竹子的力学特性
竹材的研究

CCA防腐木
防水性差,抗酸碱性差,抗紫外线性差 ,开裂,需油漆维护。 安装组装及处理木材较复杂。
使用寿命
价格 木质自然外 观 密度 防滑性能 防火等级 强度
10年以上
18000元/m3 强 1.23g/cm3 好 A 静曲强度220Mpa以上
1-5年
3500-14000元/m3 强 0.3-1.0g/cm3 一般 静曲强度33Mpa
七、竹材在项目中的运用 7.1、成功案例 八、总结
一、竹材的定义
来源于竹类植物的地上秆茎。由纤维素、半纤维素和木质素等主要成分组成。
二、竹材的特性
物理性质: 含水率:竹子生长时含水率很高,平均约为80%~100%,通常年龄愈 小,其新鲜材含水率愈高。
密度:竹材的基本密度在0.40~0.9g/cm3. 其实质密度约为1.481~0 1.514g/cm3.平均密度约为1.500g/cm3.竹子的绝干密度约为 0.79~0.83g/cm3。主要取决于维管束的密度及其构成。随竹种、年 龄、秆茎部位、立地条件和竹种发生变化。
原竹选择→竹材截断→竹筒剖分→竹条分片→竹片疏 解→蒸煮或炭化→干燥→浸胶→二次干燥→选料组坯 →模压成型→固化保质→锯边或开料→重组竹型材
冷压工艺 制成梁柱、高档地板、 高档集成材家具板
热压工艺 户外产品
五、户外重组竹与防腐木对比
对比项目 户外重组竹材料 CCA防腐木
制作工艺的 区别
具有高强度,高耐候性,高防腐性合高耐 燃点等特点。
常规规格:1860*137*18mm 密度:1.12g/cm3 静曲强度:150—180MPA
价格:228元/m2 硬度:110MPA 冲击强度:114.7Kg/cm3
六、竹材的生产工艺 六、竹材在建筑景观中的应用
竹材物理力学性质的研究

竹材物理力学性质的研究竹材是一种优质的木材,拥有很高的使用价值。
对竹材物理力学性质的研究,为确定其用途、利用率提供了重要的理论基础。
本文主要介绍了竹材物理力学性质的研究,包括竹材的形状特征、竹材的木质素特征、竹材的力学特性、竹材耐久性特性及其其他性能特征等内容。
一、竹材的形状特征竹材的形状特征主要有圆柱形,圆柱形的竹材具有较大的内力,耐久性高;此外,还有椭圆形,椭圆形的竹材具有较大的内力,耐久性也较高;另外还有圆角矩形、四角形,这类竹材的使用价值也较高。
二、竹材的木质素特征竹材的木质素的主要成分有:淀粉、木质素、胶质成分等。
淀粉是一种多糖,它可以增加竹材的强度,木素提供竹材韧性,胶质改善了竹材的力学性能和耐久性。
三、竹材的力学特性竹材具有良好的弹性,在一定变形下仍可恢复原来的形状,是一种介质有限的弹性体。
其冲击强度可达800~1000NmMpa,表明竹材具有较高的强度。
四、竹材耐久性特性竹材具有较高的耐久性,能抵抗海洋气候等恶劣环境,且耐久性随温度和湿度的变化而变化,能抵抗腐朽潮湿环境。
五、竹材其他性能特征竹材具有优良的机械性能,耐久性较高,能耐受较大的应力变动。
具有较高的耗散性和韧性,能抑制构件的塑性变形,并可以抗振动的能力。
综上所述,竹材的形状特征、木质素特征、力学特性、耐久性特性及其他性能特征具有重要的研究意义,一定程度上为确定竹材用途和利用率提供了参考和重要依据。
针对竹材物理力学性质的研究,我国对竹材进行了广泛的研究。
但是,由于实验条件不一致,不同地区的研究结果参差不齐,需要进一步的研究。
未来,应以竹材物理力学性质的变化为研究重点,从木材力学理论、热物理性质、多级抗弯特性等方面,深入探究竹材的物理力学性质,为竹材的用途提供科学依据。
总之,对竹材物理力学性质的研究具有重要的现实意义,有助于提高竹材利用率,为更广泛的应用发挥出更大的潜力。
希望我国政策部门可以加大竹材科学研究工作的力度,为我国竹材产业发展做出应有贡献。
竹子材料结构特征

竹子材料结构特征竹子作为一种天然生物材料,拥有独特的结构特征和优异的力学性能,使其在多个领域具有广泛的应用价值。
本文将从竹子的微观结构、纤维特点、力学性能以及应用前景等方面,深入探讨竹子材料的结构特征。
一、竹子的微观结构竹子的微观结构是其优异性能的基础。
竹子主要由纤维素、半纤维素和木质素等有机高分子化合物构成,这些化合物在竹子细胞壁中形成了一种复杂的网状结构。
竹子的细胞壁分为初生壁、次生壁和胞间层,其中次生壁是最厚的部分,也是竹子力学性能的主要承担者。
次生壁由多层微纤丝组成,这些微纤丝以螺旋状排列,形成了竹子特有的“纤维增强复合材料”结构。
这种结构使得竹子在纵向上具有极高的强度和刚度,同时在横向上也具有一定的柔韧性。
此外,竹子的细胞壁中还含有许多空隙和管状结构,这些结构有助于减轻竹子的重量,提高其比强度和比刚度。
二、竹子的纤维特点竹子的纤维是其结构中的重要组成部分,具有许多独特的特点。
首先,竹子纤维具有较高的长径比,这使得纤维在受力时能够有效地传递载荷,提高材料的整体强度。
其次,竹子纤维表面具有许多微小的凹槽和凸起,这些结构增加了纤维之间的摩擦力,有助于提高材料的抗滑移性能。
此外,竹子纤维还具有较好的弹性和韧性,这使得竹子材料在受到冲击或弯曲时能够吸收更多的能量,从而提高其抗冲击和耐疲劳性能。
同时,竹子纤维的天然可再生性也使其成为一种环保的材料选择。
三、竹子的力学性能竹子的力学性能是其结构特征的直接体现。
由于竹子具有独特的纤维增强复合材料结构,使得其在力学性能上表现出许多优异的特点。
首先,竹子在纵向上的强度和刚度非常高,甚至可以与一些金属材料相媲美。
这使得竹子在建筑、桥梁、家具等领域具有广泛的应用潜力。
其次,竹子在横向上具有一定的柔韧性,这使得它能够在受到侧向力时发生弯曲而不断裂。
这种性能使得竹子在抗风、抗震等方面具有独特的优势。
此外,竹子的耐疲劳性能也非常好,能够在长期反复受力的情况下保持稳定的性能。
【完整版】竹子的力学特性

竹子的力学原理探究学生姓名:熊治恺学号:20085040088单位:物理电子工程学院专业:物理学指导老师:陈敬东职称:副教授摘要:竹子,一种为大家所熟知的植物。
向来是高洁坚韧的君子的象征,这些高贵的品质使得竹子深受大家的喜爱。
我国国画家李苦禅在他画的竹子画上题词道:“木出土时先有节,长到凌云还虚心”,“节”、“虚心”、四季常青这几种品质,怕是历代的方便,一般都是采用阶梯状的变截面杆(阶梯杆)来代替理论上的等强度杆。
纵观历史,很多著名建筑以及器具的设计都与竹子的结构有着密不可分的联系,这正是竹子特殊的力学结构所拥有的稳定、坚固的特点使得它有如此广泛的应用。
在仿生学的领域里,竹子的力学特性必将大显身手。
关键词:竹子;力学特性;等强度杆;应用Bamboo mechanics principle exploredAbstract:Bamboo, a kind of plant that are familiar to us. Usually is the symbol of the resilience of the noble gentleman, these noble qualities that make bamboo loved by all. LiGuChan in his pictures in traditional Chinese painting bamboo inscription on a way: "wood unearthed first, long to lingyun also knobbly", and "festival" modestly, poor quality, afraid the evergreen several generations, are generally the convenience of using the ladder shaped cross-section bar (ladder pole) instead of theory of such strength pole. Throughout history, many famous buildings and appliances design and bamboo structure has close contact, this is the mechanical structure bamboo special have stable, strong characteristics make it is so widely used. In the field of bionics, the mechanics properties of bamboo will be steepKey words: Bamboo; Mechanical characteristics; Etc strength rod; application前言作为“岁寒三友”之一的“竹”,历来为国人所赞誉。
竹子的力学原理浅析

从照片中可以看出,台北 101 大楼采用了分节的设计思路,而这一设计思路 正是来源于竹节结构。竹子因竹节的构造使抵抗横向及剪切的能力增强。101 大 楼被分为 11 节,这样的设计使得 101 大楼在抗震和防风的能力上都得到了极大 的提升。
5
度也随之增大。例如,当 0.7时,W空 1 0.72 2 ,即其抗弯强度是同等条 W实 1- 0.72
件下的 2 倍。
由弯曲正应力公式 My可知:杆件受到一定的弯矩后,离中性轴越远, Iz
对应的弯曲正应力也就越大,因此中性轴附近应力很小,如此如果做成实心轴, 那么中性轴附近材料的性能就没有得到充分发挥。例如,汽车传动轴所采用的空 心圆截面内外径之比约为 0.944,若改为实心轴,且要求它与原先的空心轴强度 相同,那么空心轴的质量只为实心轴的 31%。可见,空心轴减轻重量,节约材料 的特性非常明显。
定量证明。
建立力学模型:
将竹子视为空心圆截面杆件,与等截面面积的实心圆截面杆件进行力学分析。
设实心圆截面直径为 d,空心圆截面大径为 D1,小径为D2。
面积相等:
4
d2
4(D12
-
D22)
那么两者的抗弯截面系数:
1
W实
d3 32
W空
D13(1 - 32
4)(其中
D2 D1
)
二、空心圆截面杆的稳定性分析
有的竹子非常结实高大,比如山区常见的房屋材料毛竹,在自身重力的作用 下,稳定性会受到影响,下面进行稳定性定量分析。
定性分析竹子的力学特性(红色推荐)

定性分析竹子的力学特性结12,高鸣,2001010132初次见到竹子的人大概都为竹子如此之细却能长那么高而感到惊讶,尤其是竹子多生长在南方,而且最茂密的季节是夏季,很难想象竹子在南方夏天的狂风骤雨中如何屹立不倒。
笔者试图通过自己有限的一点知识,从竹子的结构出发浅谈竹子的受力优点。
先看一下竹子的结构有哪些特点。
竹子的断面是圆环形,中空,一般直径6厘米,壁厚0.5厘米,大约每隔15厘米有一个实心坚硬的竹节。
对于空心固体的受力性能,意大利科学家伽利略曾经做过专门的研究,这里摘录如下:“人类的技艺(技术)和大自然都在尽情地利用这种空心的固体。
这种物质可以不增加重量而大大增加它的强度,这一点不难在鸟的骨头上和芦苇上看到,它们的重量很小,但是有极大的抗弯力和抗断力,麦秆所支持的麦穗重量,要超过整株麦茎的重量,假如与麦秆同样重量的物质却生成实心的而不是空心的,它的抗弯和抗断力就要大大减低。
”“实际上也曾经发现并且用实验证实了,空心的棒以及木头和金属的管子,要比同样长短同样重量的实心物体更加牢固,当然,实心的要比空心的细一些。
人类的技艺就把这个观察到的结果应用到制造各种东西上,把某些东西制成空心的,使它们又坚固又轻巧。
”竹子在自然界中主要受自重荷载和风荷载。
在自重荷载下(无风时),竹子相当于一根受压杆,根据欧拉公式,临界荷载:22)(l EI F Pcr µπ= ,对于竹子,E 是它的材料性能,取决于竹纤维的强度,生长在土地上长度系数2=µ,这些都是常数。
除去长度因素外,还和截面抗弯刚度Pcr F EI 成正比。
显然,在同样的重量下,把截面作成空心圆环对于提高抗弯刚度EI 是最有利的。
计算表明,假如把竹子做成实心的,则其抗弯能力是原来的1/10。
因此,竹子特有的空心圆环形的截面保证了它的受压整体稳定性,从而能提高其生长高度。
那么竹子如何保证受压局部稳定性呢?竹节的作用此时就体现了。
竹节所起到的作用与箱形截面柱中横向加劲肋是一样的,从而保证了竹子的受压局部稳定性。
淡竹的竹构造与力学性质

淡竹的竹构造与力学性质淡竹是一种常见的竹材品种,其竹构造和力学性质是研究者关注和探索的重要领域。
淡竹的竹构造和力学性质对于了解竹材的各种特性以及应用于建筑、工艺品和家具等领域具有重要意义。
本文将重点介绍淡竹的竹构造和力学性质,以期对淡竹的相关知识有更深入的了解。
淡竹的竹构造是指竹材的组织结构和形态特征。
淡竹的竹构造主要由竹杆和竹节构成。
竹杆是竹子的主干部分,由多个竹节相连而成。
每个竹节由外部的竹鞘和内部的竹节髓构成。
竹鞘是竹杆外部的一层薄壳,起到保护竹节的作用。
竹节髓是竹杆内部的髓质,具有较高的含水率。
淡竹竹节髓的含水率较高,因此其竹材具有一定的柔韧性和弹性。
淡竹的力学性质是指竹材在外部力作用下的响应和变形特性。
淡竹具有较高的抗压强度和抗弯强度。
研究表明,淡竹的抗压强度可达到50MPa以上,抗弯强度可达到100MPa以上。
这使得淡竹在许多结构和工程领域具有广泛的应用潜力。
淡竹的抗拉强度和抗剪强度相对较低,但仍具有一定的强度和可塑性。
淡竹的力学性质还与其湿度和温度密切相关。
湿度和温度的变化会导致淡竹材料的尺寸和形态发生变化,从而影响其力学性质。
淡竹在湿度较高的环境中,由于竹节髓的含水率会增加,导致竹材的柔韧性和弹性增强。
而在干燥的环境中,淡竹的竹杆会由于含水率的下降而变得更加坚硬和脆弱。
因此,在实际应用中需要根据具体环境的湿度和温度情况来选择合适的淡竹材料。
除了以上提到的竹构造和力学性质,淡竹还具有其他特点和优势。
首先,淡竹具有较轻的质量和良好的韧性,使得其在建筑和结构领域中具有广泛的应用潜力。
其次,淡竹具有较好的耐久性和耐腐蚀性,能够较好地适应恶劣环境条件。
再次,淡竹具有较好的隔热性能和吸音效果,使得其在室内装修和家具制造等领域得到广泛应用。
总之,淡竹的竹构造和力学性质对于了解竹材的特性和应用具有重要意义。
淡竹竹构造由竹杆和竹节构成,竹鞘和竹节髓是其重要组成部分。
淡竹具有较高的抗压强度和抗弯强度,但抗拉强度和抗剪强度较低。
竹子材料最新研究报告

竹子材料最新研究报告竹子是一种常见的植物,具有许多优良的特性,比如生长快、可再生、强度高等。
近年来,越来越多的研究对竹子材料进行了深入的探索和应用,下面将介绍一份最新的竹子材料研究报告。
最新研究报告对竹子材料的力学性能进行了详细的研究和分析。
研究结果表明,竹子的抗弯强度和抗压强度明显高于木材,且具有较好的韧性。
竹子的抗弯强度高达100-130 MPa,抗压强度达到60-100MPa。
这表明竹子材料在建筑、制造等领域有很大的潜力,特别是替代传统的木材材料。
此外,报告还研究了竹材料的耐久性和抗腐蚀性能。
研究发现,竹子具有较好的耐候性和耐腐蚀性,尤其在潮湿环境下表现优异。
竹子的抗霉菌性能也得到了肯定,这为竹子在室内装饰等领域的应用提供了保障。
此外,竹子材料还具有良好的隔热性能。
研究发现,竹子的导热系数远低于钢材和混凝土,约为0.1 W/(m·K),因此可以有效地减少建筑物的热传导,降低室内能源消耗。
在环保方面,竹子材料被认为是一种理想的可再生资源,对环境影响较小。
相比于木材,竹子的生长周期更短,种植面积更小,且不需要大面积的森林砍伐。
竹子的生长过程中可以吸收更多的二氧化碳,并释放出更多的氧气,具有很好的生态效益。
总的来说,竹子材料在力学性能、耐久性、抗腐蚀性、隔热性能方面都具有优势,且具有良好的环保性。
因此,将竹子材料应用于建筑、制造等领域有很大的潜力和前景。
然而,需要注意的是,竹子材料的加工和处理等技术还有待进一步研究和改进,以提高其应用的广泛性和可靠性。
加强竹子材料的研究和开发,将有助于推动可持续发展和环保建筑的实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选题:从力学观点分析竹子的力学特征
徐锴,材料1302,2013012057
【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。
并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。
【关键词】竹子,强度,建筑,可持续发展
1、收集的常识【1】:
(1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。
(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。
(3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。
密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。
2、分析竹子强度特性【2】
相比较于钢材,竹子体轻,但是硬度大。
根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。
特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。
虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。
3、竹强度大的力学分析
3.1 空心圆截面的强度分析【4】
(1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。
弯曲强度条件为
][W
M max max σσ≤=。
要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。
,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实)1(32
1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。
2
1D D =
α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4
1d 41ππ=或212D -D d = 则11-1-1D 32
1d 321W W 22433>+==α
ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。
例如, 当α= 0。
7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。
因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。
若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。
(2)在风荷载下,竹子主要抵抗的是弯矩和剪力。
对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。
3.2 材料分布的强度分析
(1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。
(2)对于抗剪,竹节又起到了关键的作用。
坚硬实心的竹节将竹身分成小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪力能力。
3.3 阶梯状变截面的强度分析
(1)竹子在风载作用下各段抵抗弯曲变形能力基本相同, 相当于阶梯状变截面杆, 是一种近似的“等强度杆”。
(2)因为在风力作用下, 沿杆自上而下各截面的弯矩越来越大。
竹子根部所受弯矩最大, 因而根部最粗, 自下而上各截面弯矩越来越小, 竹子也就越来越细。
(3)另外, 竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力。
4、竹子最为建筑用材在实际中的应用
4.1 背景:
中国是世界上最大的产竹国。
竹子生长快,成材早产量高、用途广。
据竹材研究者介绍,竹子的生长速度非常快,比其他木材的生长速度都要快。
竹子最快的生长速度是24小时长长
2。
01米,三个月就能长至30至40米。
而中国作为世界上最大的竹材生产国在未来的国际市场上扮演着举足轻重的角色。
今天竹子是“环保”可持续保护资源的象征。
钢材、水泥、玻璃、砂石、粘土砖及其它金属、化工材料,其原料都是不可再生的矿物资源。
建筑材料的全球性紧缺是十分令人担忧的问题,特别在发展中国家。
4.1 实际应用优势与动力
◆竹子在2至3年即可成材,而木材至少需要25年,据哥斯达黎加人计算,每年只需70公顷的竹林就可建造竹房屋1000座,如果以木材为原料,需要砍伐600公顷天然林,使用竹子替代木材做建筑材料,可节约更多森林资源,延缓地球变暖。
◆相同面积的建筑,竹子与混凝土的能耗比为1:8,同等建筑过程中竹子能耗仅为钢材的1/50。
◆与木材和其他人工材料相比,竹子没有辐射。
◆即使未经加工,竹子借助纤维组织,其纵向抗拉伸强度是中碳钢的5至6倍。
◆竹建筑更具灵活性,优点之一是可以通过更换损坏或老化的部分而增强耐用性,经过防腐等手段处理的竹材使用寿命可达30年之久
4.2 实际应用的可行性
竹子在食品、房屋、家具等许多领域的应用历史悠久。
在许多国家,竹子以多种方式得以巧妙利用,一生都可为人类服务。
竹子是房屋建造最古老的建筑材料之一,作为品质优良的建筑材料,竹子比较便宜,且容易加工。
近年来,竹子作为房屋建筑材料的重要性逐渐得到人们的关注。
在亚洲,许多低收入家庭利用竹子搭建房屋构架,即便使用其它材料,竹子也是建筑单元的主要组成部分。
其可以制成房屋的屋顶桁架、檩子、椽子、柱子、地板、墙体、门窗等各种部分,有时为了隔声的需要可以结合水泥、石膏等材料。
竹子建筑除了环保外,还具有造价低、便于安装的优点
4.3 实例分析--我国的传统竹子建筑【5】
我国在2000多年前,竹子就已用于民间房屋的建造,迄今南方各省仍多采用竹子建造一些半永久性或临时性的房屋、棚舍等。
竹子在江南民居建筑中一般做夯土墙的骨料使用,可以使夯土墙更加坚固耐用,也可以把竹子剖成长条编成竹笆作为围墙、外墙,竹子还可以编织成窗间墙的防护网、护墙板或者做成框钉竹条用作护窗板。
在云南,傣家竹楼属热带雨林竹楼形式,包括德宏、景颇、西双版纳一带。
傣族民居以木柱承重,四周围竹墙,为了通风和防潮,房屋整个架空。
竹构架歇山顶,坡度很大,屋面覆以小平瓦或排草。
湿热带的太阳眩光很强,所以墙体不能开窗,但又要保证通风。
竹编的墙透光柔和,既排除了眩光又可以通风。
景颇族的竹楼是长脊短檐、架空低矮的干栏式建筑,竹楼的架空高度很低,一般距地面约50cm,高的也不超过1m,竹屋两侧的竹编墙体上部略向外倾,覆盖脊长而檐短的倒梯形双坡屋顶。
从结构上看,景颇民居采用的是纵向承重构架。
三列纵向设立的竹子可依家庭大小延长扩展,柱与柱之间无横向的联系构件。
另外,承重的柱子与架空层、居住层、围护的墙体三者之间也是相互独立、自成一体的
5、结论
作为一种重要的森林资源,竹子的生物量巨大并广泛应用于人类的日常生活,竹子的经济价值正在不断增长。
基于这一趋势,继续对竹材的特性进行深入研究已成必然。
竹子因为其特有的材料、构造,具有了各方面强度大的力学特性。
通过以上对竹子的介绍可知,竹子在我国作为建筑材料被开发是切实可行的。
目前国内发展迅速,大规模的城镇建设消耗了大量能源,也给环境带来了破坏。
以可持续发展为方针,针对我国国情、建设采用,就地取材是必要的。
我国的竹类资源十分丰富,使用竹子已有几千年的历史,几乎可以涉及到各个领域。
所以
发展竹材利用是未来必然趋势。
参考文献:
【1】百度百科—“竹子的自然属性”
【2】【3】琳恩·伊丽莎白--《新乡土建筑》—机械工业出版社·2005 【4】赵军、张有忱--《化工设备机械》--化学工业出版社·2007 【5】【6】李慧,张玉坤--《建筑科学》—天津大学出版社·2007。