九年级数学-解直角三角形 单元检测试卷(含答案)
九年级数学-解直角三角形 单元检测试卷(含答案)

解直角三角形 单元检测试卷一、单选题(共10题;共30分)1.在△ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值是( ) A. 34 B. 35 C. 45 D. 432.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 19 3.为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m 4.等腰三角形的周长为20cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( )A. y=20﹣x (0<x <10)B. y=20﹣x (10<x <20)C. y=20﹣2x (10<x <20)D. y=20﹣2x (5<x <10)5.一段拦水坝横断面如图所示,迎水坡AB 的坡度为i=1:√3 , 坝高BC=6m ,则坡面AB 的长度( )A. 12mB. 18mC. 6√3D. 12√3 6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30°,B 村的俯角为60°(如图)则A ,B 两个村庄间的距离是( )米.A. 300B. 900C. 300 √2D. 300 √37.如图,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米,他继续往前走3米到达点E 处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米B. 6米C. 7.2米D. 8米 8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为( )A. 10B. 12C. 14D. 16 9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3 √5 米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A. 5米B. 6米C. 8米D. (3+ √5 )米 10.如图,在□ABCD 中,AB ∶AD=3∶2,∠ADB=60°,那么cos A的值等于( )A. 3−√66B. √3+3√26C. 3+√66D. √3+2√26二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________. 13.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的,则x=________,cosα=________.正切值是4315.在Rt△ABC中,∠C=90°,如果AC=4,sinB=2,那么AB=________316.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= √3+1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.x2+mx对应的函数值分别为y1,y2,y3,20.已知当x1=a,x2=b,x3=c时,二次函数y= 12若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB 与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 √3米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:√3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= 45, cos53 °= 35, tan53°= 43,√3≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ 35,tan37°≈ 34,sin21°≈ 925,tan21°≈ 38)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= √32+42=5.∴sinA= 35,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。
沪科版九年级数学上册《解直角三角形》单元检测试卷专项练习及答案解析

沪科版九年级数学上册《解直角三角形》单元检测试卷专项练习及答案解析一、选择题1、在△ABC中,∠C=90°,,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°2、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.3、在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A.B.C.D.4、在△ABC中,∠A,∠B都是锐角,且sinA=,cosB=,则△ABC的形状是A.直角三角形B.钝角三角形C.锐角三角形D.不能确定5、计算sin30°·cos60°的结果是()A.B.C.D.6、如图,在距离铁轨200米的B处,观察“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.300(第6题图)(第7题图)(第8题图)7、菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为( )A.(,1) B.(1, ) C.(+1,1) D.(1,+1)8、如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i =1∶1.5,则坝底AD的长度为( )A.26米B.28米C.30米D.46米二、填空题9、如图,在正方形网格中,△ABC的顶点都在格点上,则cos∠ABC的值为__________.(第9题图)(第10题图)(第12题图)(第14题图)10、如图,已知AD是Rt△ABC斜边BC上的高,且AB=6,BC=10.则AC= ______,sin a=____ 。
九年级数学第一章《解直角三角形》测试卷(含答案)

第一章《解直角三角形》测试卷班级 姓名 得分一、选择题(每小题4分;共40分)1.在Rt △ABC 中;如果一条直角边和斜边的长度都缩小至原来的51;那么锐角A 的各个三角函数值( ) A .都缩小51B .都不变C .都扩大5倍D .无法确定 ∠A 是锐角;且sinA=32;那么∠A 等于( ) A .30° B .45° C .60° D .75° △ABC 中;∠C=90°;tanA=43;BC=8;则AC 等于( ) A .6 B .323C .10D .12 4. 如图所示;为了加快施工进度;要在小山的另一边同时施工;从AC 上的一点B;取∠ABD=1450; BD=500m;∠D=550; 要A 、C 、E 成一直线;那么开挖点E 离点D 的距离是 ( )A. 500sin550mB. 500cos550mC. 500tan550mD. 500cot550m α>30°时;则cos α的值是( ) A .大于12 B .小于12C .大于32D .小于326. 身高相等的三名同学甲、乙、丙参加风筝比赛;三人放出风筝的线长、线与地面夹角如下表(假设风筝线是拉直的);则三人所放的风筝中 ( )同学甲 乙 丙 放出风筝线长(m ) 10010090线与地面夹角040 015 060A .甲的最高B .丙的最高C .乙的最低 D. 丙的最低7.A 、B 、C 是△ABC 的三个内角;则2sinBA +等于( ) A .2cos CB .2sinC C .C cosD .2cos BA +8.在Rt △ABC 中;∠C =900;32cos =B ;则a ∶b ∶c 为( )A .2∶5∶3B .2∶5∶3C .2∶3∶13D .1∶2∶3 9.如图;小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上;量得CD =8米;BC =20米;CD 与地面成30º角;且此时测得1米杆的影长为2米;则电线杆的高度为( )A .9米B .28米C .()73+米 D .()3214+米 Rt △ABC 中;∠C =900;∠A 、∠B 的对边分别是a 、b ;且满足022=--b ab a ;则tanA 等于( )A 、1B 、251+ C 、251- D 、251± 二、填空题(每题5分;共30分) 1. 在Rt △ABC 中;∠ACB=900;SinB=27则cosB . 2.旗杆的上一段BC 被风吹断;顶端着地与地面成300角;顶端着地处B 与旗杆底端相距4米;则原旗杆高为_________米.3.在坡度为1:2的斜坡上;某人前进了100米;则他所在的位置比原来升高了 米. 4.已知△ABC 中;AB =24;∠B =450;∠C =600;AH ⊥BC 于H ;则CH = .5. 平行四边形ABCD 中;两邻边长分别为4cm 和6cm;它们的夹角为600;则较短的对角线的长为 cm 。
2019年秋浙教版初中数学九年级下册《解直角三角形》单元测试(含答案) (638)

九年级数学下册《解直角三角形》试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________题号一二三总分得分评卷人得分一、选择题1.(2分)三角形在正方形网格纸中的位置如图所示,则sinα的值是()A.34B.43C.35D.452.(2分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.则cosB等于()A.34B.43C.35D.453.(2分) 如图,在300 m高的峭壁上测得一塔顶与塔基的俯角分别为 30°和 60°,则塔高 CD 约为()A.100m B.200m C.150m D.180m4.(2分)若把 Rt△ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间的关系是()A.扩大3倍B.缩小3倍C.相等D.不能确定5.(2分)如图是某小区的一块三角形空地,准备在上面种植某种草皮以美化环境,已知这种草皮每平方米售价为m元,则购买这种草皮至少需要()A.450m元B.225m元C.150m元D.300m元6.(2分)在△ABC 中,∠C= 90°,如果∠B = 60°,那sinA+cosB=()A.14B.1 C12+D13+评卷人得分二、填空题7.(3分)某市为改善交通状况,修建了大量的高架桥.一汽车在坡度为30°的笔直高架桥点A 开始爬行,行驶了150米到达点B ,则这时汽车离地面的高度为 米. 8.(3分)已知正三角形的周长是 6,则它的面积为 .9.(3分)在直角三角形ABC 中,∠A=090,AC=5,AB=12,那么tan B = . 10.(3分) 如图所示,将两条宽度为 3cm 的纸带交叉叠放,若α已知,则阴影部分的面积为 .11.(3分)如图所示,某人在高楼A 处观测建筑物D 点,则它的俯角是 .12.(3分)一斜坡的坡比为 1:2,其最高点的垂直距离为 50m ,则该斜坡的长为 m . 13.(3分)Rt △ABC 中,斜边与一直角边比为25:7,则较小角的正切值为 . 14.(3分)计算:21()(12)4x x x −+÷−= .15.(3分)已知 CD 是 Rt △ABC 斜边上的高线,且 AB= 10,若 sin ∠ACD=45,则CD= . 评卷人 得分三、解答题16.(6分)又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60 乙:我站在此处看塔顶仰角为30 甲:我们的身高都是1.5m乙:我们相距20m请你根据两位同学的对话,计算白塔的高度(精确到1米).17.(6分)如图,水坝的横断面是梯形,迎水坡BC的坡角30∠=°,背水坡AD的坡度为B1:2,坝顶DC宽25米,坝高CE是45米,求:坝底AB的长,迎风坡BC的长以及BC 的坡度.(答案可以带上根号)18.(6分)燕尾槽的横断面是等腰梯形.如图是一燕尾槽的横断面,其中燕尾角B是55,外口宽AD是16cm,燕尾槽的深度是6cm,求它的里口宽BC(精确到0.1cm).19.(6分)某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)20.(6分)随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)21.(6分)下图为住宅区内的两幢楼,它们的高m CD AB 30==,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时.试求: 1)若两楼间的距离m AC 24=时,甲楼的影子,落在乙楼上有多高? 2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?甲 乙300BD22.(6分)Rt △ABC 中,∠C=90°,cosB=32,求a:b:c 等于多少?23.(6分)在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan .24.(6分)化简:=−2)3(π .25.(6分)计算:322(3)a a −÷= .26.(6分)计算:(1))1)(1()2(2−+−+x x x (2))()23(3223ab ab b a b a ÷+−(3)262−−x x ÷ 4432+−−x x x27.(6分)已知等腰三角形的底边长为20,面积为10033,求这个等腰三角形的三个内角度数及腰长.28.(6分)如图所示,已知∠ACB=90° , AB=13 , AC=12 ,∠BCM=∠BAC,求cosB 及点B 到直线MN的距离.29.(6分)已知a、b、c是△ABC的三边,a、b、c满足等式2(2)4()()b c a c a=+−,且有5a-3c=0,求 sinB 的值.30.(6分)如图,在Rt△ABC 中,∠C= 90°,AC=5,BC=12,求B的正弦、余弦和正切的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.D 3.B 4.C 5.C 6.B二、填空题7.7589.125 10.9sin a11.∠EAD12. 13.247 14.1142x − 15.24三、解答题16.由题目可得:30CAB ∠=,60CBD ∠=,20m AB =, 1.5m AM BN DP ===.在ABC △中,CBD ACB CAB ∠=∠+∠,603030ACB ∴∠=−=,A M N PC B 乙 甲 6030 ACB CAB ∴∠=∠,20m BC AB ∴==.在Rt CBD △中,20m BC =,60CBD ∠=sin CD CBD BC ∠=,sin 6020CD∴=,320sin 6020103m CD ∴===103 1.519m CP CD DP ∴=+=≈.答:白塔的高度约为19米.17.解:452AF =∵452AF = 30tan 45=BE ,453BE =45225453AB =+∴(米),又451sin302BC ==∵° 90BC =(米),BC 的坡度为3.18.解:作AE BC DF BC ⊥⊥,,垂足分别为E ,F , 在Rt ABE △中,tan AEB BE=, ∴ tan AE BE B ==6tan 55. ∴6221624.4tan 55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .19.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD , 垂足为D ,则11402022BC AB ==⨯=. sin18MD BM =600.309=⨯18.54=.∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈.20.在 Rt △ADF 中,∠D=60°,tan AFD DF =,∴3933tan 3AF DF D ==⨯=在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++331091933=+=+21.解:(1)设阳光照射在乙楼CD 的E 处,连结BD ,则BD=AC=24,∠D BE =30°,DE=33BD=83,∵AB=CD=30,∴CE=30-83;即阳光照射在乙楼离地面高30-83米处;(2)要使甲楼的影子不影响乙,则阳光刚好照射在乙楼C 处,在Rt △ABC 中,∠A BC =60°,AC=3AB=303,即两楼相距303米. 22.3:5:2. 23.135sin =A , 1312cos =A ,125tan =A . 24.3−π25.49a26.(1)54+x ;(2)2223b ab a +−;(3)42−x . 27.如图所示,AB=AC,∵BC=20,10033ABC S ∆=,∴1033AH =,∵BH=10,∴3tan 3B =∴∠B= 30°, ∴∠C= 30°, ∴∠BAC= 120°. Rt △ABH 中,20233AB AH ==,即△ABC 的三个内角分别为 30°, 30°,120°,腰长为2033. 28.如图过 B 作BH ⊥MNM 于H ,222213125BC AB AC =−=−=,5sin sin 13BC A BCH AB ===∠,5cos 13B = ∵sin 5BH BH BCH BC ∠==,∴2513BH =,即 B 到直线的距离为2513.29.由已知得222b c a =−,即222c a b =+,∴△ABC 是Rt △,∠C=90°, ∵530a c −=,∴35a c =. 设: a = 3k ,c= 5k ,∴b= 4k ,∴4sin 5b Bc ==. 30.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC ==。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,=75°,则b的值为()A.3B.C.4D.2、如图,要测量河两相对的两点P、A之间的距离,可以在AP的垂线PB上取点C,测得PC=100米,用测角仪测得∠ACP=40°,则AP的长为()A.100sin40°米B.100tan40°米C. 米D. 米3、某公司要在如图所示的五角星(∠A=∠D=∠H=∠G=∠E=36°,AB=AC=CE=EF=FG=GI=HI=HK=DK=DB)中,沿边每隔25厘米装一盏闪光灯,若BC=(﹣1)米,则需要安装闪光灯()A.79盏B.80盏C.81盏D.82盏4、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=5、△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.6、如图,将矩形沿折叠,使点落在边上的点,点的对应点为点,连接、、与交于点,与交于点,若点为中点,,,则的长为()A. B. C. D.7、已知a=3,且(4tan 45°-b)2+,以a,b,c为边组成的三角形面积等于()A.6B.7C.8D.98、如图,菱形ABCD中,对角线AC、BD交于点O,若AC=4,BD=2,则∠1的余弦值为()A. B. C. D.9、如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为,则梯子顶端到地面的距离(BC的长)为()A. 米B. 米C. 米D. 米10、如图,在等腰中,,, 是上一点.若,那么的长为()A.2B.C.D.111、如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A,D分别落在点A',D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,的值为()A. B.C.D.12、在Rt△ABC,∠C=90°,AC=12,BC=5,则sinA的值为( )A. B. C. D.13、如图,在正方形网格中,∠1、∠2、∠3的大小关系()A.∠1=∠2=∠3B.∠1<∠2<∠3C.∠1=∠2>∠3D.∠1<∠2=∠314、如图,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道. 下列等式成立的是()A.sinα =B.cosα=C.tanα=D.tanα=215、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A. 8tan20°B.6cos15°C.8tan15°D.6cot15°二、填空题(共10题,共计30分)16、用科学计算器计算:8cos31°+=________17、如图,点A、点B是双曲线y=上的两点,OA=OB=6,sin∠AOB=,则k=________.18、如图,将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB:BC=4:5,则tan∠CFD=________.19、实数tan45°,,0,﹣π,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是________个.20、如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD=20m,则甲楼的高AB的高度是________m.(结果保留根号)21、如图,在△ABC中,CA =3, CB=4,AB= 5,点D是BC的中点,将△ABC沿着直线EF 折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin ∠BED的值为________.22、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.23、计算:2sin60°+tan45°=________24、如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)25、计算:3tan30°+sin45°=________.三、解答题(共5题,共计25分)26、计算:﹣4 ﹣tan60°+| ﹣2|.27、如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)28、先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.29、如图,水库大坝的横截面是梯形,坝顶宽5米,CD的长为20 米,斜坡AB的坡度i=1:2.5(i为坡比即BE:AE),斜坡CD的坡度i=1:2(i为坡比即CF:FD),求坝底宽AD的长.30、如图,轮船在A处观测灯塔C位于北偏东70o方向上,轮船从A处以每小时30海里的速度沿南偏东50o方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25o 方向上,求灯塔C与码头B之间的距离(结果保留根号).参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、B6、A7、A8、D9、A11、A12、D13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
九年级数学(下)第一章解直角三角形测验卷(含答案)

第一章 解直角三角形(一)班级 姓名 学号一、选择题(每小题3分,共30分。
)1.(2013·天津中考)tan 60︒ 的值等于( )A.1B.2C.3D.2 2.(2013·重庆中考)计算6tan 452cos 60︒-︒ 的结果是( ) A.43 B.4C.53D.53.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒== 则sin A 的值是( ) A.34B.34C.35D.454.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55C.33 D.23 5.在ABC △中,90C =︒∠,5,3,AB BC ==则sin B = ( )A. 34B. 53 C. 43 D. 456.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45C.54D.347.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310m 8.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( )阶段性学业评价试卷九年级(下)数学 第7题图第3题图ACBA. 5B.37C. 7D. 389.如图,已知:45°<∠A <90°,则下列各式成立的是( ) A.sin cos A A = B.sin cos A>A C.sin tan A>AD.sin cos A<A10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,2BE =,则tan ∠DBE 的值是( ) A .12B .2C .52 D .55二、填空题(每题3分,共24分)11.(2013·广东中考)在Rt △ABC 中, 90,3,4=︒==ABC AB BC ∠,则sin A =______. 12.(2013·陕西中考)比较大小:8cos 31︒35.(填“>”“=”或“<”)13.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈)14.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.15.大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度,则两个坡角的和为 .16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_ .17.如图,在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB =__________. 18.如图,在△ABC 中,已知324530,∠,∠AB B C ==︒=︒,则AC =________. 三、解答题 (本题共有7小题,共46分)ABC第9题图ACB第18题19.(5分)计算:(1)()42460sin 45cos 22+- ; (2)2330tan 3)2(0-+--.20.(5分)在Rt △ABC 中,∠C =900,若12sin 13A =,求cosA, sinB, cosB.21.(6分)等腰梯形的一个底角的余弦值是223,腰长是6,上底是22求下底及面积22.(6分)某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB 的长,为此,在A 的正南方向1500米的C 处,测得∠ACB=620,求隧道AB 的长.(精确到1米,供选用的数:sin620=0.8829,cos620=0.4695,tan620=1.881,cot620=0.5317)23.(6分)已知tanA=2,求AA AA cos 5sin 4cos sin 2+-的值。
第1章 解直角三角形 浙教版九年级数学下册单元测试题(含答案)

第一章解直角三角形 单元测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是( )A.1,1,√2B.1,1,√3C.1,2,√3D.1,2,32. 如图,△ABC 中,∠B =90∘,BC =2AB ,则cos A =( )A.√52B.12C.2√55D.√553. 如图,在△ABC 中,∠C =90∘,sin A =35,则BC AC 等于( )A.34B.43C.35D.454. 在△ABC 中,∠C =90∘,如果tan A =34,那么sin B 的值等于( ) A.53 B.35 C.54 D.455. cot β=√33,则锐角β等于( )A.0∘B.30∘C.45∘D.60∘6. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD平行于前沿BC,且与BC的距离为55cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(55+100tanα)cmB.(55+100sinα)cmC.(55+100cosα)cmD.以上答案都不对7. 如果某人沿坡度为1:3的斜坡向上行走a米,那么他上升的高度为()A.√1010a米 B.√10a米 C.a3米 D.3a米8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图(其中ABCD是矩形).设∠ADO=α,彩电后背AD与前沿BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.(60−100sinα)cm9. 某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45∘,再往摩天轮的方向前进50m至D处,测得最高点A的仰角为60∘.问摩天轮的高度AB约是()米(结果精确到1米,参考数据:√2≈1.41,√3≈1.73)A.120B.117C.118D.119二、填空题(本题共计11 小题,每题3 分,共计33分,)10. 如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ;②sinα>sinβ;③cosα>cosβ,正确的结论为________(填序号).11. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75∘方向20米处,点C在点A南偏西15∘方向20米处,则点B与点C的距离为________米..AC上有一点E,满足AE:CE= 12. 如图,已知AD是等腰△ABC底边上的高,且tan B=342:3.那么tan∠ADE的值是________.13. 如果在某建筑物的A处测得目标B的俯角为37∘,那么从目标B可以测得这个建筑物的A 处的仰角为________.14. 计算:sin60∘⋅cos30∘−tan45∘=________.15. 如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120∘角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=√3米,则路灯的灯柱BC高度应该设计为________米.(计算结果保留根号).16. 茗茗在坡度为1:√3的坡面上走了100m,则茗茗上升了________m.17. 如图,我国一渔政船在A处,发现正东方向B处有一可疑船只,正以16海里/小时速度向西北方向航行,我渔政船立即往北偏东60∘方向航行,1.5小时后,在C处截获可疑船只,则我渔政船的航行路程AC=________海里(结果保留根号).18. 在Rt△ABC中,∠C=90∘,sin A=1,那么cos A=________.219. 如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则sin A=________.20. 动手操作:今有一副三角板(如图1),中间各有一个直径为4cm的圆洞,现将三角形a的30∘角的那一头插入三角板b的圆洞内(如图2),则三角板a通过三角板b的圆洞的那一部分的最大面积为________cm2(不计三角板的厚度).三、解答题(本题共计6 小题,共计60分,)−√3⋅tan30∘.21. 计算:cos245∘+cos302sin60+122. 已知电线杆AB直立于地面,它的影子恰好照在土坡的坡面CD和地面BC上.如果CD与地面成45∘,∠A=60∘,CD=4√2米,BC=(4√3−4)米,求电线杆AB的长.23. 某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45∘,底端D点的仰角为30∘,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为60∘(如图②所示),求大楼部分楼体CD的高度为多少米?24. 在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45∘,到B点的俯角为30∘,问离B点30米远的保护文物是否在危险区内?(√3约等于1.732)25. 如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60∘方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?26. 我区在修筑渭河堤防工程时,欲拆除河岸边的一根电线杆AB.如图,已知距电线杆AB 水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡度为1:0.5,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30∘,D、E之间的宽是2米,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将DE段封止?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:A、若三边为1,1,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,√3能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,√3,由于12+(√3)2=22,则此三边构成直角三角形,最小角为30∘,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.2.【答案】D【解答】∵∠B=90∘,BC=2AB,∴AC=√AB2+BC2=√AB2+(2AB)2=√5AB,∴cos A=ABAC =√5AB=√55.3.【答案】A【解答】解:∵sin A=35,设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tan A=BCAC =ab=3x4x=34,故选A.4.【答案】D【解答】解:由tan A=34,可设∠A的对边是3k,∠A的邻边是4k.则根据勾股定理,斜边是5k.∴sin B=4.故选D.5.【答案】D【解答】解:∵cotβ=√33,β为锐角,∴β=60∘.故选D.6.【答案】B【解答】解:设OE、AD相交于F,则EF=55,在直角三角形AFO中,∵∠DAO=α,AO=100cm,∴OF=100sinα,∵EF=55,∴OE=55+100sinαOE=55+100sinα.故选B.7.【答案】A【解答】解:如图:根据题意得:AC=a,i=1:3,∴i=AECE =13.设AE=x米,则CE=3x米,∴AC=√AE2+CE2=√10x(米),∴√10x=a,解得:x=√1010a,∴AE=√1010a米.即他上升的高度为√1010a米.故选A.8.【答案】B【解答】解:∵△AOD是直角三角形,∴∠OAD+∠ODA=90∘,∵△AOF是直角三角形,∴∠OAD+∠AOF=90∘,∴∠AOF=∠ADO=α,在Rt△AOF中,OF=AO⋅cosα=100cosα,∵EF=CD=60cm,∴OE=EF+OF=(60+100cosα)cm.故选B.9.【答案】C【解答】解:在Rt△ABC中,由∠C=45∘,得AB=BC,在Rt△ABD中,∵tan∠ADB=tan60∘=ABBD,∴BD=ABtan60∘=√3=√33AB,又∵CD=50m,∴BC−BD=50,即AB−√33AB=50,解得:AB≈118.即摩天轮的高度AB约是118米.故选:C.二、填空题(本题共计11 小题,每题 3 分,共计33分)10.【答案】①②【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故答案为①②.11.【答案】20√2【解答】解:根据题意得:∠BAC=90∘,AB=AC=20米,在R t△ABC中,BC=√AC2+AB2=√202+202=20√2,故答案是:20√2.12.【答案】89【解答】解:作EF⊥AD于F,如图,∵△ABC为等腰三角形,AD为高,∴∠B=∠C,∴tan C=34=ADDC设AD=3t,DC=4t,∴AC=√AD2+CD2=5t,而AE:CE=2:3,∴AE=2t,∵EF // CD,∴△AEF∽△ACD,∴EFCD =AFAD=AEAC,即EF4t=AF3t=2t5t,∴AF=65t,EF=85t,∴FD=AD−AF=95t,在Rt△DEF中,tan∠FDE=EFFD =85t95t=89∴tan∠ADE=89.故答案为89.13.【答案】37∘【解答】解:如图,∵某建筑物的A处测得目标B的俯角为37∘,∴目标B可以测得这个建筑物的A处的仰角为37∘,故答案为:37∘14.【答案】−1 4【解答】解:sin60∘⋅cos30∘−tan45∘=√32⋅√32−1=−14.故答案为:−14.15.8√3【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90∘,∠P=30∘,OB=10米,CD=√3米,∴在直角△CPD中,DP=DC⋅tan60∘=3米,PC=CD÷sin30∘=2√3(米),∵∠P=∠P,∠PDC=∠B=90∘,∴△PDC∽△PBO,∴PDPB =CDOB,∴PB=PD⋅OBCD =3×10√3=10√3(米),∴BC=PB−PC=10√3−2√3=8√3(米).故答案为:8√3.16.【答案】50【解答】解:根据题意画图:AB=100,tan B=ACBC =1√3,设AC=x,BC=√3x,则x2+(√3x)2=1002,解得x=50,答:茗茗上升了50m.故答案为:50.17.24√2【解答】解:如图,作CD⊥AB于点D,垂足为D,∵在直角三角形BCD中,BC=16×1.5=24海里,∠CBD=45∘,∴CD=BC⋅sin45∘=24×√22=12√2海里,∴在直角三角形ACD中,AC=CDsin30∘=12√2×2=24√2海里,故答案为:24√2.18.【答案】√32【解答】∵在Rt△ABC中,∠C=90∘,sin A=12,∴∠A=30∘,∴cos A=√32.19.【答案】35【解答】解:如图所示:作CD⊥AB,则DC=3,AC=5,故sin A=DCAC =35.故答案为:35.20.【答案】 14.9【解答】解:如图,BC =4,∠BAC =30∘,作AD ⊥BC 于点D ,当点D 是BC 的中点时,△ABC 的面积最大,此时由中垂线的性质知,AB =AC ,∠B =75∘,S △ABC =12BC ⋅BD tan 75∘=12×4×2×3.732≈14.9cm 2.-----------------------故答案为:14.9三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.【解答】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.22.【答案】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.【解答】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.23.【答案】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.【解答】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.24.【答案】文物在危险区内.解:在Rt△AEC中,∠ACE=45∘,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30∘,则tan30∘=BE,即BE=EC tan30∘,EC=7√3m,∴BE=21×√33∴AB=AE+EB=(21+7√3)m,∵AB=(21+7√3)>30,∴文物在危险区内.【解答】此题暂无解答25.【答案】“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2√3)小时.【解答】解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90∘−60∘=30∘,AP=40海里,PD=√3AD=40√3海里.∴AD=12在Rt△BDP中,PD=40√3海里,∠B=45∘,∴BD=PD=40√3海里,∴AB=AD+BD=(40+40√3)海里,=2+2√3(小“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为40+40√320时).26.【答案】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.【解答】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形 单元检测试卷一、单选题(共10题;共30分)1.在△ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值是( ) A. 34 B. 35 C. 45 D. 432.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 19 3.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB ⊥BC,CD ⊥BC,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m 4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为( )A. y=20﹣x (0<x <10)B. y=20﹣x (10<x <20)C. y=20﹣2x (10<x <20)D. y=20﹣2x (5<x <10)5.一段拦水坝横断面如图所示,迎水坡AB 的坡度为i=1:√3 , 坝高BC=6m,则坡面AB 的长度( )A. 12mB. 18mC. 6√3D. 12√3 6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30°,B 村的俯角为60°(如图)则A,B 两个村庄间的距离是( )米.A. 300B. 900C. 300 √2D. 300 √3 7.如图,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米,他继续往前走3米到达点E 处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米B. 6米C. 7.2米D. 8米 8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为( )A. 10B. 12C. 14D. 16 9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3 √5 米,坡顶有旗杆BC,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A. 5米B. 6米C. 8米D. (3+ √5 )米 10.如图,在□ABCD 中,AB ∶AD=3∶2,∠ADB=60°,那么cos A的值等于( )A. 3−√66 B. √3+3√26 C. 3+√66 D. √3+2√26二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________. 13.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的,则x=________,cosα=________.正切值是43, 那么AB=________15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=2316.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= √3+1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.x2+mx对应的函数值分别为y1, y2, y3, 若正20.已知当x1=a,x2=b,x3=c时,二次函数y= 12整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3, 则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 √3米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:√3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= 45, cos53 °= 35, tan53 °=43, √3≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ 35,tan37°≈ 34,sin21°≈ 925,tan21°≈ 38)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= √32+42=5.∴sinA= 35,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
2.【答案】D【考点】三角形三边关系【解析】【解答】设第三边为a,根据三角形的三边关系,得:7﹣3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9,则三角形的最大周长为9+3+7=19.故答案为:D.【分析】三角形的三边关系为:任意两边和大于第三边,任意两边差小于第三边.3.【答案】A【考点】相似三角形的应用【解析】【解答】∵∠ABE=∠DCE, ∠AEB=∠CED,∴△ABE∽△DCE,∴ABCD =BECE.∵BE=90m,EC=45m,CD=60m,∴AB=90×6045=120(m)故答案为:A.【分析】根据对对顶角相等和直角都相等可得∠ABE=∠DCE, ∠AEB=∠CED,根据有两个角对应相等的两个三角形相似可得△ABE∽△DCE,可得比例式求解。
4.【答案】D【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:∵2x+y=20∴y=20﹣2x,即x<10∵两边之和大于第三边∴x>5故答案为:D【分析】本题先由等腰三角形周长20=2x+y,易得y与x的函数关系式,再利用两腰之和大于底且腰、底必须是正列出x的不等式组,通过解不等式组即可确定自变量x的取值范围。
5.【答案】A【考点】解直角三角形的应用【解析】【解答】解:∵迎水坡AB的坡度为i=1:√3, 坝高BC=6m,∴BCAC =3即6AC =√3解得AC=6√3,∴AB= √AC2+BC2= √(6√3)2+62=√108+36=√144=12m,故选A.【分析】根据迎水坡AB的坡度为i=1:√3, 坝高BC=6m,可以求得AC的长度,从而得到AB 的长度,本题得以解决.6.【答案】D【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:∠A=30°,∠PBC=60°,∴∠APB=60°﹣30°,∴∠APB=∠A,∴AB=PB.在Rt△BCP中,∠C=90°,∠PBC=60°,PC=450米,所以PB=450sin60°=√3=300√3.所以AB=PB=300 √3.故选D.【分析】过P作AB的垂线,垂足是C,根据两个俯角的度数可知△ABP是等腰三角形,AB=BP,在直角△PBC中,根据三角函数就可求得BP的长.7.【答案】B【考点】相似三角形的应用【解析】【解答】解:∵MC∥AB, ∴△DCM∽△DAB,∴DCDB =MCAB, 即1.5AB=1BC+1①,∵NE∥AB,∴△FNE∽△FAB,∴NEAB =EFBF, 即1.5AB=2BC+3+2②,∴1BC+1=2BC+3+22, 解得BC=3,∴1.5AB =11+3解得AB=6,即路灯A的高度AB为6m.故选B.【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得1.5AB =1BC+1同理可得1.5AB=2BC+3+2然后解关于AB和BC的方程组即可得到AB的长.8.【答案】C【考点】三角形三边关系【解析】【解答】第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:C.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.9.【答案】A【考点】解直角三角形的应用﹣坡度坡角问题【解析】【解答】解:设CD=x,则AD=2x,由勾股定理可得,AC= √x2+(2x)2= √5x,∵AC=3 √5米,∴√5x=3 √5,∴x=3米,∴CD=3米,∴AD=2×3=6米,在Rt△ABD中,BD= √102−62=8米,∴BC=8﹣3=5米.故选A.【分析】设CD=x,则AD=2x,根据勾股定理求出AC的长,从而求出CD、AC的长,然后根据勾股定理求出BD的长,即可求出BC的长.10.【答案】A【考点】勾股定理,锐角三角函数的定义【解析】【分析】设AD=2x,则AB=3x,过点D 作DE ⊥AB 于点E,过点A 作AF ⊥DB 于点F,因为∠ADB=60°,所以DF=x,AF=√3x, 在△ABF 中,BF=√6x,根据三角形的面积公式S=12BD×AF=12AB×DE,所以有DE=√6+1√3x,在△ADE 中,由勾股定理得AE=3−√63x,所以cos ∠DAB=3−√66,故选A.二、填空题11.【答案】1【考点】含30度角的直角三角形【解析】【解答】∵30°的角所对的直角边等于斜边的一半,∴他下降 12 ×2=1米.故答案为:1.【分析】利用30°的角所对的直角边等于斜边的一半来求可得.12.【答案】15【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【分析】先根据三角形的三边关系和等腰三角形的定义得到三角形的三个边,再计算等腰三角形的周长即可.13.【答案】4【考点】含30度角的直角三角形,中心对称及中心对称图形【解析】【解答】∵在Rt △ABC 中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.【分析】先利用直角三角形30°角的性质求得斜边的长,然后再利用中心对称的性质求BB′的长。