期末考试数学试卷及答案

新人教版2019-2020学年初二上册期末考试数学试卷及答案2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是()A.2a(2a)=8aB.(x)=x236C.6xy÷(−2xy)=XXX(x−y)=x−y2.如果把3222y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小5倍D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ayB.x−4x+4=x(x−4)+4C.x−16=(x+4)(x−4)D.10x−5x=5x(2x−1)4.一个多边形的内角和是720°,则这个多边形的边数是()A.5B.6C.7D.85.在下列图形中,对称轴最多的是()A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式x2+mx+422221为完全平方式,则m的值为()A.±2B.2C.±1D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:a−1= a(a-1).10.若分式2−|x|的值为零,则x的值为2或-2.11.已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=3.12.若a+b=−3,ab=2,则a2+b2的值为13.13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=40°.14.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△XXX分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画一条.三、解答题(5*5=25)15.计算:(2a−3b)(−2a−3b)=−4a2+9b2.16.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.证明:由题意可知,BE=CF,∠A=∠D,∠1=∠2,所以△ABE和△DCF全等,因此∠EAB=∠XXX,∠XXX∠FCD,所以△AEB和△DFC相似,因此AE/DF=AB/DC,又因为AB=DC,所以AE=DF,因此AC=AE+EC=DF+FC=DE.17.解分式方程:13/(2x−2)-4=1.13/(2x-2)-4=113/(2x-2)=52x-2=13/5x=11/5.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,设等腰三角形的腰长为x,底边长为y,则有:周长为2x+y。
【精选3份合集】2019-2020年广州市八年级上学期期末联考数学试题

【点睛】
此题考查三角形的性质,关键是根据三角形的稳定性解答.
7.等腰三角形的周长为12,则腰长a的取值范围是( )
A.3<a<6B.a>3C.4<a<7D.a<6
【答案】A
【分析】根据等腰三角形的腰长为a,则其底边长为:12﹣2a,根据三角形三边关系列不等式,求解即可.
【详解】解:由等腰三角形的腰长为a,则其底边长为:12﹣2a.
5.长度分别为 , , 的三条线段能组成一个三角形, 的值可以是()
A. B. C. D.
【答案】C
【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.
因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.
4,5,1都不符合不等式5<x<1,只有6符合不等式,
则底角为:(180°-70°)× =55°,
∴底角为70°或55°.
故选:D.
【点睛】
此题主要考查了等腰三角形的性质,应注意进行分类讨论,熟练应用是解题的关键.
3.如图,∠AOB=10°,点P是∠AOB内的定点,且OP=1.若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()
A.12B.9C.6D.1
【答案】D
【分析】根据题意,作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由∠AOB=10°,得到∠DOE=60°,由垂直平分线的性质,得到OD=OE=OP=1,则△ODE是等边三角形,即可得到DE的长度.
4.若 , 的值均扩大为原来的3倍,则下列分式的值保持不变的是()
2019-2020学年广东省广州市天河区八年级上期末数学试卷及答案解析

(2)求证:EG= AC.
(3)点D从A出发,经过几秒,CG=1.6?直接写出你的结论.
24.(13分)阅读下列资料,解决问题:
定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如: ,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如: 这样的分式就是假分式,假分式也可以化为带分式(即:整式与真分式的和的形式).
12.等腰三角形的两边长分别为2和7,则它的周长是.
13.若x8÷xn=x3,则n=.
14.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.
15.计算: =.
16.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论:
如: .
(1)分式 是(填“真分式”或“假分式”);
(2)将假分式 分别化为带分式;
(3)如果分式 的值为整数,求所有符合条件的整数x的值.
25.(13分)如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.
2019-2020学年广东省广州市天河区八年级上期末数学试卷
22.(12分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
23.(12分)如图,在边长为8的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度每秒1个单位长度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.
2019-2020学年八年级数学上学期期末原创卷A卷(广东)(参考答案)

2019-2020学年上学期期末原创卷A 卷八年级数学·参考答案12345678910DABDBDDCCA11.120︒12.(2,﹣1)13.(2a +b )(2a -b )14.415.60°16.①②③17.【解析】原式=222222x y x y y =--+=,当0.5y =-时,原式=14.(6分)18.【解析】221b a a b a b a b⎛⎫-÷ ⎪--+⎝⎭=()()()()a b b aa b a b a b a b a b ⎛⎫+-÷⎪ ⎪-+-++⎝⎭=()()aa b a b a b a+⋅-+=1a b-.(3分)将1,1a b ==代入,得:原式==12-.(6分)19.【解析】1122x xx x-=---去分母得到(1)(2)(12)x x x x --=--,去括号得到22222x x x x x x --+=--,移项合并同类项得到42=x ,(3分)系数化为1可得12x =,经检验12x=是原方程的解,故原方程的解为12x=.(6分)20.【解析】(1)∵BE=FC,∴BE+EC=FC+CE,即:BC=FE,∵AB=DF,AC=DE,∴△ABC≌△DFE,∴∠B=∠F,∴AB∥DF.(3分)(2)∵△ABC≌△DFE,∴∠A=∠D=75°,∴∠F=180°-∠DEF-∠D=180°-38°-75°=67°.(7分)21.【解析】(1)以C为圆心,以一定长度为半径,使弧与边AB交于两点,再作这两点之间线段的中垂线,如图所示,CD即为所求;(3分)(2)以B为圆心,以任意长度为半径,作弧,分别交BA、BC于两点,再分别以这两点为圆心,以大于12这两点之间的距离为半径作弧,两弧交于一点,如图所示,BE即为所求;(5分)(3)CE=CF,理由如下:∵CD⊥AB,∴∠FDB=90°,∵BE平分∠ABC,∴∠CBF=∠DBF,∵∠DFB+∠DBF=∠CEB+∠CBF=90°,∴∠BFD=∠CEB,∵∠BFD =∠CFE ,∴∠CFE =∠CEF ,∴CE =CF .(7分)22.【解析】设该校八年级学生的总人数为x 人,根据题意得:193619360.888x x ⨯=+,解方程得:x =352,(4分)经检验:x =352是所列分式方程的根,且满足题意,∴x =352(人),1936352 5.5÷=(元),答:该校八年级学生的总人数为352人,文具包的价格为5.5元.(7分)23.【解析】(1)∵22448160x x y y +++-+=,∴()()22240x y ++-=,∴()220x +=,()240y -=,∴2x =-,4y =;即:422y x ==--;(3分)(2)∵2222210x y xy y +-++=,∴2222210x y xy y y +-+++=,可得:()()2210x y y -++=,∴()20x y -=,()210y +=,∴1x y ==-,所以()21213x y +=-+⨯-=-;(6分)(3)∵22810410a b b a +--+=,∴22108410a a b b -+-+=,2210258160a a b b -+++=-,()()22450a b -+=-,∴()250a -=,()240b -=,∴5a =,4b =;∵a 、b 、c 是ABC △的三边长,且c 为最长边,∴554c <<+,所以ABC △中最长边c 的取值范围为:59c <<.即ABC △中最长边c 的取值范围为:大于5且小于9.(9分)24.【解析】(1)AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ADC 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (AAS ),∴BF =AC ;(4分)(2)连接CF ,∵△BDF ≌△ADC ,∴DF =DC ,∴△DFC 是等腰直角三角形.∵CD =3,CFCD,∵AB =BC ,BE ⊥AC ,∴AE =EC ,BE 是AC 的垂直平分线.∴AF =CF ,∴AF.(9分)25.【解析】(1)设运动t 秒,M 、N 两点重合,根据题意得:212t t -=,12t ∴=,答:点M ,N 运动12秒后,M 、N 两点重合.(3分)(2)设点M 、N 运动x 秒后,可得到等边AMN △,AMN △是等边三角形AN AM ∴=,122x x ∴-=,解得:4x =,∴点M 、N 运动4秒后,可得到等边三角形AMN .(6分)(3)设M 、N 运动y 秒后,得到以MN 为底边的等腰三角形AMN .ABC △是等边三角形,AB AC ∴=,60C B ∠=∠= ,AMN △是等腰三角形,AM AN ∴=,AMN ANM ∴∠=∠,且B C ∠=∠,AC AB =,ACN ∴△≌()AAS ABM △,CN BM ∴=,CM BN ∴=,12362y y ∴-=-,16y ∴=,答:当M 、N 运动16秒后,得到以MN 为底边的等腰三角形AMN .(9分)。
《试卷3份集锦》广州市2019-2020年八年级上学期期末学业水平测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x 米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为( )A .每天比原计划多铺设10米,结果延期20天完成B .每天比原计划少铺设10米,结果延期20天完成C .每天比原计划多铺设10米,结果提前20天完成D .每天比原计划少铺设10米,结果提前20天完成【答案】B【分析】工作时间=工作总量÷工作效率.那么4000÷x 表示原来的工作时间,那么4000÷(x ﹣10)就表示现在的工作时间,20就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x 米,那么(x ﹣10)就应该是实际每天比原计划少铺了10米, 而用4000400020x 10x-=-则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划少铺设10米,结果延期20天完成.故选:B .【点睛】本题考查了由实际问题抽象除法分式方程,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.2.已知实数x ,y 满足|x ﹣4|+(y ﹣8)2=0,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16B .20C .16D .以上答案均不对【答案】B【分析】先根据非负数的性质列式求出x 、y 的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x ﹣4=0,y ﹣8=0,解得x =4,y =8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=1.所以,三角形的周长为1.故选:B .【点睛】本题考查了等腰三角形的性质,分类讨论是关键.3.因式分解x 2+mx ﹣12=(x+p )(x+q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( ) A .1B .4C .11D .12 【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.4.两千多年前,古希腊数学家欧几里得首次运用某种数学思想整理了几何知识,完成 了数学著作《原本》,欧几里得首次运用的这种数学思想是( )A .公理化思想B .数形结合思想C .抽象思想D .模型思想 【答案】A【分析】根据欧几里得和《原本》的分析,即可得到答案.【详解】解:∵《原本》是公理化思想方法的一个雏形。
2019-2020学年人教版八年级上学期期末考试数学试题(含答案)

2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
2019—2020学年八年级上册人教版数学期末考试试题及答案[1]
![2019—2020学年八年级上册人教版数学期末考试试题及答案[1]](https://img.taocdn.com/s3/m/548b55fe680203d8ce2f24e6.png)
2019—2019—2020学年八年级上册人教版数学期末考试试题及答案[1]八年级(初二)数学(新人教版)说明:考试允许使用计算器.一、精心选一选(本大题共8小题。
每小题3分;共24分)下面每小题均给出四个选项;请将正确选项的代号填在题后的括号内. 1.下列运算中;计算结果正确的是( ).A. 236a a a ⋅= B. 235()a a = C. 2222()a b a b = D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2;3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中;AB = AC 。
BE ⊥AC 于E ;CF ⊥AB 于F ;BE 、CF交于点D ;则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED.点D 是BE 的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案;则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中;用来表示不同品种的奶牛的平均产奶量最为合适的是( ).A. B. C. D.二、细心填一填(本大题共6小题;每小题3分;共18分)9.若单项式23m a b 与n ab -是同类项;则22m n -= .l0.中国文字中有许多是轴对称图形;请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形;请你在图中补画一个小正方形;使补画后的图形为轴对称图形.12.如图;已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上;请在小方格的顶点上标出一个点P 。
2020-2021学年广东省广州市天河区八年级(上)期末数学试卷及参考答案

2020-2021学年广东省广州市天河区八年级(上)期末数学试卷一、选择题(共10个小题,每小题3分,满分30分:每小题给出的四个选项中,只有一个是正确的.)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)在下列长度的三条线段中,能围成三角形的是()A.2,3,4B.2,3,5C.3,5,9D.8,4,4 3.(3分)如果一个多边形的内角和等于720°,则它的边数为()A.3B.4C.5D.64.(3分)下列运算中正确的是()A.2a3﹣a3=2B.2a3•a4=2a7C.(2a3)2=4a5D.a8÷a2=a4 5.(3分)在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为()A.1B.2C.3D.46.(3分)分式的值为0,则y的值是()A.5B.C.﹣5D.07.(3分)若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8B.8C.±4D.48.(3分)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF 的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF 9.(3分)如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.(3分)如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE 交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题(共6个小题,每小题3分,共18分.)11.(3分)已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是.12.(3分)已知x+y=6,xy=7,则x2y+xy2的值是.13.(3分)如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F=.14.(3分)(a2)﹣1(a﹣1b)3=.15.(3分)等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.16.(3分)若(x+m)与(x+3)的乘积中不含x的一次项,则m=.三、解答题(共7小题,共48分,解答要求写出文字说明,证明过程或计算步骤.)17.(4分)计算:a÷b×.18.(4分)计算:(x+1)(x﹣1)﹣(x+2)2.19.(6分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(要求写作法)20.(6分)先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.(8分)如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE 平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.(10分)某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.(10分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AE⊥DE.四、解答题(共2小题,共24分,解答要求马出文字说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第一学期天河区期末考试
八年级数学
(本试卷共三大题25小题,共4页,满分150分,考试用时120分钟)
第Ⅰ卷(水平测试100分)
一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的。
)
1. 下列选项中的三条线段能组成三角形的是( )
A. 2,2,6
B. 1,2,3
C. 4,5,6
D. 8,3,2
2. 下列选项中的汽车品牌标志图,不是轴对称图形的是( )
3. 如图,在Rt △ABC 中,∠B=90°,D 是BC 延长线上一点,∠ACD=130°,则∠A 等于(
)
A. 40°
B. 50°
C. 65°
D. 90°
B.
4. 若一个三角形三个内角度数的比为1:2:3,则其内角度数最大的是( )
A. 60°
B. 90°
C. 120°
D. 无法判断
5. 下列各运算中,正确的是( )
A. a³·a²=a 6
B. (-4a³)²=16a 6
C. a 6÷a²= a³
D. (a -1)²=a²-1
6. 若分式1-x 1
有意义,则( )
A. x≠1
B. x≠0
C. x≠-1
D. x≠±1
7. 若代数式x²+4x+m 通过变形可以写成(x+n )²的形式,那么m 的值是( )
A. 4
B. 8
C. ±4
D. 16
8. 计算1-x 3
1x x
3--的结果是( )
A. 1-x x
B. x
C. 3
D. 0
9. 如图,在△ABC 中,∠B=30°,AB 的垂直平分线交BC 于E ,交AB 于D ,
连接AE ,若AE 平分∠BAC ,BE=4,则CE 的长为( )
A. 8
B. 6
C. 4
D. 2
10. 某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天
交货,设每天应多做x 件,则x 应满足的方程为( ) A. 548720x 48720=-+ B. x 48720548720+=+ B. 5x 72048720=- D. 5x
4872048720=+-
二、填空题(本题有6个小题,每小题3分,共18分)
11. 一个多边形的每一个外角均为30°,那么这个多边形的边数是______.
12. 等腰三角形的两条边长分别为8cm 和6cm ,则它的周长是______cm.
13. 如果10m
=4,10ⁿ=6,那么10n -m =__________.
14. 如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,垂足分别为E 、F ,
且AE=DF ,若∠C=28°,则∠A=__________.
15. 若m+n=3,mn=2,则的值为n
1m 1+___________. 16. 如图,点A ,B ,C 在同一直线上,在这条直线同侧作等边△ABD 和等边△BCE ,连接AE 和CD ,
交点为M ,AE 交BD 于点P ,CD 交BE 于点Q ,连接PQ 、BM , 有4个结论: ①△ABE ≌△DBC ,②△DQB ≌△ABP ,③∠EAC=30°,
④∠AMC=120°,请将所有正确结论的序号填在横线上____________.
三、解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)
17. (本题满分12分,每小题6分)
(1)计算:(a-1)²-a (a-1); (2)分解因式:xy²-4x ;
18. (本题满分8分)
△ABC 的顶点均在边长为1的小正方形网络中的格点上,如图,建立平面直角坐标系,点B 在x 轴上。
(1)在图中画出△ABC 关于x 轴对称的△A’B’C’,
连接AA’,求证:△AA’C ≌△A’AC’;
(2)请在y 轴上画点P ,使得PB+PC 最短。
(保留作图痕迹,不写画法)
19. (本题满分10分)
如图,点D 是△ABC 边BC 上一点,AD=BD ,且AD 平分∠BAC 。
(1)若∠B=50°,求∠ADC 的度数; A
(2)若∠C=30°,求∠ADC 的度数;
B D
C 第19题
20. (本题满分12分,每小题6分)
(1)计算:
2x x 22x x 42+++)(; (2)解方程:11
-x 12x 23=--;
21. (本题满分10分) A
如图,△ABC 中,AB=AC ,作AD ⊥BC ,CE ⊥AB 为D ,E ,AD 和CE 相交于点F ,若已知AE=CE 。
(1)求证:△AEF ≌△CEB ;
(2)求证:AF=2CD
第二卷(综合测试50分)
22. (本题满分12分)
已知:多项式A=b³-2ab
(1)请将A 进行因式分解:
(2)若A=0且a≠0,b≠0,求2
22ab 1b 1a -+-)(的值
23. (本题满分12分)
如图,点O 是等边△ABC 内一点,∠AOB=110°,∠以OC 为一边作等边△OCD ,连接AD.
(1)求证:△BOC ≌△ADC ; (2)当OA=OD 时,求a 的值
24. (本题满分13分)
一般情况下,一个分式通过适当的变形,可以化为整式与分式的和的形式,例如: ①1
-x 211-x 21-x 1-x 1-x 21-x 1-x 1x +=+=+=+)(; ②2
x 42x 2-x 42x 2x 2-x 44-x 2-x x 22-++=+-+=+=))(( (1)试将分式2
x 1-x +化为一个整式与一个分式的和的形式; (2)如果分式1
-x 1-x 22的值为整数,求x 的整数值。
25.(本题满分13分)
如图,四边形ABCD中,AB∥CD,过点D作DF⊥BC,垂足为F,DF与AC交于点M,已知∠1=∠2。
(1)求证:CM=DM;
(2)若FB=FC,求证:AM-MD=2FM.。