趣味数学-一笔画
一笔画完园的三个扇形

一笔画完园的三个扇形
(原创版)
目录
1.引言:一笔画完园的三个扇形的趣味数学问题
2.分析:通过数学原理解析一笔画完园的三个扇形的可能性
3.解答:如何一笔画完园的三个扇形
4.结论:总结解答过程,强调数学的美妙与趣味
正文
一笔画完园的三个扇形是一个有趣的数学问题,它涉及到图论和几何学的知识。
在这个问题中,我们要求通过一笔画出三个扇形,使得它们共享一个公共的顶点,并且每个扇形的圆心角大小相等。
首先,让我们从数学原理的角度来分析这个问题。
根据图论,一个图形可以被分为若干个顶点和边。
在这个问题中,每个扇形可以被视为一个顶点,而连接三个扇形的公共顶点则是一个边。
因此,我们的目标是找到一种方法,使得这个边可以被一笔画出,并且三个扇形的圆心角大小相等。
接下来,我们来解答这个问题。
实际上,一笔画完园的三个扇形是可行的,但需要满足一定的条件。
首先,三个扇形的圆心角大小必须相等,也就是说,它们的圆心角都应该是 120 度。
其次,三个扇形之间应该共享一个公共的顶点,这个顶点是三个扇形的圆心角的公共端点。
最后,三个扇形应该两两相邻,即它们的边缘应该相连,形成一个封闭的图形。
在满足上述条件的情况下,我们可以通过一笔画出三个扇形。
具体来说,我们可以先画出一个 120 度的扇形,然后再从这个扇形的边缘出发,画出另外两个 120 度的扇形,使得它们的边缘与第一个扇形的边缘相连。
这样,我们就成功地一笔画出了三个扇形,它们共享一个公共的顶点,并且每个扇形的圆心角大小相等。
综上所述,一笔画完园的三个扇形是可行的,但需要满足一定的条件。
小学数学竞赛第五讲 一笔画问题

第五讲一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名:把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点.提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查:从此表来看,猜想是对的.下面试提出几点初步结论:①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形.②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点).③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点);④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.能够一笔画成的图形,叫做“一笔画”.用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去.看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见:①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.。
521 一笔画问题二(讲师版)

一、一笔画问题 (1)能一笔画出的图形必须是连通的图形; (2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作 为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为 起点.以另一个奇点作为终点; (4)奇点个数超过两个的图形,一定不能一笔画.
【试题来源】 【题目】观察下面的图,看各至少用几笔画成?
【答案】1)有 8 个奇点,所以要 4 笔画出, 图(2)有 12 个奇点,所以要一笔画出, 图(3)能一笔画出。 【解析】图(1)有 8 个奇点,所以要 4 笔画出, 图(2)有 12 个奇点,所以要一笔画出, 图(3)能一笔画出。
【知识点】一笔画问题二 【适用场合】当堂例题 【难度系数】3
【答案】奇点:J D H F 【解析】奇点:J D H F 【知识点】一笔画问题二 【适用场合】随堂课后练习 【难度系数】3
偶点:A E B C G I 偶点:A E B C G I
【试题来源】 【题目】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。问: 一个散步者能否一次不重复地走遍这七座桥?
23
一笔画四条线段,然后使这四条线段正好通过这 9 个数字才能打开 4 5 6
形能一笔画出。
图(2)不能一笔画出,因为图中有 4 个奇点,去掉 KL,或者 BK 都可以使图形能一笔画出。
图(3)不能一笔画出,因为图中有 4 个奇点,去掉 AB 可以使图形能一笔画出。
一个 K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道 K 笔画有 2K 个奇点,
如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。如左下图中的 B,
C 两个奇点在右下图中都变成了偶点。所以只要在 K 笔画的 2K 个奇点间添加(K-1)笔就可以
专题7 一笔画问题

专题7 一笔画问题[读一读]不走“冤枉”路出门旅游,面对众多的,分散的景点时,总想尽量走最少的路看最多的景,为了不让重复的冤枉路弄得疲惫不堪,就必须找到一条联接各景点而又不重复的路径,一次走下去,不再回来。
数学中,一笔画的游戏能让他你得心应手地解决这个问题,一笔画,就是从图形上某点出发,笔不离开纸,而且每条线都只画一次不重复。
任何图形都是由点和线组成的,图形中的点分为两大类:(1)从一点出发的线的条数是双数,这点称为双数点。
(2)从一点出发的线的条数是单数,这点称为单数点。
一个图形能否一笔画成,关键在于图中的单数点的多少。
图形中没有单数点的,一定可以一笔画成;图形中只有两个单数点的,也一定可以一笔画成;其他情况的图形,都不能一笔画成。
单数点在一笔画中只能作为起点或终点。
这可看成“一笔画”规则。
[想一想][例1]从图中给出的小黑点出发,不重复不遗漏,一笔描出这些图形,你能做到么?为什么?[剖析]先找到图中的黑点,再数清从这点出发的线有几条,再依据“一笔画规则”确定能不能一笔描出这些图形。
[解]观察图1中有3个双数点,图2中有5个双数点,图3中有2个单数点,其余是双数点,所以3幅图都可以一笔画成。
关键在于找准每个图形单数点的个数。
1、从图中小黑点出发,看能否一笔画成下列图形。
2、只用一笔描出下面的图,用箭头表示画的方向。
[解]1、可以一笔画成。
2、可以一笔画成。
[例2]看看下列图形能否一笔画成?并说说原因。
[剖析]观察图1中有2个双数点,图2中有6个双数点,都可以一笔画成。
图3中有5个双数点和4个单数点,所以不能一笔画成。
[解][练一练]1、下面的图形能一笔画出吗?为什么?①③2、下面的图形能一笔画出吗?说明理由。
[解] 1、①②因为图①和图②只有两个单数点,图③没有单数点,所以它们都可以一笔画。
2、因为图①有16个双数点,图②有8个双数点,所以这两个图形都能一笔画。
点拨:由多个图形重叠组成的新图形,数点时注意要别忘了数重叠产生的交点。
第五讲一笔画问题

第五讲一笔画问题 一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图) 这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图) 经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题: 如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢? 能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成? 先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了. 首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等. 其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图) (1)两个点,一条线. 每个点都只与一条线相连. (2)三个点. 两个端点都只与一条线相连,中间点与两条线连. 第一组的两个图都能一笔画出来. (但注意第(2)个图必须从一个端点画起)第二组(见下图) (1)五个点,五条线. A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连. (2)六个点,七条线.(“日”字图) A点与B点各与三条线相连,其他点都各与两条线相连. 第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点). 第三组(见下图) (1)四个点,三条线. 三个端点各与一条线相连,中间点与三条线相连. (2)四个点,六条线. 每个点都与三条线相连. (3)五个点,八条线. 点O与四条线相连,其他四个顶点各与三条线相连. 第三组的三个图形都不能一笔画出来. 第四组(见下图) (1)这个图通常叫五角星. 五个角的顶点各与两条线相连,其他各点都各与四条线相连. (2)由一个圆及一个内接三角形构成. 三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线). (3)一个正方形和一个内切圆构成. 正方形的四个顶点各与两条线相连,四个交点各与四条线相连. (四条线是两条线段和两条弧线). 第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图) (1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连. (2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连. 第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来. 进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名: 把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点. 提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查: 从此表来看,猜想是对的.下面试提出几点初步结论: ①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形. ②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点). ③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点); ④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则: 有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成. 能够一笔画成的图形,叫做“一笔画”. 用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去. 看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见: ①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.。
趣味一笔画知识

一笔画知识点:1.一笔画概念:(用自己的话:一笔画出图)“”由画圆引入“一笔画”的特点:①一笔画成②笔不离纸③不重复(已画成不需重复)。
下面这三个图,同学们先尝试画一下,请3位同学上来画(要求尽量一笔画出)。
①②③大家发现这两个图都可以一笔画出来,可是这些图都比较简单,如果是复杂的图怎么画呢?也是一一尝试吗?所以今天我们学习怎么快速方便的判断图形能否一笔画。
接下来一起观察,大家有没有发现每一个图都是由点和线组成的。
那么我们想要找办法一笔画图肯定跟图中的点和线有关系的。
首先呢,老师要告诉你们这些点都是有名字的,而且呢,这个名字还是由线来命名的哦。
大家是不是很好奇呢?老师把这个点叫做双数点,这边这个叫做单数点,你们知道为什么吗?每个小朋友都有自己的想法,你们听听老师是怎么命名的。
从该点出发,有2条线画出,其实呢,就是从该点出发,发出双数条线的点叫做双数点。
那么谁可以告诉老师,为什么这个点是单数点吗?对了,因为这个图里从这个点出发,发出了3条线。
单数点的概念就是:从该点出发,发出单数条线的点叫做单数点。
到底一笔画跟双数点和单数点有什么关系呢?回过头来我们看看刚刚的图。
首先请同学们迅速的把图中的点找出来,请你在每一个点旁边写上发出线的条数。
仔细观察,谁能告诉老师这些点都是什么点?大家学的都非常快,这些点都是双数点,因为从点出发发出的线都是双数条。
这些图没有单数点,但是大家尝试过,虽然尝试的画法不一样,但是大家都一笔画出来了。
原来没有单数点的图一定可以一笔画。
而且,画时,任意一个双数点既是起点,又是终点。
刚刚讨论的3个图都没有单数点,下面我们看看有单数点的图:④这个图能不能一笔画出呢?同样的,先请同学们找出图上的点,在每一个点旁边写上线的条数。
都写好了吗?那么请个小助手上来告诉老师,哪些点是单数点,用红笔把它圈出来。
这个图上一共有几个单数点?刚刚大家尝试了,这个图可以一笔画的。
那么总结一下:只有两个单数点的图,也可以一笔画。
二年级奥数:《有趣的一笔画》

二年级奥数:《有趣的一笔画》(预热)前铺知识一、认识单双数单数:1、3、5、7、9、11……双数:0、2、4、6、8、10……(注意:0是最小的双数)二、了解一笔画的初步概念对于一笔画的具体条件,我们上课的时候会加以说明,但是一笔画出的意义,可以让孩子提前有所认识:笔不离开纸,不来来回回重复画,一笔画成.比如:乙日十这三个字中,前两个是可以用一笔写出来的,而第三个则不可以.三、找规律品川这两个字显然都不能用一笔画画出,它们之间有什么共同点呢?尝试可以发现要想画完整笔都得离开纸,也就是说是断开的,没有连通,也叫不连通.所以一笔画的要求是首先得是连通图.本讲重点这一讲的知识实际上是比较特别的,是否能够一笔画用数学知识来概括的非常的复杂,但是同学们却能够通过找规律发现本堂课的知识并很好的掌握.同时可以培养孩子平时找规律的习惯,这也是数学题目中常见的一种方法,也是一种非常科学的思维习惯——归纳与演绎.三年级的时候我们会进一步教同学们多笔画的知识,对奇点偶点的判断也是学习这类型问题的基础.如何预习?为了保护孩子课前的好奇心和学习兴趣,以及保证课堂效果,家长在给孩子预习的时候,一定要把握好度.预习,切忌给孩子讲解书本上的例题和知识点,因为孩子容易先入为主,如果家长选取的方式方法不当,那么孩子很难转换思路了;另外,家长给孩子讲过例题后,孩子可能会觉得自己已经学会了,上课的时候就不愿意认真听了.我们预习的目的是回顾这一讲课前的铺垫知识,以及引起孩子的思考,因此家长可以把我们的这份预习资料打印出来,让孩子自己看一看,如果孩子有不明白的,您可以适当点拨.《有趣的一笔画》【知识点总结】一、什么是一笔画?特点:笔不离纸,不重复,一笔画成.前提:能一笔画的图形必须是连通图.【例】:下面的图形能不能一笔画成?都不能,因为都不是连通图.二、单数点和双数点1. 单数点:从该点出发一共有单数条线的点;2. 双数点:从该点出发一共有双数条线的点.判断小技巧:可以想象自己站在那个点有几条路可以走.(上,下,左,右)三、一笔画的判定1. 图形是连通图2. 有0个或2个单数点的能一笔画3. 超过2个单数点的不能一笔画【例】下面的图形哪些可以一笔画成?2个单数点4个单数点0个单数点可以一笔画不能一笔画可以一笔画四、如何一笔画1.有0个单数点的:同进同出.意思是从哪一个点开始画就哪一个点结束.2.有2个单数点的:单进单出.意思是从一个单数点开始画,另一个单数点结束.五、多笔画变一笔画方法:添(去)单数点之间的线【例】下面的图形都不能一笔画,想办法给每个图形添加一条线段让它变成可以一笔画的图形.(1)(2)(1)(2)本来的图形都有4个单数点不能一笔画,单数点多了,至少得变成2个单数点才能一笔画,那就想办法让其中两个单数点变成双数点,只要在任意两个单数点间添上一条线就可以了.六、一笔画的应用方法:画点线图画法:区域成点,通道成线.【例】下图是一幅简易地图,能不能一次性不重复地走完所有的路.乙村甲村丙村首先要明白题意,把人看成笔,就变成了一次性不重复地画完所有的路,其实就是一笔画!先画出点线图:甲村,乙村,丙村看成点,道路看成线.再判断:有两个单数点,可以一笔画.甲→乙→丙→甲→乙【学习建议】本讲讲的是一笔画,首先要了解什么是一笔画,再学会如何判断能不能一笔画,怎么画?问清楚自己这几个问题简单的一笔画就没问题了.然后再去拓展一笔画的应用,以及初步掌握多笔画如何变成一笔画,更多关于多笔画的内容我们在三年级还会遇到.最后,学习这讲的内容还需要同学们勤标记,多尝试,记规律.《有趣的一笔画》练习1. 判断下面的图形能不能一笔画?为什么?A B C D2. 下面的图形都是不能一笔画成的,你能不能去掉一条线,使他们变成一笔画?3. 下面是一座公园的道路设计图,问能不能一次不重复的把所有小路都走遍?要从哪里开始?HGA D FE CB4、小明要把四个三角形和一个正方形一次性从纸上剪下来,他能做到吗?5、平安小镇上有两个邮递员,甲邮递员喜欢从A 点出发开始送信,乙邮递员喜欢从B点出发开始送信,他们俩都选择最优路线,谁能更快的跑遍多有的街道呢?6. 幸福乡有四个村庄,幸福河从村庄间流过,村民们在河上一共建了5 座桥,问来到幸福乡的人能不能一次不重复地走遍所有的桥.答案解析1.①0个单数点,可以一笔画;②0个单数点,可以一笔画;③4个单数点,不可以一笔画;④2个单数点,可以一笔画2. 答案不唯一.3.图中有两个单数点A和H,从A或H开始就能一笔画.4.有两个单数点,可以一次性剪下所有的图形.5.图中有两个单数点A和E,从单数点出发可以不重复地跑遍所有街道,从B点出发必须要重复才能跑遍多有街道,所以从A点出发的甲邮递员更快.6. 画点线图如下,有两个单数点,所以可以一次不重复走遍所有的桥.。
一年级一笔画数学题

一年级一笔画数学题
题目1:
下面这些图形,哪些可以一笔画成?(人教版一年级数学一笔画相关)
(1)正方形。
(2)圆形。
(3)“十”字形状。
解析:
对于正方形,它有4个顶点,都是偶数条线相连(每个顶点连接2条线),所以可以一笔画成。
圆形没有顶点这种概念,但它是一个封闭的曲线,我们可以从圆上任意一点开始,沿着圆周画一圈就能一笔画成。
对于“十”字形状,中间的交点连接了4条线,是偶数条线相连,所以也可以一笔画成。
题目2:
观察下面的图形,能一笔画成的在()里打“√”,不能的打“×”。
(人教版一年级数学一笔画相关)
图形1:三角形()
图形2:两个不相连的圆形()
图形3:“Z”字形()
解析:
三角形有3个顶点,每个顶点连接2条线,都是偶数条线相连,所以能一笔画成,(√)。
两个不相连的圆形,因为是两个独立的图形,不能一笔同时画出这两个不相连的图形,所以(×)。
“Z”字形有2个端点和2个转折点,端点连接1条线(可视为奇数条线相连),所以不能一笔画成,(×)。