风机振动测量方案
风机振动标准参数表

风机振动标准参数表风机振动标准参数表1. 引言风机是现代工业中常见的设备,用于吹送、排除或增加气流,广泛应用于空调系统、通风系统、工业生产中的排烟排尘和新风换气等领域。
然而,由于长期运行或不当使用等原因,风机振动问题常常出现,并且可能对设备造成严重的损坏。
为了确保风机的安全运行,振动参数的合理标准是必不可少的。
本文将深入探讨风机振动标准参数表的内容和意义。
2. 风机振动标准参数表的重要性风机振动标准参数表是评估风机振动状态的重要依据。
通过测量风机的振动参数,可以判断风机是否处于正常运行状态,是否存在故障或偏差,并及时采取相应的维修措施。
振动参数包括振幅、频率、相位、速度等指标。
风机振动的过大或过小都可能对风机的运行和设备的寿命产生不良影响。
建立合理的风机振动标准参数表对于保证风机的正常运行和设备的安全运行至关重要。
3. 风机振动标准参数表的内容一个完整的风机振动标准参数表应包含以下几个方面的指标:3.1 振幅振幅是指振动信号的峰值,通常以毫米(mm)或微米(μm)为单位表示。
振幅的大小反映了风机的振动幅度,过大或过小都可能对风机的正常运行产生不良影响。
常用的振幅标准参数有峰值振动、有效值振动等。
3.2 频率频率是指振动信号的周期,通常以赫兹(Hz)为单位表示。
频率描述了振动信号的变化规律,不同频率的振动会对设备造成不同影响。
常用的频率标准参数有基频、谐波频率等。
3.3 相位相位是指振动信号相对于参考信号的相对位置差。
相位描述了振动信号的相对时间关系,能够辅助判断振动的产生原因。
常用的相位标准参数有前相位、同相位、反相位等。
3.4 速度速度是指单位时间内振动信号的速率,通常以毫米/秒(mm/s)为单位表示。
速度揭示了振动信号的变化速度,能够反映出风机振动的快慢程度。
常用的速度标准参数有峰值速度、有效值速度等。
4. 风机振动标准参数表的意义通过建立风机振动标准参数表,可以实现以下几个方面的意义:4.1 指导维修与保养风机振动标准参数表提供了风机振动正常范围的参考值,能够帮助维修人员及时判断风机的振动状态,及时采取维修和保养措施,保证风机的正常运行和设备的安全运行。
通风机振动精度

机械工业部石化通用机械工业局企业标准通风机振动精度JB/TQ334—84本标准适用于离心式,轴流式通风机(以下简称风机)振动的评价与测量。
1 风机的振动速度(均方根速度)应符合表1的规定。
2 风机振动速度的测量部位如下:a. 对叶轮直接装在电动机轴上的风机,应在电机定子两端轴承部位测量其垂直,水平,与轴向三个方向(见图1)的振动速度并取其中最大读数作为度量值,当电动机带有风扇罩时则轴向振动不予测量。
图1b. 对于双支撑轴承的风机或有两个轴承体的风机,按图2所示三个方向的要求测量原动机c. 当两个轴承都装在同一个轴承箱内时,按图3所示三个方向的要求在轴承箱壳体轴承部位测量其振动速度并取其中最大读数作为度量值。
d. 当被测的轴承箱在风机内部时,按b或c的要求,可预先装置振动传感器,然后引出至 风机外以指示器读数为测量依据,传感器安装的方向与测量方向的偏差不得大于±5°。
3 测振仪器应采用频率f范围为10~500Hz 其速度范围为1~10mm/s 的接触式测振仪表。
4 测振仪表须经计量部门鉴定合格后才能使用。
图35 被测的风机须装在大于10倍风机质量的底座或试车台上,装置的自振频率不得大于电机和风机转速的0.3倍。
6 在测试振动速度时,外部或周围环境对底座或试车台的影响,应符合下列规定:风机运转时的振动速度与风机静止时的振动速度的差须大于3倍以上,当差数小于此值时风机需采用避免外界影响措施。
7 风机振动速度与振幅(位移)可按下式进行换算V=式中:V —振动速度mm/sS —振幅(位移)mμω—角速度rad/s石化通用机械工业局1984—01—13发布1984—03—01实施附录A振动速度与振幅对照表(补充件)表A1 振动速度与振幅对照表附加说明:本标准由沈阳鼓风机研究所提出。
本标准由沈阳鼓风机厂起草。
风力发电机组振动分析方法

风力发电机组振动分析方法摘要:风力发电机组振动超限类故障较为常见,不仅因为风电机组结构,细长的叶片及塔筒,沉重的机舱容易产生振动。
还有多环节的传动链及偏航系统;复杂的控制策略,开关过程、控制过程,加之一系列动态载荷,如:阵风、湍流、波浪(海上风机)、地震、叶轮转动等;都有容易激发机组的强烈振动;另外测量回路中测量本体,线路虚接及干扰问题造成的测量信息错误引发故障也占了该类故障触发相当大的比重。
本文主要通过描述一个真实振动案例分析和解决的过程,寻求一个该故障的普遍解决办法,为解决风力发电机组振动故障提供参考和借鉴。
关键字:风力发电机组;振动;控制;1引言风电机组振动超限类故障是一个非常常见的故障,因为涉及电气、传动、控制、结构、环境很多因素,使得该类故障分析及处理有一定难度。
本文通过一个真实案例,详细阐明机舱加速度超限故障分析过程,为该类故障提供解决方案。
二、测量回路引发故障2.1检测回路基本原理为防止机组振动引发严重后果,一般风电机组会配备加速度传感器计量机舱振动情况,有些机组厂商还会增加摆锤作为后备保护串入安全链中,通过调节摆锤的重心高度,达到相应的加速度限值要求。
加速度传感器主要通过对内部质量块所受惯性力的测量,利用牛顿第二定律获得加速度值,根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。
2.2检测回路故障处理无论使用哪种加速度传感器,都会不同程度的受到其测量本体可靠性、传输线路可靠性、接收信号模块故障及干扰问题的影响从而引发故障。
因测量本体、接收信号模块以及线路虚接问题,经细致检查或替换备件的方法可以找到故障点。
另在新投入风电场可能出现设计算法过于敏感,特殊天气导致机组误报振动加速度故障。
信号干扰问题,风力发电机组使用的振动模块,更加注重低频段测量精度,模块本身就具备滤波及抗混频功能。
为防止机组误报,主控程序中还会再次对有效值进行滤波,所以一般情况下不会发生信号干扰引发故障。
离心风机振动分析报告范文

离心风机振动分析报告范文背景介绍离心风机是一种常用的工业风机,用于通过离心力产生气流。
然而,长时间运行后,离心风机可能会产生振动问题,这不仅会导致设备的损坏,还可能对工作环境和人员造成危害。
因此,对离心风机的振动进行分析是非常重要的。
分析目的本报告旨在分析离心风机振动的原因,并提供相应的解决方案,减少或消除振动问题。
振动分析方法为了对离心风机的振动进行分析, 我们采用了以下方法:1. 可视化观察:使用高速摄像机观察离心风机在运转过程中是否出现明显的振动情况。
2. 加速度传感器:在离心风机关键部位安装加速度传感器,以记录振动信号。
3. 数据分析:采集到的振动信号通过信号分析软件进行数据处理,获取相应的振动参数。
分析结果经过观察和数据分析,我们得出以下结论:1. 不平衡:离心风机转子不平衡是振动的主要原因之一。
不平衡可能由于组装不当、转子磨损或材料失衡等原因导致。
2. 轴承问题:轴承故障是另一个常见的振动原因。
轴承的磨损和损坏会导致风机转动不平稳,产生振动。
3. 转子松动:转子部件松动也会造成离心风机振动。
松动的螺钉和螺栓可能会在运转过程中产生共振效应,增加振动。
4. 过载:离心风机运行时,超过其额定负载也会导致振动问题。
解决方案针对以上分析结果,我们提出以下解决方案:1. 平衡调整:对离心风机进行动态平衡调整,以消除转子的不平衡。
可以采用动平衡机来准确测量不平衡量,并进行相应调整。
2. 轴承维护:定期检查和更换轴承,以确保其正常工作。
可以采用超声波检测仪等设备,及时发现轴承的异常情况。
3. 转子紧固:检查和紧固转子的螺钉和螺栓,确保其安全牢固。
可以使用扭矩扳手等工具,按照规定的力矩进行紧固。
4. 负载控制:确保离心风机运行在其额定负载范围内。
可以通过安装负载监测系统,实时监测风机的工作状态,并提前预警超负载情况。
总结离心风机的振动问题对设备正常运行和工作环境都有一定的影响,因此需要进行及时的振动分析和解决。
风机传动链全套检测方案

风机传动链全套检测方案
必维国际检验集团风电技术中心经理田磊
1.振动检测
必维选用的振动检测设备为HET - P 风电机组离线状态监测系统。
振动检测可以在不拆卸设备的情况下,对设备当前的运行状态做出评估。
通过振动检测与分析可以发现风机叶片异常振动、机舱异常振动、主要转动部件不对中、轴弯曲、机械松动、轴承损坏、齿轮缺陷、共振、润滑不良等问题,还可以及时发现风力发电机组故障的早期振动征兆。
振动监测传感器探头
2.内窥镜分析
必维齿轮箱工程师利用内窥镜对齿轮箱主要齿面进行检查,记录齿面异常,形成内窥镜检查报告。
检查项目包括:齿轮油气味检查、泡沫检查、空气过滤器检查、内部漆面检查,主要检查内容包括是否有腐蚀、压痕、凹坑、点蚀、断齿等缺陷。
内窥镜检验发现齿面蚀坑
3.对中检测
使用 Fixturlaser Go 激光对中系统来检查主轴的对中情况。
Fixturlaser Go系统简化粗调、读取数据、对中调整以及重新测量确认对中结果的整个过程,并且最终将对中测量结果存
档记录。
4.油品分析
必维对齿轮箱油进行取样,在保质期限内送至必维合作实验室进行油品化验分析,常规油品检验项目及标准见表2。
风机振动分析检测报告

风机振动分析检测报告风机振动分析检测报告检测日期:xxxx年xx月xx日检测单位:xxxx有限公司检测对象:风机1. 背景介绍风机是一种重要的工业设备,用于通风、换气、送风等工业应用。
风机振动是指风机工作时产生的机械振动现象,其原因主要包括不平衡、轴承磨损、叶轮叶片失衡等。
风机振动不仅会影响设备的稳定运行,还会增加设备的损耗和故障风险。
因此,对风机振动进行分析检测具有重要意义。
2. 检测目的本次检测的目的是对风机的振动进行分析,确定振动的主要原因,并提供相应的技术建议。
3. 检测方法本次振动分析检测采用了以下方法:- 振动检测仪:使用了专业的振动检测仪器;- 振动参数测量:对风机进行了振动速度、振动加速度和振动位移等参数的测量;- 频谱分析:通过频谱分析手段对振动信号进行了进一步的分析。
4. 检测结果与分析经过对风机进行振动检测与分析,得出以下结论:- 风机振动速度值为X mm/s,超过了正常工作范围;- 风机振动加速度值为X m/s²,超过了正常工作范围;- 风机振动位移值为X mm,超过了正常工作范围。
根据以上结果,可以初步判断风机存在明显的振动问题,其主要原因可能为风机的不平衡和叶轮叶片失衡。
需要进行进一步的检修和维护。
5. 技术建议基于以上的分析结果,提出以下技术建议:- 对风机进行平衡校正,通过增重或切削的方式,使风机叶轮平衡;- 对风机叶轮叶片进行调整,确保每个叶片的重量均衡,避免叶片失衡;- 定期检查和维护风机轴承,确保其正常运转。
6. 结论风机振动分析检测结果显示,风机存在振动超标的问题,可能的原因是风机的不平衡和叶轮叶片失衡。
建议对风机进行平衡校正和叶轮叶片调整,以及定期检查和维护风机轴承。
这些措施将有助于提高风机的稳定性和工作效率。
以上是本次风机振动分析检测的报告,希望能对您有所帮助。
如有任何问题或需要进一步的咨询,请随时与我们联系。
风机振动检测与故障诊断技术研究

风机振动检测与故障诊断技术研究随着风力发电在可再生能源领域中的不断发展,风机振动检测与故障诊断技术的研究变得越来越重要。
本文将探讨现有的风机振动检测技术以及故障诊断方法,并展望未来的发展方向。
一、风机振动检测技术1. 传感器技术:风机振动检测通常采用加速度传感器、速度传感器或位移传感器等来监测风机的振动情况。
这些传感器能够实时测量风机各个部件的振动参数,并将数据传输到中央监测系统进行分析。
2. 频谱分析:频谱分析是一种常用的风机振动检测方法,可以通过将振动信号转换为频域信号,进而识别可能存在的故障。
通过分析振动频谱图,我们可以确定故障类型以及其对风机的影响程度。
3. 振动信号处理:振动信号处理是对原始振动信号进行滤波、降噪、特征提取等处理的技术。
利用滤波技术可以减少杂散干扰,提高信号的清晰度和准确性。
同时,通过特征提取算法,我们可以提取出与故障相关的特征参数,从而实现故障的诊断与预测。
二、故障诊断方法1. 振动特征分析:风机振动特征分析可以通过分析风机各个部件振动的频率、幅值等参数,来识别故障类型。
例如,当风机叶片出现撞击故障时,其振动频率会发生明显变化,通过对比分析可以判断是否存在故障。
2. 统计学方法:统计学方法通过统计、归纳和推理来分析风机的振动数据,从而诊断故障。
例如,利用多元统计方法可以将振动信号与已知故障样本进行对比,以确定故障类型。
3. 机器学习技术:机器学习技术通过构建模型并对数据进行训练,可以实现自动化的故障诊断。
通过大量振动数据的学习,机器可以准确判断风机是否存在故障,并提供相应的维修建议。
三、未来展望1. 基于物联网的振动监测系统:随着物联网技术的发展,未来可以通过将风机的振动传感器与云平台相连接,实现实时的远程监测和诊断。
这种系统可以对大规模的风机进行集中管理,并提供更精准的故障诊断结果。
2. 高精度振动传感器的研发:当前,振动传感器的测量精度还有待提高。
未来的研究可以着重于开发更加精确和稳定的振动传感器,以提高故障诊断的准确性。
风机振动标准

风机振动标准风机振动是指风机在运行时产生的振动现象,它是风机运行过程中不可避免的现象。
风机振动不仅会影响风机的正常运行,还可能对设备造成损坏,甚至危及人员安全。
因此,对风机振动进行标准化管理是十分必要的。
首先,风机振动标准应包括振动测量的方法和标准数值。
振动测量的方法主要包括接触式振动测量和非接触式振动测量。
接触式振动测量是通过将振动传感器安装在风机上,直接测量振动信号的方法,而非接触式振动测量则是通过激光或光电传感器等设备,无需直接接触风机表面,来测量振动信号。
标准数值则是指在不同工况下,风机振动应该控制在的合理范围内,以确保风机正常运行和设备安全。
其次,风机振动标准还应包括振动监测和预警的要求。
振动监测是指对风机振动信号进行实时监测和分析,以发现异常振动并及时采取措施。
预警则是指当风机振动超出标准范围时,系统能够及时发出预警信号,以便运维人员及时处理。
此外,风机振动标准还应包括振动控制的要求。
振动控制是指通过调整风机的结构设计、减振措施等手段,降低风机振动水平,以达到减少设备损耗和提高设备稳定性的目的。
总的来说,风机振动标准的制定和执行对于保障风机正常运行、延长设备寿命、提高生产效率具有重要意义。
只有严格执行风机振动标准,才能有效地控制风机振动,保障设备安全稳定运行。
在实际操作中,制定风机振动标准需要考虑到风机的类型、规格、工作环境等因素,以及国家相关标准的要求。
同时,还需要结合风机的实际运行情况,不断完善和调整标准,以确保其科学性和实用性。
综上所述,风机振动标准的制定和执行对于风机运行和设备安全具有重要意义。
只有严格执行标准要求,才能有效地控制风机振动,保障设备安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风机振动测量方案
风机振动测量是风机运行状态监测的重要组成部分之一。
风机运行过程中很多机械故障,比如轴承磨损、转子不平衡、不对中、轴裂纹、超负载运行以及发生磨檫,都可以通过振动来进行探测。
已达到提前预防、提前检修,防止振动过大,而造成的机器损坏。
风机振动测量通常采用两种方案:
方案一:
采用CZ891传感器(俗称:一体化振动变送器)来测量风机轴承座、机壳的振动即瓦振(绝对振动)。
此方法安装简单,先在风机前后轴承上分别开个安装孔(M10*1.5*8mm深),然后将CZ891传感器底部螺钉拧上即可。
对于传感器安装个数,标准安装是前后轴承分别各装2个(垂直一个、水平一个),通常各装一个也可以达到监测效果。
1、安装示意图:
2、现场安装实物图:
此方法接线方便,CZ891传感器输出信号为两线制4-20mA,可以直接接进PLC、DCS、记录仪、采集器以及其他采集设备。
如果现场需要显示、报警输出等功能,现场可配C Z670振动专用监测仪表。
3、接线示意图
注:此方案风机振动量程一般选用振动烈度(速度值)20mm/s或振动幅度(位移值)200um,这两种量程选择其中一个就可以。
如果风机振动值大,量程可以
选大些。
方案二:
采用CZ680轴振动传感器(俗称:一体化轴振动变送器)测量轴相对于轴承的振动即轴振(相对振动),属于对转轴非接触式的振动测量,安装时将两个探头成90度正对转轴表面即可。
安装示意图:
此方法接线方便,CZ680轴振动传感器输出信号为4-20mA,可以直接接进PLC、DCS、记录仪、采集器以及其他采集设备。
如果现场需要显示、报警输出等功能,现场可配C Z750轴振动专用监测仪表。
CZ680整体示意图:
注:此方案风机振动量程一般选振动位移值(俗称轴跳)200um,如果风机振动值大,量程可以选大些,一般选实际工作时的1倍。
总结:
以上两种方案都可以探测、预测风机振动偏大,只要选着其中一种即可,当然也可以两种都采用。
版权所有:上海传振电子科技有限公司。