运用坐标法解决平面向量的最值问题
平面向量中的极化恒等式及有关最值(范围)问题(1)

2(a·b-a·c-b·c+1)=48+2(a+b)·c=48+2|a+b|cos θ(其中θ为 a+b
与 c 的夹角),因为|a-b|=|a+b|,所以|a-b|2=48+2|a-b|cos θ,则由
cos θ∈[-1,1],得 48-2|a-b|≤|a-b|2≤48+2|a-b|,解得 6≤|a-
1x 2
2-1x2=1.
4
4
(2)如图,由已知|OF|=1,取 FO 中点 E,连接 PE,由极化恒等式得
O→P·F→P=|PE|2-1|OF|2=|PE|2-1,
4
4
∵|PE|2max=245,∴O→P·F→P的最大值为 6.
答案 (1)1 (2)C
题型二 平面向量中的最值(范围)问题
类型 1 利用函数型
则A→P·B→P的取值范围是________;若向量A→C=λD→E+μA→P,则λ+μ的最
小值为________.
解析 (1)由题意,不妨设 b=(2,0),a=(cos θ,sin θ)(θ∈[0,2π)),
则 a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).
令 y=|a+b|+|a-b|
= (2+cos θ)2+sin2θ+ (cos θ-2)2+sin2θ
= 5+4cos θ+ 5-4cos θ,
则 y2=10+2 25-16cos2θ∈[16,20].
由此可得(|a+b|+|a-b|)max= 20=2 5,
(|a+b|+|a-b|)min= 16=4,
即|a+b|+|a-b|的最小值是 4,最大值是 2 5.
4a2
4a2
θ)2=1,化简得
b2(1-cos2θ)=
平面向量的坐标运算

别业岁月悠长,有暗香盈袖。
冗长了日与夜,空掷了乐与悲。
遂撰文三两卷,遣尽浮光,以飨后学。
谨祝诸位:学业有成,前程似锦。
编者:李健,匠人,喜于斗室伏案两三卷,愁与身在红尘浪荡无涯。
写过一些铅字附庸了世态,跑过几个码头了断了青春。
如今归去来兮,只为了挥洒一方三尺讲台。
第2讲 平面向量基本定理及坐标表示一.知识梳理 1.平面向量基本定理如果12,e e 是平面内两个不共线的向量,那么对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算 (1)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量坐标. ②设1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--;||(AB x =(2)向量的加法、减法、数乘及向量的模:设1122(,),(,)a x y b x y ==1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;11(,)a x y λλλ=;21||a x y =+.3.平面向量共线的坐标表示设1122(,),(,)a x y b x y ==,其中0b ≠,则12210a b x y x y ⇔-=∥. 二.要点整合 1.辨明三个易误点(1)注意能作为基底的两个向量必须是不共线的.(2)要注意运用两个向量,a b 共线坐标表示的充要条件12210x y x y -=.(3)要注意区分点的坐标与向量的坐标的不同,尽管形式上一样,但意义完全不同,向量坐标中既有大小的信息也有方向的信息.2.有关平面向量的两类本质(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. (2)向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 三.典例精析1.平面向量基本定理及其应用【例题1】(1)在梯形ABCD 中,,2,,A B C D A B C D M N=∥分别是,C D B C 的中点,若AB AM AN λμ=+,则λμ+=( )1.5A 2.5B 3.5C 4.5D (2)在ABC 中,P 是AB 上一点,且21,33CP CA CB Q =+是BC 的中点,AQ 和CP 的交点为M ,又CM tCP =,则t = . 【变式1】(1)如图,在ABC 中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )21.,33A x y == 12.,33B x y == 13.,44C x y == 31.,44D x y ==(2)如图,在ABC 中,13AN NC =,P 是BN 上一点,若211AP mAB AC =+,则m = .2.平面向量的坐标运算【例题2】(1)已知(2,4),(3,1),(3,4)A B C ----.设,,AB a BC b CA c ===,且3,2C M c C N b==-. (Ⅰ)求33a b c +-;(Ⅱ)求满足a mb nc =+的实数,m n ; (Ⅲ)求,M N 的坐标及向量MN 的坐标.(2)给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图,点C 在以O 为圆心的AB 上运动.若(,)OC xOA yOB x y R =+∈,则x y +的最大值为 .【变式2】(1)已知O 为坐标原点,点C 是线段AB 上一点,且(1,1),(2,3)A C ,||2||BC AC =,则向量OB 的坐标是 .(2)(2014福建质检)如图,设向量(3,1),(1,3)OA OB ==,若OC =OA λOB μ+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是( )(3)已知||||2,a b a b ==⊥,若向量c 满足||2c a b --=,则||c 的取值范围是 .3.平面向量共线的坐标表示)两向量共线的充要条件的作用【例题3】(1)已知向量1(8,),(,1)2a xb x ==,其中0x >,若(2)(2)a b a b -+∥,则x 的值为( ).4A .8B .0C .2D(2)已知点(4,0),(4,4),(2,6)A B C ,则AC 与OB 的交点P 的坐标为 . (3)(2014广东佛山)设(1,2),(,1),(,0)OA OB a OC b =-=-=-,0a >,0,b O >为坐标原点,若,,A B C 三点共线,则12a b+的最小值为( ).2A .4B .6C .8D 【变式3】(1)已知向量(1,3),(2,1),(1,2)OA OB OC k k =-=-=+-,若,,A B C 三点不能构成三角形,则实数k 应满足的条件是( ).2A k =- 1.2B k =.1C k = .1D k =- (2)(2015河北唐山)设向量,a b 满足||25,(2,1)a b ==,且a 与b 的方向相反,则a 的坐标为 .(3)(2014陕西)设02πθ<<,向量(sin 2,cos ),(cos ,1)a b θθθ==,若a b ∥,则tan θ= .四.针对训练.A 组 基础训练1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且,AB a AD b ==,则BE =( )1.2A b a -1.2B b a + 1.2C a b + 1.2D a b - 2.(2015宁夏质检)如图,设O 为平行四边形ABCD 两对角线的交点,给出下列向量组:①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .其中可作为该平面内其他向量的基底的是( ).A ①② .B ①③ .C ①④ .D ③④3.已知向量3,1),(0,2)a b =-=(.若实数k 与向量c 满足2a b kc +=,则c 可以是( ).,1)A - .(3)B - .(,1)C - .(3)D - 4.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量是( )34.(,)55A - 43.(,)55B - 34.(,)55C - 43.(,)55D -5.(2015吉林长春)如图,设向量12,OA e OB e ==,若12,e e 不共线,且点P 在线段AB 上,||:||2AP PB =,则OP =( )1212.33A e e -1221.33B e e + 1212.33C e e + 1221.33D e e -6.已知ABC 中,点D 在BC 边上,且2,s CD DB CD r AB AC ==+,则r s +的值是( ) 2.3A 4.3B .3C - .0D 7.若三点(1,5),(,2),(2,1)A B a C ----共线,则实数a 的取值范围是 .8.在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 中点,若(4,3)PA =,(1,5)PQ =,则BC = .9.(2015江西九江){|(1,1)(1,2)}P a a m m R ==-+∈,{|(1,2)Q b b ==-(2,3),}n n R +∈是两个向量集合,则PQ 等于 .10.ABC 中,内角,,A B C 所对的边分别为,,a b c ,若(,)p a c b =+,(,)q b a c a =--,且p q ∥,则角C = . 11.已知(1,0),(2,1)a b ==.(Ⅰ)当k 为何值时,ka b -与2a b +共线;(Ⅱ)若23,AB a b BC a mb =+=+且,,A B C 三点共线,求m 的值.12.(2015山东莱芜)如图,已知ABC 中,点C 是以A 为中点的点B 的对称点,D 将OB分为2:1两部分的一个内分点,DC 和OA 交于点E ,设OA a =,OB b =. (Ⅰ)用a 和b 表示向量,OC DC ; (Ⅱ)若OE OA λ=,求实数λ的值..B 组 能力提升1.在平面直角坐标系中,点(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针方向旋转34π后得到向量OQ ,则Q 点的坐标是( ).(2)A - .(2)B - .(,2)C -- .(,2)D - 2.已知直线x y a +=与圆224x y +=交于,A B 两点,且||OA OB +=||OA OB -,其中O 为坐标原点,则实数a 的值为( ).2A .2B - .2C 或2- D3.如图,在四边形,,,A B C D 中,1AB BC CD ===,且90B ∠=,BCD ∠=135,记向量,AB a AC b ==,则AD =( )2(1)2b -+2.(1)2B b ++ 2.(1)2C b +-2(1)2b +-4.(2014湖南)在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( ).[4,6]A .191]B .[7]C .71]D 5.在平面直角坐标系中,O 为坐标原点,已知两点(3,1),(1,3)A B -,若点C 满足(,)OC OA OB R αβαβ=+∈且1αβ+=,则点C 的轨迹方程为 .6.设向量1122(,),(,)a x y b x y ==,定义一种向量积1122(,)a b a b a b ⊗=,已知向量1(2,),(,0)23m b π==,点(,)P x y 在sin y x =图像上运动.Q 是函数()y f x =图像上的点,且满足OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的值域是 .7.如图,,,A B C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC mOA nOB =+,则m n +的取值范围是 .8.如图,设,Ox Oy 为平面内相交成60角的两条数轴,12,e e 分别是x 轴、y 轴正方向同方向的单位向量,若12OP xe ye =+,则把有序实数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标.若OP 的坐标为(1,1). (Ⅰ)求||OP ;(Ⅱ)过点P 作直线l 分别与x 轴、y 轴正方向交于点,A B ,试确定,A B 的位置,使AOB 面积最小,并求出最小值.。
平面向量的坐标运算(说课稿)

平面向量的坐标运算(说课稿)北师大附中荣红莉一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。
引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。
二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的:1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。
2.能力方面:数形结合的思想和转化的思想三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。
我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。
四、【教法和学法】本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。
整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。
五、【学习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。
微重点 平面向量的最值与范围问题

微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。
巧借坐标运算,妙解向量问题

2024年1月上半月㊀学习指导㊀㊀㊀㊀巧借坐标运算,妙解向量问题◉广东省深圳市红山中学㊀陈㊀晨㊀㊀摘要:利用坐标运算法解决平面向量问题是比较常见的一种技巧,也是解决平面向量中重点与难点问题的一大 法宝 .结合实例剖析,通过平面直角坐标系的构建与对应坐标的表示,合理数学运算,减少逻辑推理,实现平面向量解题的程序化运算处理,指导数学教学与解题研究.关键词:平面向量;坐标;运算;数量积㊀㊀平面向量自身同时兼备 数 的基本属性与 形 的结构特征,是衔接代数与几何的一个纽带,更是数形结合的典范之一.而利用坐标运算法来处理平面向量的一些相关问题,将相应的平面几何的 形 的问题加以符号化处理㊁坐标化表示,转化为 数 的问题,进行数量化应用与数学运算处理,使得推理应用问题转化为数学运算问题,可以更加深入地解决一些复杂的综合性㊁创新性等平面向量应用问题.1参数值的问题在平面向量中,涉及向量线性关系的系数㊁线段的比例关系等相关参数值的求解,以及对应参数的代数关系式的求解问题,经常可以借助平面直角坐标系的构建,利用坐标运算法来进行数学运算与逻辑推理等.图1例1㊀ 2023届广东省六校联盟(广东省实验中学㊁广州二中㊁中山纪念中学等)高三上学期第三次联考数学试卷 如图1,在平面四边形A B C D 中,øB A D =5π6,øB A C =π6,A B =3,A D =2,A C =4,A C ң=λA B ң+μA D ң,则λ+μ=(㊀㊀).A.2㊀㊀㊀B .23㊀㊀㊀C .4㊀㊀㊀D.6分析:根据平面几何图形,合理构建平面直角坐标系,将平面图形中的线段长度与角度关系转化为对应的点的坐标,利用坐标运算来确定相应的向量,结合向量的坐标运算构建对应参数的关系式,进而确定图2所求关系式的值.解析:如图2所示,以点A 为坐标原点,A B 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (3,0),D (-3,1),C (23,2),于是A C ң=(23,2),A B ң=(3,0),A D ң=(-3,1).由A C ң=λA B ң+μA D ң,可得3λ-3μ=23,μ=2,{解得λ=4,μ=2.{因此λ+μ=6.故选择答案:D .点评:解决此类问题的方法比较多,可以通过 数 的思维来应用,也可以通过 形 的特征来分析.而利用坐标运算法解决平面向量中对应参数值的求解问题时,关键是将直观形象的平面几何图形放置于对应的平面直角坐标系中,借助相应的坐标表示,化逻辑推理为数学运算,借助坐标运算来分析与求解.2向量模的问题在平面向量中,涉及向量的模或模的取值范围(或最值)的求解问题,经常可以借助平面直角坐标系的构建,合理引入向量的坐标,进而利用坐标运算法来进行数学运算与逻辑推理等.例2㊀已知平面向量a ,b ,c 满足|c |=1,且满足a c =2,b c =1,则|a +b |的最小值为.分析:根据题设条件,通过合理构建对应的平面直角坐标系,并引入向量a ,b 的坐标,结合向量的数量积公式确定相关参数的值,利用向量模的公式构建对应的关系式以及利用函数的基本性质来确定相应的最值问题.解析:依题建立相应的平面直角坐标系,不失一般性,不妨设c =(1,0),a =(x ,y ),b =(m ,n ),其中x ,y ,m ,n ɪR .结合条件a c =2,b c =1,利用向量数量积的坐标公式,可得a c =x =2,b c =m =1.因为a +b =(x +m ,y +n ),所以|a +b |2=(x +m )2+(y +n )2=9+(y +n )2ȡ9,当且仅当y +n =0时,等号成立.所以|a +b |ȡ3,即|a +b |的最小值为3.故填答案:3.点评:借助适当的平面直角坐标系的构建并引入向量的坐标,为和向量的模合理构建对应的函数关系式,进而结合参数之间的关系与表示,利用函数的基54学习指导2024年1月上半月㊀㊀㊀本性质来分析与转化.通过代数思维中的坐标运算来处理此类向量模的相关问题,借助纯粹的代数运算即可达到目的,目标明确.3数量积的问题在平面向量中,涉及平面向量的数量积以及数量积的线性关系式等的求解㊁取值范围(或最值)的确定问题,经常可以借助平面直角坐标系的构建,利用坐标运算法来进行数学运算与逻辑推理等.例3㊀ 2023届山东省潍坊市高考模拟考试数学试卷(2023年潍坊东营一模) 单位圆O :x 2+y 2=1上有两定点A (1,0),B (0,1)及两动点C ,D ,且O Cң O D ң=12,则C A ң C B ң+D A ң D B ң的最大值是(㊀㊀).A.2+6B .2+23C .6-2D.23-2分析:根据平面向量自身 数 的基本属性,通过数学运算,借助坐标法来转化与应用,巧妙引入点或夹角等参数,通过点的坐标㊁向量的坐标及其对应的运算㊁数量积公式等,综合三角函数等其他知识来应用.解析:根据O C ң O D ң=12,可得|O C ң||O D ң|c o søC O D =c o søC O D =12,则øC O D =π3.不失一般性,设点C (c o s θ,s i n θ),θɪ[0,2π),则点D 的坐标为(c o s (θ+π3),s i n (θ+π3)).于是C A ң C B ң+D A ң D B ң=(1-c o s θ,-s i n θ)(-c o s θ,1-s i n θ)+(1-c o s (θ+π3),-s i n (θ+π3))(-c o s (θ+π3),1-s i n (θ+π3))=2-co s θ-s i n θ-c o s (θ+π3)-s i n (θ+π3)=2+(32-32)s i n θ-(32+32)c o s θ=2-6s i n (θ+φ)ɤ2+6,此时t a n φ=2+3,当且仅当s i n (θ+φ)=-1时,等号成立,即C A ң C B ң+D A ң D B ң的最大值是2+6.故选择答案:A .点评:通过题目条件合理引入对应的点或夹角等参数,进而利用平面向量数量积的坐标公式,将已知条件转化为涉及参数的代数关系式,结合函数的图象与性质㊁三角函数的有界性或不等式的基本性质等来确定对应关系式的最值问题.此类问题利用代数思维往往更加方便,利用相应的数学运算即可得到最终结论.4创新应用问题创新意识与创新应用是新时代的一个主旋律.在平面向量中,涉及平面向量问题的创新应用也是一大主阵地,挖掘创新本质,合理构建平面直角坐标系,坐标运算法有时也是解决向量创新应用问题的一个不错的选择.例4㊀(2022届浙江省杭州市高三年级下学期4月教学质量检测数学试卷)对于二元函数f (x ,y ),m i n x {m a x y{f (x ,y )}}表示f (x ,y )先关于y 求最大值,再关于x 求最小值.已知平面内非零向量a ,b ,c ,满足:a ʅb ,a c |a |=2b c |b |.记f (m ,n )=|m c -b ||m c -n a |(m ,n ɪR ,且m ʂ0,n ʂ0),则m i n m{m a x n{f (m ,n )}}=.分析:根据题目条件,巧妙建立相应的平面直角坐标系,引入对应向量的坐标参数,利用向量投影的几何意义并结合题设条件确定相关向量c 的坐标关系,进而利用平面向量的坐标运算㊁向量模的公式等构建对应的函数解析式,结合创新定义并利用函数的基本性质加以分步处理,分层解决.解析:依题建立相应的平面直角坐标系x O y ,结合a ʅb ,不失一般性,可设平面向量a =(a ,0),b =(0,b ),a ,b ɪR .结合关系式a c |a |=2b c|b |,借助向量投影的几何意义,可知c 在a 方向上的投影恰为c 在b 方向上投影的两倍,故可设c =(2t ,t ),t ɪR ,于是f (m ,n )=|m c -b ||m c -n a |=|m (2t ,t )-(0,b )||m (2t ,t )-n (a ,0)|=5m 2t 2-2m t b +b 25m 2t 2-4m n t a +n 2a 2=5m 2t 2-2m t b +b2m 2t 2+(2m t -n a )2.因此可得,当2m t =n a 时,m a x n{f (m ,n )}=5m 2t 2-2m t b +b2m 2t2=(bm t-1)2+4,进而可得,当bm t=1,即m t =b 时,m i n m {m a x n {f (m ,n )}}=4=2.所以m i n m{m a x n{f (m ,n )}}=2,当且仅当n a =2m t =2b 时,等号成立.故填答案:2.点评:通过建系,利用坐标运算法,合理把握创新应用问题的实质,是处理此类平面向量中创新问题比较常用的一种通技通法.借助坐标运算法来解决平面向量的综合应用问题,通过点㊁向量等的坐标化处理,由 形 转化为 数 ,利用代数思维来解决平面向量中的 数 或 形 的相关问题,避免变幻莫测的直观图形和繁杂的逻辑推理等,实现平面几何问题的代数化,由变化多端的平面向量应用问题转化为对应坐标的代数运算问题,方向性强,思维单一,技巧易懂,方法灵活,值得借鉴与推广.Z64。
最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
平面向量问题的解题策略

龙源期刊网 平面向量问题的解题策略作者:刘亚利来源:《理科考试研究·高中》2013年第07期平面向量为中学数学注入了新的活力,向量知识、向量观点在数学中有着广泛的应用,同时它具有代数和几何形式的“双重身份”,是数形结合的一个重要工具,是中学数学中的重点内容之一。
一、向量法我们学习了平面向量加法、减法、实数与向量的乘积、平面向量的数量积等运算和平面向量的基本定理。
向量法就是利用向量的各种运算处理数学问题。
在许多复杂的向量问题中,各种运算综合在一起,有时会比较繁杂,处理不好时会比较凌乱。
但是我们根据平面向量的基本定理,如果首先确定一组基向量,然后将我们运算过程中的各个向量都用基向量表示,利用基向量进行运算,这样使我们较清晰、简单地解决这些数学问题成为可能。
例1 (2011年湖南理14)在边长为1的正三角形ABC中,点评利用平面向量的基本定理,平面内的任一向量都可以用基向量表示,在知道两基底的夹角和大小的前提下,问题均能迎刃而解。
二、坐标法我们知道,在平面直角坐标系内,任何一个平面向量都可以用一个有序实数对唯一表示。
因此平面向量和解析几何都涉及坐标表示和坐标运算,坐标法可以将二者有机结合起来,向量的坐标表示与解析几何中的点的坐标恰好融为一体,使向量与坐标运算有机地结合起来,增加了处理问题的灵活性。
利用向量的坐标处理一些向量问题,基本思想是将向量问题坐标化、数量化,从而将推理转化为代数运算。
点评对于比较复杂的向量问题,如果相对容易能建立平面直角坐标系,将各个向量用坐标表示出来,那么通过代数运算,可能能迅速解决问题。
三、几何法以向量为载体,综合考查学生平面向量的加法、减法、实数与向量的乘积的几何意义以及平面向量的数量积的几何意义。
方法灵活,直观快捷,同时要求思维能力高,充分利用平行四边形、三角形和圆等几何模型。
第11讲 平面向量中的最值范围问题(教师版)

第11讲 平面向量中的最值范围问题题型一 利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题. 【例1】已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12λμ≤+≤,0,0λμ≥≥,则点C 所形成的平面区域的面积为( )A B C .D 【答案】B 【解析】 由题:1,60,OA OB AOB OC OA OB λμ==∠=︒=+,作2,2OP OA OQ OB ==,OC 与线段AB 交于D ,设OCxOD =,如图:OC OA OB λμ=+,0,0λμ≥≥,所以点C 在图形QOP ∠内部区域,根据平面向量共线定理有,1ODmOA nOB m n =++=,,1OC xOD xmOA xnOB m n ==++=,OC OA OB λμ=+,所以,xm u xn λ==,12λμ≤+≤,即12xm xn ≤+≤,即12x ≤≤,OC xOD =,所以点C 所在区域为梯形APQB 区域,其面积1122sin 6011sin 6022APQB OPQ OAB S S S ︒︒∆∆=-=⨯⨯⨯-⨯⨯⨯=,故选:B 【玩转跟踪】1.已知RtABC ,3AB =,4BC =,5CA =,P 为ABC △外接圆上的一动点,且AP xAB y AC =+,则x y+的最大值是( )A .54B .43C .D .53【答案】B 【解析】解:以AC 的中点为原点,以AC 为x 轴,建立如图所示的平面直角坐标系,则ABC △外接圆的方程为2225()2xy +=,设P 的坐标为55cos ,sin 22θθ⎛⎫⎪⎝⎭,过点B 作BD 垂直x 轴,∵4sin 5A =,3AB = ∴12sin 5BD AB A ==,39cos 355AD AB A =⋅=⨯=,∴5972510OD AO AD =-=-=,∴712,105B ⎛⎫-⎪⎝⎭,∵5,02A ⎛⎫- ⎪⎝⎭,5,02C ⎛⎫⎪⎝⎭∴912,55AB ⎛⎫= ⎪⎝⎭,()5,0AC =,555cos ,sin 222AP θθ⎛⎫=+ ⎪⎝⎭∵AP xAB y AC =+∴555912cos ,sin ,22255x θθ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭ ()9125,05,55y x y x ⎛⎫+=+ ⎪⎝⎭∴559cos 5225x y θ+=+,512sin 25x θ=,∴131cos sin 282y θθ=-+,25sin 24x θ=, ∴()12151cos sin sin 23262x y θθθϕ+=++=++,其中3sin 5ϕ=,4cos 5ϕ=,当()sin 1θϕ+=时,x y +有最大值,最大值为514623+=,故选:B .2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .2CD .2【答案】A【解析】,如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r=,即圆C 的方程是()22425x y -+=, ()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x zy =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,点C 是半径为1的扇形圆弧AB 上一点,0OA OB ⋅=,1OA OB ==,若OC OA OB x y =+,则2x y+的最小值是( )A.B .1 C .2D【答案】B 【解析】 由题:OC OA OB x y =+,点C 是半径为1的扇形圆弧AB 上一点,则0,0x y >>,则()22OC xOA yOB=+,即()()2222OC xOA yOBxyOA OB =++⋅,0OA OB ⋅=,1OA OB ==化简得:221xy +=,令cos ,sin ,[0,]2x y θθθπ==∈,2sin 2cos ),sin [0,]2x y θθθϕϕϕϕπ+=+=+==∈因为[0,]2πθ∈,[0,]2πϕ∈,2πϕθϕϕ≤+≤+,sin()θϕ+先增大后减小,所以sin()θϕ+的最小值为sin ,sin()2πϕϕ+较小值,sin()cos 2πϕϕ+==即sin()θϕ+,所以2)x y θϕ+=+的最小值为1.故选:B题型二 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例2】【2018年天津理科08】如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则的最小值为( )A .B .C .D .3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.【玩转跟踪】1.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P (x ,y ),则(﹣x ,y ),(﹣1﹣x ,﹣y ),(1﹣x ,﹣y ),则•()=2x 2﹣2y +2y 2=2[x 2+(y )2]∴当x =0,y 时,取得最小值2×(),故选:B .2.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24-B .24+C .48-D .48+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin xy θθ==,则2cos 2sin )4x y πθθθ+=+=+,∴x y -≤+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值24)48=-故选:C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用坐标法解决平面向量的最值问题
发表时间:2013-04-22T16:02:45.093Z 来源:《中学课程辅导·教学研究》2013年第7期供稿作者:卫保新[导读] 在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系。
卫保新
摘要:本文通过对三个数学例题的简要分析,简要谈了应如何运用坐标法解决平面向量的最值问题,并提出了笔者的一些体会。
关键词:坐标法;平面向量;最值问题
在平面向量中,解决有关最大、最小值问题是高考命题中一个比较常见的热点问题,题目主要考查平面向量的数量积、向量的模、向量的基本运算等重要知识点。
解题的方法除了运用数量积的定义,也可运用数量积的坐标运算。
知识综合运用三角、不等式、函数等内容。
解题的思想体现了数形结合、等价转换、函数与方程等思想方法。
在高考和平时的课堂教学中,学生解题过程时很难联想到引入直角坐标系、运用坐标建立函数模型、不等式模型解决问题。
那么,如何建立适当的直角坐标系呢?一是抓住题中直接或间接的垂直关系;二是抓住题中定量与不定量的关系;三是抓住是否有利于图形写出方程的简单化;四是抓住点的坐标更容易写出;五是所建立的直角坐标系不影响求解的结论。
下面用具体例子说明建立直角坐标系、运用坐标法解决平面向量最值问题(以下的解法仅给出坐标法说明,原标准方法在此不再列出)
说明:在例1中原题中没有给出图形,学生在解决问题时虽然能作出图形,由于点P的不确定性,所以学生不容易联想到建立直角坐标系把问题代数化,在P点的选择技巧上,由于圆外一点均可作出圆的两条切线,并且无论点P位于何处,总可以以PO为x轴或y轴建立适当的直角坐标系。
本题运用了重要的知识点——平均值不等式求最值。
说明:在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系,用坐标法去解决问题。
在原标准
适当的直角坐标系,认知也不透。
本题考虑到的特殊性,并且坐标易写出的特征,问题得以转化为坐标法,再进一步结合了几何法解决。
说明:在原标准解法中,在两边点乘向量、转化为模,且点乘后相加,还有得出,在教学中发现,学生都不容易推理得到。
本题从所给出的图形中就可以联想到建立坐标系,由A,B的坐标写出C点坐标进一步构造成不等式或函数的模型解决问题。
从以上三道例题可以看出,在解决向量数量积、向量的模、向量的夹角等有关问题,以及在求有关最大、最小值问题时,常常会碰到某些难以突破的几何关系。
在题目所给出的几何条件、几何关系或所隐藏的几何关系相对较难寻找的情况下,运用数量积的定义、向量的几何意义难以完成解题思路时,培养学生建立直角坐标系、运用坐标法解决问题的意识、运用向量的坐标运算、寻找出变量与变量之间的关系、运用函数与方程求最值的方法、平均值不等式等解决问题的方法是一种非常好的思想方法。
这使学生在碰到困难时,有更强的解决问题的能力。
所以,在教学中,教师要想办法贯穿几何法、坐标法两条教学主线,让学生能在学习中站在高处看问题,解决问题的方法更丰富。
教会学生建立适当的直角坐标系,引入了坐标也能很好地运用函数与方程的思想、曲线与方程的思想、函数与不等式等,同时也能
培养学生养成良好的数学素养。