淀粉基生物降解材料
淀粉基生物可降解材料的制备

淀粉基生物可降解材料的制备生物可降解材料在当今的环保意识高涨的社会中越来越受到人们的重视。
其中,淀粉基生物可降解材料作为一种天然、可再生、生物降解的材料,在环保材料的制备中有着广泛的应用。
本文将围绕淀粉基生物可降解材料的制备方法展开详细探讨。
一、淀粉基生物可降解材料的特性淀粉基生物可降解材料以淀粉为主体,以淀粉降解酶、淀粉酸和植物蛋白质等为助剂的共混物。
该材料不仅具有完全生物降解的特点,而且具有较高的可塑性、可加工性和可降解性等优良特性,在环保材料领域具有广泛的应用前景。
二、淀粉基生物可降解材料的制备方法1.熔融法制备淀粉基生物可降解材料熔融法是一种常见的制备淀粉基生物可降解材料的方法。
该方法将聚乳酸、聚己内酯等在高温条件下与淀粉共混,并在混合物中加入塑化剂、稳定剂等辅助添加剂,经过混合、熔融、挤出成型等工艺步骤后,制得淀粉基生物可降解材料。
2.溶液法制备淀粉基生物可降解材料溶液法是另一种常用的制备淀粉基生物可降解材料的方法。
该方法将淀粉与聚乳酸、聚苯乙烯等有机物质在适宜的溶剂中混合后,经过搅拌均匀、成膜、干燥等步骤,制得淀粉基生物可降解材料。
3.生物法制备淀粉基生物可降解材料生物法是一种新兴的、绿色环保的淀粉基生物可降解材料制备方法。
该方法采用微生物发酵技术,将淀粉经发酵后得到聚羟基丁酸酯等生物塑料,在辅助添加剂的帮助下,制作成淀粉基生物可降解材料,生物法制备的淀粉基生物可降解材料不仅具有良好的可降解性,而且使用过程中不会带来二氧化碳、甲烷等有害气体,具有较好的环保性。
三、淀粉基生物可降解材料的应用淀粉基生物可降解材料在包装、餐具、土壤保护等众多领域有广泛的应用。
以包装材料为例,使用淀粉基生物可降解材料来制作环保餐盒、环保袋等,不仅可以很好地解决传统塑料袋、塑料餐具等存在的环境问题,而且还可以减少资源浪费,达到节能减排的效果。
四、淀粉基生物可降解材料发展的前景淀粉基生物可降解材料作为一种生物基材料,在环保材料领域有着广泛的应用前景。
淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮

淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮发布时间:2023-07-13T04:42:27.662Z 来源:《国家科学进展》2023年5期作者:徐国皓孟瑶任芯雨张潮[导读] 新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。
随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。
淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。
四川省宜宾市翠屏区西华大学四川宜宾 644000摘要:新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。
随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。
淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。
关键词:淀粉;可降解材料;环境保护一、淀粉基可降解材料的概念淀粉基可降解材料是一类新型的可生物降解材料,通常由淀粉等植物性原料制成,经过一系列的工艺处理使其成为可降解材料。
淀粉基可降解材料可以在自然环境中被微生物分解,变成二氧化碳和水等无害物质,不会对环境造成污染。
在制造过程中,需要添加一定的降解剂,以便使其更容易被微生物分解,加快分解速度。
淀粉基可降解材料可以被广泛应用于制造一次性包装材料、餐具、农业覆盖膜等,是当前环保意识逐渐增强的条件下,替代传统不可降解材料的热门选择。
二、淀粉基可降解材料的优势淀粉基可降解材料是一种具有极大优势的环保材料,其应用前景广泛,具有推动环保、可持续发展的重要作用。
生物可降解塑料和淀粉基可降解塑料的比较

生物可降解塑料和淀粉基可降解塑料的比较在当今的塑料业中,可塑性和耐用性是最主要的目标,但塑料被广泛使用产生的环境污染问题变得越来越严重。
在这种情况下,生物可降解塑料和淀粉基可降解塑料成为塑料行业的新选择。
本文将比较这两种可降解塑料的优缺点。
1. 生物可降解塑料生物可降解塑料是指由天然的有机高分子或其混合物构成的塑料,具有生物降解性能。
这种塑料可以在自然条件下进一步分解和转化为水、二氧化碳和基本物质,不会对环境造成污染。
生物可降解塑料的主要材料是玉米、木薯、甘蔗等有机材料。
这些材料可以通过特殊技术转化为生物可降解塑料。
优点:a. 环保生物可降解塑料可以被自然分解,不会在土壤和水中对环境造成污染,并且对人体健康无害。
b. 节约资源与传统塑料相比,生物可降解塑料的生产所需材料少,使用更加节省资源,也能够降低生产成本。
c. 安全生物可降解塑料由天然的材料组成,不含有害物质,对人体健康无害,安全可靠。
缺点:a. 降解速度慢生物可降解塑料需要花费较长的时间来降解,容易导致环境卫生问题和资源浪费。
b. 酸碱敏感生物可降解塑料对酸碱敏感,易被腐蚀。
c. 贮存期短由于生物可降解塑料内部含有微生物,如果贮存时间过长,塑料将会分解,使质量下降。
2. 淀粉基可降解塑料淀粉基可降解塑料是由淀粉与高分子制成的塑料。
淀粉基可降解塑料会随着时间的推移和环境条件的不同而自然交联断裂,使物质降解为水、二氧化碳和其他化合物。
淀粉基可降解塑料是一种强度不高,柔韧性较好的塑料。
优点:a. 环保淀粉基可降解塑料可以在自然条件下降解,而且可以被微生物完全降解,不会产生对环境有害的污染物。
b. 食品级别安全淀粉基可降解塑料可以达到食品级别安全,可用于食品、饮料、药品等领域。
c. 可加工性好淀粉基可降解塑料可以进行成型、吹塑、吸塑等多种加工方式,与传统塑料具有相同的加工性能。
缺点:a. 寿命短淀粉基可降解塑料的寿命比较短,存贮时要注意环境条件,长时间受阳光照射可能导致分解。
生物可降解塑料和淀粉基可降解塑料的比较

68·FOOD INDUSTRY调查 研究 柯琼贤 刘海平 广东省茂名市质量计量监督检测所生物可降解塑料和淀粉基可降解塑料的比较在适宜的生理条件下迅速进行。
淀粉基可降解塑料的原理:物理改性:理改性是指通过淀粉细微化、挤压机破坏淀粉结构或添加偶联剂和增塑剂等添加剂以增加淀粉与通用塑料的相容性;化学改性:化学改性通常是向淀粉分子引入疏水基团,使其在淀粉和合成树脂之间起到增强相容性的作用,改性方法有酯化、羟烷基化或接枝共聚、醚化和交联改性等;淀粉共混塑料:共聚型光解塑料主要通过共聚反应在高分子主链引入羧基型感光基而赋予其光降解特性,并通过调节羧基型感光基因团含量可控制光降解活性;全淀粉塑料:全淀粉型淀粉指以淀粉为主料(占90%以上),不添加任何石油化工原料一类产品。
这里淀粉包括天然淀粉和改性淀粉。
天然淀粉由于分子间存在氢键,溶解性很差,亲水但并不易溶于水,且直接加热时没有熔融过程,300℃以上分解。
优势和存在问题生物塑料可不同程度进行生物降解,且具有良好环保性能、原料再生等市场优势。
生物降解塑料由于有良好的降解性。
淀粉基降解塑料由于较高温度下易急剧降解,因此以淀粉为基材的降解塑料加工温度通常在150℃以下,而一般聚烯烃塑料加工温度多在200℃左右,以此计算相同产量生物降解塑料的加工能耗明显低于普通塑料。
该降解材料在推行低碳经济方面将发挥重要作用。
可生物降解塑料价格相对高昂、某些性能指标与传统塑料还有一定差距,其市场接受度还不是很高。
价格高是生物塑料推广难的最主要原因。
淀粉基可降解塑料存在的问题:成本和性能等方面的问题。
降解不彻底,仍然会造成环境污染。
填充型和双降解塑料的主要成分是合成树脂,所以它们只能不完全降解,降解的结果导致材料整体力学性质大幅度降低而崩溃成碎片或呈网架式结构,其碎片更加难以收集处理。
虽力学性能已达到传统塑料的标准,但因淀粉本身具有吸水性,所以材料回潮吸水导致其力学性能严重下降,且淀粉含量越高,问题越严重。
淀粉_聚酯体系生物可降解材料

淀粉_聚酯体系⽣物可降解材料淀粉/聚酯体系⽣物可降解材料马骁飞,于九皋*(天津⼤学理学院,天津 300072)摘要:主要从淀粉/聚酯共混、聚酯淀粉聚酯复合层、交联及⽣物降解性⽅⾯综述了近年来淀粉/聚酯体系的⽣物可降解材料的研究进展。
关键词:淀粉;聚酯;复合层;⽣物降解聚合物材料是上个世纪发展最为迅速的材料,但是⼤多数聚合物都是来源于⽯油这种不可更新能源。
⾯对全球能源危机和持续增长的环境污染,⽣产新型可⽣物降解聚合物的要求越来越迫切。
来源于农业资源的天然聚合物具有原料可更新,产品可⽣物降解、⽆污染等特点,近⼗年来成为众多学者的研究对象。
淀粉产量丰富、价格便宜、易⽣物降解,通常以颗粒形式存在于⽟⽶、⼩麦、⼤⽶和⼟⾖等⼤量植物中[1]。
直链淀粉和⽀链淀粉是淀粉颗粒的两种主要组分,直链淀粉相当于⼀个链状分⼦,其中包含有数百个 1,4连接的D 吡喃葡萄糖单元;⽀链淀粉是⼀种⾼度⽀化的分⼦,由短链多糖(10 ~50残基)通过l~6⽀化点(5%~6%的总链段)连接到⼀起,是⼀种树形结构[2,3]。
淀粉中两种组分的⽐例对淀粉的性能有很⼤影响,直链淀粉含量增加,颗粒结晶度下降。
有实验证明在淀粉颗粒内部[4,5],直链淀粉多数不参与形成有序结构,⽽是形成部分⽆定型区域。
淀粉是多羟基聚合物,每个葡萄糖结构单元中的2,3,6位碳上含有羟基,形成了⼤量的分⼦内、分⼦间氢键,需要加⼊增塑剂(如,⽔和多元醇)降低淀粉分⼦间作⽤⼒以提⾼加⼯性能。
实际上,纯热塑性淀粉(不含合成聚合物)可以⽤传统⽅法加⼯成塑料,但是纯淀粉塑料的强亲⽔性使其对湿度⼗分敏感低湿度环境中,增塑剂会从产品中扩散出来,使产品变脆;⾼湿度环境时,⽔会扩散进⼊产品,改变产品形状、降低⼒学性能。
另外,弹性低和回缩性⾼也是淀粉的弱点。
具有良好实⽤性能的新型可⽣物降解合成聚合物是解决环境问题的⼀种⽅法。
聚合物的⽣物降解是指在微⽣物活性(有酶参与)的作⽤下,酶进⼊聚合物的活性位置并渗透到聚合物的作⽤点后,使聚合物⽔解,⼤分⼦⾻架断裂成⼩的链段,最终成为⼩分⼦稳定产物。
淀粉基生物降解材料的研究与应用

淀粉基生物降解材料的研究与应用随着环境保护意识的提升和可持续发展的迫切需求,生物降解材料逐渐成为了材料科学领域的热门研究方向。
淀粉作为一种常见的天然高分子材料,由于其良好的生物可降解性和丰富的来源,成为了许多研究者的关注点之一。
本文将着重探讨淀粉基生物降解材料在研究与应用上的进展。
1、淀粉基生物降解材料制备技术的发展淀粉基生物降解材料的制备技术主要包括两种——化学合成和生物制备。
化学合成法是通过将淀粉与聚合物、交联剂等进行混合后进行反应,形成淀粉基复合材料。
这种方法制备的复合材料具有良好的物理性能和化学稳定性,但是却有毒性大、易污染等缺点。
生物制备法则是利用微生物酶的催化作用,将淀粉作为基质,与微生物发酵产生的高分子以及其他添加物进行混合反应,制得淀粉基生物降解材料。
这种方法由于原料来源广泛、环境影响小,针对性强等优势,因此越来越受到研究者的青睐。
2、淀粉基生物降解材料的应用领域淀粉基生物降解材料的应用领域主要包括包装材料、农用膜等多个领域。
首先,淀粉基生物降解材料在包装材料领域得到了广泛的应用。
常见的一次性餐具、外卖餐盒等都是采用淀粉基材料制作,具有良好的环保性能,同时在淀粉与其他材料复合后,还增强了材料的强度和耐热性能。
其次,淀粉基生物降解材料也在农用膜制备方面得到了广泛的应用。
生产农用膜时采用淀粉作为基质,通过添加微生物和其他助剂,制得具有优秀的降解性和生物安全性能的农用膜,可以有效减少传统农膜在土壤中的环境污染和对生态系统造成的负面影响。
3、淀粉基生物降解材料的未来发展方向虽然淀粉基生物降解材料在环境保护和可持续发展方面具有广阔的应用前景,但目前还存在一些问题需要解决。
首先,淀粉材料本身具有较低的物理性能,如强度、耐水性等,一些复合材料的添加虽然使其性能得到提升,但同时也增加了制备成本。
其次,淀粉基材料还存在与食品接触时的健康安全问题,需要进一步加强研究。
因此,淀粉基生物降解材料的未来方向应该是开发新型复合材料,以提高材料的物理性能、生物降解性和生物安全性。
淀粉基生物全降解产品简介

(五)垃圾袋、脱水袋(薄膜、泡沫 塑料)
居民生活垃圾的处理始终是环保领域的重点 和难点,塑料垃圾袋是造成“白色污染”的 首要元凶,这在世界各国都是困扰政府的难 题。用我们的产品替代传统的垃圾包装材料, 无论采取何种垃圾处理方式,包装材料都可 以完全融归大自然,建立自然与人类的和谐 关系。
(六)从产品拓展领域来看,淀粉及生物全降解材 料经加工还可以扩展到其它领域诸如:钓鱼丝、渔 网、工业用布、卫生用品、医院用品、尿布(成人、 婴儿用)、不织布、复丝、棉、薄膜、化妆品瓶、 农药瓶、饮料瓶(中空成型制品)、普通包装膜、 购物袋、托盘、真空成型品(片材、发泡片材)、 草坪(不织布、中空成型制品、注塑制品、扁丝)、 土木建筑材料(薄膜、网、不织布、土(砂)袋、 鱼箱(薄膜、高发泡材料)、卡片类(纸复合薄膜、 片材)、医疗用材料(纤维、不织布、薄片、注塑 制品)、日用品、文具、玩具、土建工程用品。
总而言之,随着环保呼声的日益强烈,政府相关政策法规的日趋完善, 加之世界食品包装最新规定的及时推出,降解环保材料的需求以迅猛的 速度风靡世界众多领域,有望成为21世纪最新诉求,它以性能优质,价 速度风靡世界众多领域,有望成为21世纪最新诉求,它以性能优质,价 格合理,完全降解、真正环保等诸多优势跻身于新型环保材料的替代品 行列。同时在所有环保材料中,淀粉基材料以原材料价格低廉、购入渠 道稳定、可循环再生及生产过程安全环保等特有的优势独占鳌头,具有 无限的行业前景与广阔的市场空间。尤其是在薄膜、片材和缓冲材料等 包装领域当中。近年来,电子信息产业发展飞快,移动通讯、笔记本电 脑、新型彩电、信息家电、汽车电子等正形成热点产品市场。电子信息 业规模不断壮大,产品销售量猛增,所需的包装箱、缓冲衬垫、托盘等 随之迅速增长。国际上已公布各项法令,对电子电气产品提出了更高的 环保要求,主要针对产品原材料、配件和包装物。因而,完全降解的包 装材料替代传统塑料是世界绿色环保的潮流,符合可持续发展的战略要 求。同时,也对生物降解高分子在包装材料中的应用带来了巨大的动力。
淀粉基生物降解材料

淀粉基生物降解材料work Information Technology Company.2020YEAR海南大学毕业论文(设计)题目:淀粉基生物降解材料学号: 20110402310001姓名:陈广平年级: 2011学院:材料与化工学院专业:高分子材料与工程(塑料)指导教师:赵富春完成日期: 2014 年 11 月 23 日淀粉基生物降解材料摘要淀粉基生物降解材料是一类很重要的可降解高分子材料。
随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。
淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。
本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。
关键词:淀粉生物降解降解性能应用与发展合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。
然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。
另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。
1、淀粉的基本性质淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。
直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。
通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4]淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南大学毕业论文(设计)题目:淀粉基生物降解材料学号:20110402310001姓名:陈广平年级:2011学院:材料与化工学院专业:高分子材料与工程(塑料)指导教师:赵富春完成日期:2014 年11 月23 日淀粉基生物降解材料摘要淀粉基生物降解材料是一类很重要的可降解高分子材料。
随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。
淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。
本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。
关键词:淀粉生物降解降解性能应用与发展合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。
然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。
另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。
1、淀粉的基本性质淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。
直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。
通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4]淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。
分子链通过羟基相互作用形成分子问和分子内氢键,因此淀粉具有很强的吸水性。
淀粉与水分子相互结合,从而形成颗粒状结构[4],因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。
淀粉是一种高度结晶化合物,分子问的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。
2、可生物降解材料的定义及降解原理降解材料是指在材料中加人某些能促进降解的添加剂制成的材料,合成本身具有降解性能的材料以及由生物材料制成的材料或采用可再生的原料制成的材料。
其在使用和保存期内能满足原来应用性能要求,使用后在特定环境条件下,在较短时间内化学结构发生变化,从而引起性能损失的材料[5]。
生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。
具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[6]。
理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。
生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。
首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄人体内,经过种种代谢路线,合成微生物体内所需要的物质或转化为微生物活动的能量,最终转化成CO2和H2O[7]。
在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,降解作用的形式主要有以下几种[8]:(1) 生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;(2) 生物的生化作用,微生物对材料作用而产生新的物质;(3) 酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解。
3、淀粉基生物降解塑料普通淀粉粒径为25um左右,既可作为制备降解复合材料的一种填料,又可以通过一定改性处理制备降解塑料。
淀粉基生物降解塑料分为破坏性生物降解塑料和完全生物降解塑料。
前者主要是指将淀粉与不可降解树脂共混,研究开发较早,是淀粉基可降解塑料研究的第一代产品。
后者则包括淀粉与可降解聚酯共混材料和全淀粉塑料两种,这两种材料在使用后均能实现彻底降解,目前是国外生物降解材料开发的主流。
由于淀粉的成本比普通塑料要低很多。
普通食用淀粉的价格为每吨2200元,而通用塑料的价格为每吨13000元,因此开发全淀粉降解塑料是今后淀粉基生物降解材料的大趋势[9]。
3.1破坏性生物降解塑料破坏性生物降解塑料主要是指淀粉填充型降解塑料,将淀粉或变性淀粉作为填料,与聚烯烃等热塑性塑料共混并加入一定添加剂制备的部分降解塑料[10]。
制品在使用后,淀粉部分首先降解,制品崩裂为碎片,因此又称为崩溃性生物降解塑料。
材料破碎后表面积增大,有利于树脂部分的进一步降解。
这类降解塑料研究较早。
早在1973年英国Griffin就以淀粉为填料,直接与聚烯烃进行共混。
此后一些国家以这一方法为依据开发出淀粉填充型生物降解塑料。
但是填充量一般只有5%-30%,增大淀粉含量会导致材料性能无法达到要求。
这是由于天然淀粉分子内含有大量的羟基,属于强极性物质,而聚烯烃的极性较小,两者相容性较差,很容易发生相分离,难以形成连续相[11]。
多年来,很多科学工作者致力于淀粉基生物降解塑料的研究,证明采用淀粉与非极性树脂进行共混,必须对淀粉进行预处理,改变其表面性质和结构特征,才能使两相界面结合很好,从而制备出具有优良性能的产品。
改性处理淀粉的方法主要分为物理改性和化学改性两种:1)物理改性物理改性[12]是指将淀粉进行机械化处理(气流粉碎等),并通过采用偶联剂,表面活性剂和增塑剂等助剂进行改性处理,降低淀粉的极性,在一定程度上提高了两相间的相容性。
同时改性剂本身与淀粉的羟基发生作用,破坏淀粉本身的结晶性,使其刚性减弱,塑性增加,从而改善了淀粉的加工性能。
该方法研究最成功的是加拿大的warnce公司制备的Ecostar母料。
2)化学改性化学改性是指通过在淀粉中加入一定单体,在引发剂和催化剂的作用下,单体与淀粉发生接枝反应,在淀粉分子链引入疏水化基团,在淀粉与合成树脂间起到增容剂的作用,而且接枝淀粉也可进行填充。
化学改性的方法主要有酯化,醚化,接枝共聚或交联改性等方法[13]此外还有其他对淀粉进行改性的方法,例如等离子体法,微波辐射等方法。
Ismael E.Rivero[14]等采用微波辐射的方法将淀粉与辛烯丁二酸酐以不同比例进行反应,然后将其作为淀粉和LLDPE共混体系的相容剂,通过结构和力学性能测试表明加入10%的相容剂能够明显减少淀粉相的大小,同时改进共混体系的力学性能。
淀粉/聚烯烃共混制备工艺简单,对生产条件的要求低,加工设备不需要作太大的改进,在工业化生产方面有很大的优势[15],而且对于及时缓解目前严重的废旧塑料污染问题有很重要的意义。
但是由于复合材料中淀粉填充量较小,复合材料中不可降解部分仍占很大比例,难以实现完全降解,因此该方向对塑料降解的作用会受到一定的限制。
3.2完全生物降解塑料1)淀粉/可降解聚酯共混塑料淀粉/可降解聚酯共混塑料是将淀粉与可降解聚酯如PCL, PV A, PHB或天然高分子纤维素等共混制备,由于聚酯类化合物本身具有生物降解性,因此产品可以完全降解,更有利于环保。
作为降解材料,聚酯类化合物如聚乳酸等己经广泛应用于医学等领域。
然而其力学性能差,成本高的缺点限制了其进一步发展。
如果在聚酯中添加一定量的淀粉,不仅可以使共混塑料的成本降低,而且淀粉的加入在一定程度上改善了聚酯的机械性能[16]。
但是淀粉和聚酯类化合物都是极性化合物,具有很强的亲水性,长时间暴露会导致其性能的下降。
另外淀粉与聚酯之间也同样存在相容性的问题,因此在共混之前添加一定改性剂进行处理也十分必要的。
2)全淀粉塑料全淀粉塑料是指以淀粉作为材料的基体,在淀粉中添加少量的助剂制备而成。
淀粉本身是一种高分子聚合物,分子以顺式排列,结晶温度高,难以直接加工成型。
因此必须在淀粉中加入一些增塑剂等助剂,破坏淀粉与原有的分子结构,使其物理性质和化学性质产生一定改变,从而能够应用生产生活[17]。
例如淀粉在塑化状态下表现出很高的强度和韧性,但是在重新冷却结晶后,则表现为脆性很高,难以进行实际应用。
因此制备全淀粉塑料中,需要对淀粉进行一定变性处理,破坏其高度结晶的结构。
另外全淀粉塑料吸水性很强,在空气中吸收大量水分后,材料难以保持很好的性能。
全淀粉塑料是淀粉基生物降解塑料发展的最新方向,实现全淀粉塑料的应用,对于缓解目前石油能源医乏,解决塑料污染具有很重要的意义。
4、淀粉基生物降解材料降解性能的自身影响因素1)聚合物改性为了使淀粉基生物降解材料在降解前具有一定的力学性能,需要将复合材料组分中的聚合物进行化学改性。
Demirgoz等[18]研究了3种淀粉基降解复合材料:玉米淀粉/乙烯-乙烯醇共聚物(SEV A-C)、玉米淀粉/醋酸纤维素(SCA)和玉米淀粉/聚己内酯( SPCL),通过链交联对这3种复合材料中的聚合物组分进行化学改性,研究了复合材料在盐溶液中的降解行为。
结果表明,复合材料经过交联改性后,共混物的失重率比未改性的聚合物共混物要小,说明交联改性延缓了共混物的降解。
对于淀粉和PLA共混复合材料,将PLA进行改性比如共聚作用,产生酸性物质,使得微生物侵蚀材料,从而可加快复合材料的生物降解[19]。
2)淀粉改性原淀粉由于亲水性太强而不能用于食品包装材料,通过淀粉改性可使淀粉的疏水性增强,这些改性必将影响到淀粉的降解性能。
通过比较原淀粉和淀粉醋酸酯挤出共混物的酶降解性能[20],可知当共混物中淀粉醋酸酯的含量增加时,共混物的降解性能下降,因为淀粉醋酸酯是共混物中疏水的部分,比较难与酶解近,故降解速率在初始阶段有所下降。
Kim [21]通过比较原淀粉(NS) /PE和羟丙基淀粉(HPS) /PE共混物的降解性能,发现HPS/PE共混物更易被热氧化降解,而NS/PE 共混物较难被氧化,因为在加热过程中其羟基指数没有增加。
并且HPS/PE较NS /PE共混物更易被微生物降解,因为HPS/PE的拨基能够进一步参与氧化降解,氧化降解协同微生物降解一起加快了HPS/PE共混物的降解。
3)增溶剂土埋法淀粉/LDPE共混物降解性能显示[22],与未加增容剂相比,加入增容剂MA g PLDPE和AAe g PLDPE后共混物的失重随着增容剂含量的增加而呈现无规律性的变化,表明增容剂对淀粉/LDPE的降解性能有一定的影响,随着MA g PLDPE含量的增加,共混物的降解能力下降。
Bikiaris等[23]研究了增容剂PE g MA对LDPE/热塑性淀粉(PLST)共混物降解性能的影响,失重曲线表明含有增容剂共混物的失重比未含增容剂共混物的失重要略小,说明增容剂对共混物的降解起到一定的限制作用。