聚氨酯配方计算公式 PU Calculations
聚氨酯计算公式中有关术语及计算方法

PU 资料聚氨酯计算公式中有关术语及计算方法1. 官能度官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。
对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。
2. 羟值在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。
从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。
在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。
但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。
严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。
例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正 = 224.0 + 1.0 + 12.0 = 257.03. 羟基含量的重量百分率在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。
羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 1654. 分子量分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。
(56.1为氢氧化钾的分子量)例,聚氧化丙烯甘油醚羟值为50,求其分子量。
对简单化合物来说,分子量为分子中各原子量总和。
羟值官能度分子量10001.56⨯⨯=336650100031.56=⨯⨯=分子量如二乙醇胺,其结构式如下: CH 2CH 2OH HN<CH 2CH 2OH分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=1055. 异氰酸基百分含量异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。
聚氨酯硬泡沫配方及计算

聚氨酯硬泡配方及计算方法一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数"是否合理,翻译成土话就是“按重量比例混合的白料和黑料要完全反应完”.因此,白料里所有参与跟—NCO反应的东西都应该考虑在内。
理论各组分消耗的—NCO 摩尔量计算如下㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,因为加了二甘醇之类的稀释,部分泡沫稳定剂型硅油还含有氨基)配方数乘以各自的羟值,然后相加得数Q,S1 = Q÷56100㈡水:水的配方量W S2 = W÷9㈢参与消耗—NCO的小分子物:配方量为K,其分子量为M,官能度为N S3 =K× N/M(用了两种以上小分子的需要各自计算再相加) S = S1+S2+S3基础配方所需粗MDI份量[(S×42)÷0。
30 ]×1.05 (所谓异氰酸指数1.05)其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际—NCO消耗量肯定不止这个数,比如有三聚催化剂的情况,到底额外消耗了多少—NCO,这个没人说得清楚。
另外,聚醚里有水分,偏高0.1%就很严重;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真![试验设计]之“冰箱、冷柜”类本组合料体系重要要求及说明1、流动性要好,密度分布“尽量”均匀.首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa。
S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。
如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩.2、泡孔细密,导热系数要低。
不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与—NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。
聚氨酯发泡配方计算

聚氨酯发泡配方计算聚氨酯发泡配方是制备聚氨酯发泡材料的重要步骤。
聚氨酯发泡材料广泛应用于建筑、汽车、家具等领域,具有轻质、隔热、吸音、抗震等优良性能。
本文将介绍聚氨酯发泡配方的计算方法和关键要素。
聚氨酯发泡材料的配方包括聚醚多元醇、异氰酸酯、催化剂、发泡剂和其他辅助剂。
其中,聚醚多元醇是聚氨酯发泡材料的主要成分,起到提供聚氨酯基体的作用。
异氰酸酯是与聚醚多元醇反应生成聚氨酯的重要原料。
催化剂用于加速反应速率,发泡剂用于产生气泡,从而使材料发泡。
计算聚氨酯发泡配方时,首先需要确定所需的性能指标,包括密度、硬度、压缩强度、热导率等。
根据这些指标,选择合适的原料比例。
接下来,根据配方中各原料的密度、等效摩尔质量等数据,计算出各原料的质量比例。
以聚醚多元醇为例,假设所选用的聚醚多元醇的密度为1.2 g/cm³,等效摩尔质量为300 g/mol。
如果要制备密度为0.5 g/cm³的聚氨酯发泡材料,可以使用以下计算公式:聚醚多元醇质量比例= (所需密度- 聚氨酯基体密度)/(聚醚多元醇密度 - 聚氨酯基体密度)= (0.5 g/cm³ - 1.2 g/cm³)/(1.2 g/cm³ - 聚氨酯基体密度)通过以上计算可以得到聚醚多元醇的质量比例。
同样的方法可以应用于其他原料的计算。
根据配方中各原料的质量比例,可以计算出所需的各原料质量。
除了质量比例,还需要考虑催化剂和发泡剂的用量。
催化剂的用量通常为聚醚多元醇质量的1%到3%之间,而发泡剂的用量则根据所需的发泡效果来确定。
在计算配方时还需要考虑到原料的成本和可获得性。
一些特殊的性能要求可能需要使用特殊的原料,这也会影响到配方的选择。
聚氨酯发泡配方的计算是制备聚氨酯发泡材料的重要步骤。
通过合理选择原料比例和考虑催化剂和发泡剂的用量,可以制备出具有所需性能的聚氨酯发泡材料。
在实际应用中,还需要对配方进行优化和调整,以满足具体要求。
聚氨酯计算公式中有关术语及计算方法

聚氨酯计算公式中有关术语及计算方法Newly compiled on November 23, 2020PU资料聚氨酯计算公式中有关术语及计算方法1.官能度官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。
对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。
2.羟值在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。
从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。
在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即羟值校正 = 羟值分析测得数据 + 酸值羟值校正 = 羟值分析测得数据- 碱值对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。
但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。
严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。
例,聚酯多元醇测得羟值为,水份含量%,酸值12,求聚酯羟值羟值校正 = + + =3.羟基含量的重量百分率在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。
羟值 = 羟基含量的重量百分率×33例,聚酯多元醇的OH%为5,求羟值羟值 = OH% × 33 = 5 × 33 = 1654. 分子量分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。
(为氢氧化钾的分子量)例,聚氧化丙烯甘油醚羟值为50,求其分子量。
对简单化合物来说,分子量为分子中各原子量总和。
如二乙醇胺,其结构式如下:CH 2CH 2OHHN <CH 2CH 2OH分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=1055. 异氰酸基百分含量异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。
聚氨酯计算公式中有关术语及计算方法完整版

聚氨酯计算公式中有关术语及计算方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]聚氨酯计算公式中有关术语及计算方法1.官能度官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。
对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。
2.羟值在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。
从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。
在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即:羟值校正=羟值分析测得数据+酸值羟值校正=羟值分析测得数据-碱值对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。
但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。
严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。
例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值羟值校正=224.0+1.0+12.0=257.03.羟基含量的重量百分率在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。
羟值=羟基含量的重量百分率×33例,聚酯多元醇的OH%为5,求羟值羟值=OH%×33=5×33=1654.分子量分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。
(56.1为氢氧化钾的分子量)例,聚氧化丙烯甘油醚羟值为50,求其分子量。
对简单化合物来说,分子量为分子中各原子量总和。
如二乙醇胺,其结构式如下:CH2CH2OHHN<?CH2CH2OH分子式中,N原子量为14,C原子量为12,O原子量为16,H原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=1055.异氰酸基百分含量异氰酸基百分含量通常以NCO%表示,对纯TDI、MDI来说,可通过分子式算出。
聚氨酯防水计算公式

聚氨酯防水计算公式在建筑工程中,防水是非常重要的一环,特别是对于地下室、水池、屋顶等部位。
聚氨酯防水材料因其优异的性能和可靠的防水效果,被广泛应用于建筑工程中。
在使用聚氨酯防水材料时,需要进行一定的计算,以确保施工质量和防水效果。
本文将介绍聚氨酯防水计算公式及其应用。
聚氨酯防水计算公式主要包括以下几个方面:1. 面积计算。
在进行聚氨酯防水施工前,首先需要计算防水面积。
防水面积的计算一般按照实际施工情况进行,包括墙面、地面、天花板等部位。
计算防水面积时,需要考虑到施工中的接缝、收口等部位,以确保整体的防水效果。
防水面积计算公式为:防水面积 = 面积1 + 面积2 + … + 面积n。
2. 材料用量计算。
在确定了防水面积后,需要计算所需的聚氨酯防水材料用量。
聚氨酯防水材料的用量计算一般按照施工要求和厂家提供的施工参数进行,包括涂布厚度、干膜厚度、施工层数等。
聚氨酯防水材料用量计算公式为:材料用量 = 面积×涂布厚度÷干膜厚度×施工层数。
3. 施工成本计算。
在确定了防水面积和材料用量后,可以进行施工成本的计算。
施工成本主要包括材料费用、人工费用、设备费用等。
在进行施工成本计算时,需要考虑到施工周期、施工工艺等因素,以确保施工成本的准确性。
施工成本计算公式为:施工成本 = 材料费用 + 人工费用 + 设备费用。
4. 施工周期计算。
在确定了防水面积和施工成本后,需要进行施工周期的计算。
施工周期的计算一般按照施工工艺和施工进度进行,包括施工工序、施工队伍、施工设备等。
施工周期计算公式为:施工周期 = 施工工序1时间 + 施工工序2时间 + … + 施工工序n时间。
以上是聚氨酯防水计算公式的基本内容,下面将结合实际案例进行应用。
以某地下室防水工程为例,其防水面积为200平方米,施工要求涂布厚度为1.5mm,干膜厚度为0.8mm,施工层数为2层。
根据上述公式,可以计算出材料用量、施工成本和施工周期。
聚氨酯配方计算公式 PU Calculations

Calculations in PU Software. Definitions (2)NCO-Side (2)Polyol-Side (2)Parts (2)Parts by Weight (2)Parts by 100 (2)Parts by 100 Polyols (2)Side Composition (2)Products Properties (2)Functionality (2)Equivalent Weight of a Polyol (2)Equivalent Weight of a Polyol Blend (3)Equivalent Weight of an Isocyanate (3)Equivalent Weight of an Isocyanate Blend (3)Acid Number (3)Hydroxyl Number (OH Number) (3)Equivalent Number (3)Molecular Weight (3)Number of Moles (3)Real Functionality (3)Calculations for a Formulations (4)Average Equivalent Weights [g/mol] (4)Enthalpy [cal/g] (4)Average Functionality (4)Average Real Functionality (4)Total Equivalent Numbers [mol] (4)Volume Gas [mol/kg] (4)Converted at Gel point [%] (5)Isocyanate index (5)OH Links (5)Urethane-Urea Linkages (5)Molecular weight per CrossLink [g/mol] (5)Average Second Moment Functionality (6)Average CrossLink Functionality (6)Blowing Index [mol/kg] (6)DefinitionsThe following definitions apply:NCO-SideThe isocyanate-containing blend (Isocyanates, other NCO additives…). Called A-Side in US.Polyol-SideThe polyol-containing blend, (polyols, chain extenders, cross-linker, water, catalysts and surfactants). Called B-Side in US.PartsIndependent Component Weight QuantityParts by WeightComponent Weight Quantity over Total 100 w/o Physical Blowing Agent. Parts by 100Component Weight Quantity over Total 100Parts by 100 PolyolsComponent Weight Quantity over Total Polyols 100Side CompositionComponent Weight Quantity over its Side 100Products PropertiesFunctionalityThe functionality of a Polyol-side foam ingredient is the number of isocyanate reactive sites on a molecule. For polyols, an averagefunctionality is generally used:polyol moles / total OH moles total ity Functional Average =Equivalent Weight of a PolyolClassically defined as the molecular weight of a polyol divided by its functionality. Functionality of a polyol is complex because of the presence of monols from propylene oxide isomerization and diols (derived from water). In practice, the equivalent weight is calculated from the analyzed hydroxyl (OH) number. The equivalent weight is necessary for isocyanate requirement calculations and is derived from the following expression:Number OH / 1000 x 56.1 Polyol a of Weight Equivalent =Equivalent Weight of a Polyol BlendFor foam systems based on a blend of polyols, the net equivalent weight can be calculated:number) acid Number (OH / 1000 x 56.1 Polyol a of Weight Equivalent += Equivalent Weight of an IsocyanateThe weight of an isocyanate compound per isocyanate site. This is calculated from the analyzed isocyanate (NCO) content:NCO % x 100 x 42 Isocyanate an of Weight Equivalent =Equivalent Weight of an Isocyanate BlendFor foam systems using a blend of different isocyanates, the net equivalent weight of the blend is given by:∑=sIsocyanate Iso) Wt.Eq.(Pbw/ 100 Blend s Isocyanate of Weight Equivalent Acid NumberA number arising from a wet analytical method to determine the amount of residual acidic material in a polyol. It is reported in the same units as hydroxyl number.Hydroxyl Number (OH Number)A number arising from a wet analytical method for the hydroxyl content of a polyol; it is the milligrams of potassium hydroxide equivalent to the hydroxyl content in one gram of polyol or other hydroxyl compound.Weight Equivalent 1000/ x 56.1 Number OH =Equivalent NumberMole equivalent of functional site (OH or NCO).(mole) )t Weight (Equivalen / Parts Number Equivalent =Molecular Weight(g/mol)ity Functional * Weight Equivalent Mw =Number of Moles(mole) ) Weight (Molecular / Parts Mole =Real FunctionalityCalculated over Polyols only, Real Functionality takes into account Unsaturated level of Polyols.FUnsat ityFunctional Unsat -Weight Equivalent Weight Equivalent onality RealFuncti +=Calculations for a Formulations Average Equivalent Weights [g/mol]entNumberISOEquival Isocyanate of Parts Totalht valentWeig AvgISOEqui = ervalentNumb PolyolEqui Polyols of Parts Total eight quivalentW AvgPolyolE = ntNumber OHEquivale H Total eight quivalentW AvgPolH2OE O = Enthalpy [cal/g]CO))TotalMoleN *15.5-Water)(TotalMole * 15.5)(-22.5olyol TotalMoleP *15.5)(((-24 *10 Enthalpy +++= Average FunctionalityolyolTotalMoleP Number Equivalent Polyoltionality AvgPolFunc = HTotalMole ntNumber OHEquivale ionality AvgOHFunct O = CO TotalMoleN entNumber ISOEquival tionality AvgISOFunc =. (NCO additives are accounted here). Average Real Functionality∑=Polyols Polyols 100Per Parts onality x RealFunctictionality AvgRealFunTotal Equivalent Numbers [mol] ∑=only Polyols Number Equivalent:er valentNumb PolyolEqui ∑=only Isocyanate Number Equivalent:entNumber IsoEquival ∑>=OH with Products Number Equivalent ntNumber OHEquivale ∑>=0NCO with Products Number Equivalent entNumber NCOEquival Volume Gas [mol/kg]1000* CFC)But Parts All (Total Water of moles Total erKgCO2TotalmoleP = 1000*CFC)But Parts All (Total d Halogenate of moles Total erKgCFC TotalmoleP = erKgCO2TotalmoleP erKgCFC TotalmoleP eGas TotalVolum +=Parts All Total 22400* Water of moles Total Foam of Gr per CO2 of Centimeter Cubic Total =Converted at Gel point [%]Theoretical conversion of OH and NCO-groups at gel (ConvNCO=ConvOH*index) according to Stockmayer W.H., J.Polymer Sci. 9,69 (1952); 11, 424 (1953). The approximations in the Stockmayer theory are:•All functional groups of a given type are equally reactive. • No ring formation occurs during the condensation reaction.See also: publications by K.Dusek, M.Gordon and C.W.Macosco.NCOConvGel*Index Isocyanate :=OHConvGel 1)-tionality (AvgOHFunc *1)-ctionality (AvgIsoFun *Index Isocyanate 1= NCOConvGel Isocyanate indexntNumberOHEquivale entNumber ISOEquival Index Isocyanate = OH Links∑>=>=2f and 0OH with Products Partsk TotalOHlin . (water incl.) Urethane-Urea LinkagesaterTotalMoleW er valentNumb PolyolEqui eaLinkages UrethaneUr = Molecular weight per CrossLink [g/mol]Mc is the average molecular weight per crosslink. The assumption for the calculation is that the stoichiometric amount of isocyanate reacts with the hydroxyl groups and water to form urethane and urea and the excess of isocyanate reacts to allophanate and biuret.Reference: Th.Broennum SPI conference 1991 p243()⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛++1)+ctionality (AvgISOFun *ht valentWeig AvgISOEqui 1)-ctionality (AvgISOFun *)IsoIndex 1-(1*TotalISO tionalityAvgISOFunc *ht valentWeig AvgISOEqui 2)-ctionality (AvgISOFun *IsoIndex TotalISO ntWeight 2OEquivale AvgPolyolH *tionality (AvgOHFunc 2)-tionality (AvgOHFunc *k TotalOHlin TotalNCO +k TotalOHlin =Link MwPerCrossCrossLink Density [link / kg]Calculated estimate for the cross-link density = 1000/ MwPerCrossLink Average Second Moment FunctionalityMole *ity Functional Mole *ity Functional :ality vgFunction SndMomentA 2∑∑= Average CrossLink Functionality∑∑>=>==2f with Products 2f with Products 2Mole*ity Functional Mole *ity Functional ty unctionali CrossLinkF Blowing Index [mol/kg]Equals the total number of moles blowing agent per kilogram formulation. This value can be used, in combination with the initial cell-pressure at room-temperature, to calculate the foam density (Smits G.F. ,J.Cellular Plastics vol 29 jan. (1993) pp57-98.)1000*AgentBlowing But Parts All Total Moles =ex BlowingInd BA ∑ ∑=PartWeight M total foam ,。
环氧树脂聚氨酯固化剂计算办法

环氧树脂聚氨酯固化剂计算办法Last updated at 10:00 am on 25th December 2020环氧树脂-P U树脂固化剂配比计算方法1、胺类固化剂w(100 质量份数树脂所需胺固化剂质量份数)/% =(胺当量/环氧当量)*100 质量份数树脂 =(胺的分子质量*100 质量份数树脂)/(胺分子中活泼氢原子数*环氧当量) =(胺的分子质量/胺分子中活泼氢原子数)*环氧值 =(胺的分子质量/胺分子中活泼氢原子数)*(环氧基质量百分数/环氧基分子质量)2、低相对分子量聚酰胺用量计算低相对分子量聚酰胺产品指标说明中常用“胺值“这一指标衡量氨基的多少,陈声锐认为,这不能正常正确反映活泼氢原子的数目,因此不能简单地将胺值作为计算聚酰胺用量的依据。
对于典型的聚酰胺,可以用下式计算用两。
w(聚酰胺)%=(56100/胺值*f )*环氧值 n-3式中:56KOH(*10 mol) f -------------系数,f =(n+2)/(n+1),n 为多亚乙基多胺中 CHCH —的重复数减去 1 n n 2 2 3、酮亚胺用量计算W(酮亚胺)%=(固化剂当量/环氧当量)*100这里的“当量“系指酮亚胺和水完全反应时相当有时在厂家产品规格说明书上除了给出“当量“外,还会给出“有效胺含量“系指酮亚胺和水完全反应时游离出来的反应性多胺(以体积或质量的分数表示)。
4、曼尼期碱用量计算酚、醛和胺缩合反应制得的产物成为曼尼期碱。
经典的曼尼期碱是由苯酚、甲醛及乙二胺反应制得,应用亦普遍。
按下式计算出的固化剂的量与按最大粘接强度决定的用量彼此很吻合。
Q=~K式中,K 为环氧树脂中环氧基的质量分数,%。
5、酸酐固化剂用量计算当使用一种酸酐固化剂时:W(酸酐)%=C*(酸酐当量/环氧当量)*100式中:酸酐当量=酸酐的分子质量/酸酐基的个数 C 为修正系数,场合不同采用不同的数值 C= , 一般的酸酐,使用含氯酸酐,或使用辛酸亚锡等有机金属盐;,使用叔胺作固化剂;使用两种酸酐混合物固化环氧树脂时1)将环氧当量换算成环氧值2)按混合比求出混合酸酐中每种酸酐的当量3)求 100g 混合酸酐的当量4)求出 100g 环氧树脂所用酸酐量PU产品中 PU 固化剂与PU 含羟基组份配比、配量的计算方法1 计算公式OH 值 42×100PU 固化剂需要量= ———×—————×(NCO/OH 比)561 NCO%式中: OH 值——PU 含羟基树脂羟值,mgKOH/g561——常数42——NCO 当量100——PU 含羟基树脂设定固体量2 羟值(mgKOH/g)、羟基百分含量(%)、羟基当量之间的换算关系为羟基百分含量=(17/羟基当量)×100羟值=33×羟基百分含量3 PU 聚酯漆中含羟值树脂占 62%(该树脂不挥发份为 70%,固体羟值为 120),要求计算 100份 PU 聚酯漆应配 NCO%为 9的 PJ01-50 固化剂多少(设计要求 NCO:OH为 :1)代入计算公式120 42×(100×70%×62%)PJ01-50 固化剂配量= ——×————————————×= 份561 9即应配 NCO%为 9的 PJ01-50 固化剂份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Calculations in PU Software. Definitions (2)NCO-Side (2)Polyol-Side (2)Parts (2)Parts by Weight (2)Parts by 100 (2)Parts by 100 Polyols (2)Side Composition (2)Products Properties (2)Functionality (2)Equivalent Weight of a Polyol (2)Equivalent Weight of a Polyol Blend (3)Equivalent Weight of an Isocyanate (3)Equivalent Weight of an Isocyanate Blend (3)Acid Number (3)Hydroxyl Number (OH Number) (3)Equivalent Number (3)Molecular Weight (3)Number of Moles (3)Real Functionality (3)Calculations for a Formulations (4)Average Equivalent Weights [g/mol] (4)Enthalpy [cal/g] (4)Average Functionality (4)Average Real Functionality (4)Total Equivalent Numbers [mol] (4)Volume Gas [mol/kg] (4)Converted at Gel point [%] (5)Isocyanate index (5)OH Links (5)Urethane-Urea Linkages (5)Molecular weight per CrossLink [g/mol] (5)Average Second Moment Functionality (6)Average CrossLink Functionality (6)Blowing Index [mol/kg] (6)DefinitionsThe following definitions apply:NCO-SideThe isocyanate-containing blend (Isocyanates, other NCO additives…). Called A-Side in US.Polyol-SideThe polyol-containing blend, (polyols, chain extenders, cross-linker, water, catalysts and surfactants). Called B-Side in US.PartsIndependent Component Weight QuantityParts by WeightComponent Weight Quantity over Total 100 w/o Physical Blowing Agent. Parts by 100Component Weight Quantity over Total 100Parts by 100 PolyolsComponent Weight Quantity over Total Polyols 100Side CompositionComponent Weight Quantity over its Side 100Products PropertiesFunctionalityThe functionality of a Polyol-side foam ingredient is the number of isocyanate reactive sites on a molecule. For polyols, an averagefunctionality is generally used:polyol moles / total OH moles total ity Functional Average =Equivalent Weight of a PolyolClassically defined as the molecular weight of a polyol divided by its functionality. Functionality of a polyol is complex because of the presence of monols from propylene oxide isomerization and diols (derived from water). In practice, the equivalent weight is calculated from the analyzed hydroxyl (OH) number. The equivalent weight is necessary for isocyanate requirement calculations and is derived from the following expression:Number OH / 1000 x 56.1 Polyol a of Weight Equivalent =Equivalent Weight of a Polyol BlendFor foam systems based on a blend of polyols, the net equivalent weight can be calculated:number) acid Number (OH / 1000 x 56.1 Polyol a of Weight Equivalent += Equivalent Weight of an IsocyanateThe weight of an isocyanate compound per isocyanate site. This is calculated from the analyzed isocyanate (NCO) content:NCO % x 100 x 42 Isocyanate an of Weight Equivalent =Equivalent Weight of an Isocyanate BlendFor foam systems using a blend of different isocyanates, the net equivalent weight of the blend is given by:∑=sIsocyanate Iso) Wt.Eq.(Pbw/ 100 Blend s Isocyanate of Weight Equivalent Acid NumberA number arising from a wet analytical method to determine the amount of residual acidic material in a polyol. It is reported in the same units as hydroxyl number.Hydroxyl Number (OH Number)A number arising from a wet analytical method for the hydroxyl content of a polyol; it is the milligrams of potassium hydroxide equivalent to the hydroxyl content in one gram of polyol or other hydroxyl compound.Weight Equivalent 1000/ x 56.1 Number OH =Equivalent NumberMole equivalent of functional site (OH or NCO).(mole) )t Weight (Equivalen / Parts Number Equivalent =Molecular Weight(g/mol)ity Functional * Weight Equivalent Mw =Number of Moles(mole) ) Weight (Molecular / Parts Mole =Real FunctionalityCalculated over Polyols only, Real Functionality takes into account Unsaturated level of Polyols.FUnsat ityFunctional Unsat -Weight Equivalent Weight Equivalent onality RealFuncti +=Calculations for a Formulations Average Equivalent Weights [g/mol]entNumberISOEquival Isocyanate of Parts Totalht valentWeig AvgISOEqui = ervalentNumb PolyolEqui Polyols of Parts Total eight quivalentW AvgPolyolE = ntNumber OHEquivale H Total eight quivalentW AvgPolH2OE O = Enthalpy [cal/g]CO))TotalMoleN *15.5-Water)(TotalMole * 15.5)(-22.5olyol TotalMoleP *15.5)(((-24 *10 Enthalpy +++= Average FunctionalityolyolTotalMoleP Number Equivalent Polyoltionality AvgPolFunc = HTotalMole ntNumber OHEquivale ionality AvgOHFunct O = CO TotalMoleN entNumber ISOEquival tionality AvgISOFunc =. (NCO additives are accounted here). Average Real Functionality∑=Polyols Polyols 100Per Parts onality x RealFunctictionality AvgRealFunTotal Equivalent Numbers [mol] ∑=only Polyols Number Equivalent:er valentNumb PolyolEqui ∑=only Isocyanate Number Equivalent:entNumber IsoEquival ∑>=OH with Products Number Equivalent ntNumber OHEquivale ∑>=0NCO with Products Number Equivalent entNumber NCOEquival Volume Gas [mol/kg]1000* CFC)But Parts All (Total Water of moles Total erKgCO2TotalmoleP = 1000*CFC)But Parts All (Total d Halogenate of moles Total erKgCFC TotalmoleP = erKgCO2TotalmoleP erKgCFC TotalmoleP eGas TotalVolum +=Parts All Total 22400* Water of moles Total Foam of Gr per CO2 of Centimeter Cubic Total =Converted at Gel point [%]Theoretical conversion of OH and NCO-groups at gel (ConvNCO=ConvOH*index) according to Stockmayer W.H., J.Polymer Sci. 9,69 (1952); 11, 424 (1953). The approximations in the Stockmayer theory are:•All functional groups of a given type are equally reactive. • No ring formation occurs during the condensation reaction.See also: publications by K.Dusek, M.Gordon and C.W.Macosco.NCOConvGel*Index Isocyanate :=OHConvGel 1)-tionality (AvgOHFunc *1)-ctionality (AvgIsoFun *Index Isocyanate 1= NCOConvGel Isocyanate indexntNumberOHEquivale entNumber ISOEquival Index Isocyanate = OH Links∑>=>=2f and 0OH with Products Partsk TotalOHlin . (water incl.) Urethane-Urea LinkagesaterTotalMoleW er valentNumb PolyolEqui eaLinkages UrethaneUr = Molecular weight per CrossLink [g/mol]Mc is the average molecular weight per crosslink. The assumption for the calculation is that the stoichiometric amount of isocyanate reacts with the hydroxyl groups and water to form urethane and urea and the excess of isocyanate reacts to allophanate and biuret.Reference: Th.Broennum SPI conference 1991 p243()⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛++1)+ctionality (AvgISOFun *ht valentWeig AvgISOEqui 1)-ctionality (AvgISOFun *)IsoIndex 1-(1*TotalISO tionalityAvgISOFunc *ht valentWeig AvgISOEqui 2)-ctionality (AvgISOFun *IsoIndex TotalISO ntWeight 2OEquivale AvgPolyolH *tionality (AvgOHFunc 2)-tionality (AvgOHFunc *k TotalOHlin TotalNCO +k TotalOHlin =Link MwPerCrossCrossLink Density [link / kg]Calculated estimate for the cross-link density = 1000/ MwPerCrossLink Average Second Moment FunctionalityMole *ity Functional Mole *ity Functional :ality vgFunction SndMomentA 2∑∑= Average CrossLink Functionality∑∑>=>==2f with Products 2f with Products 2Mole*ity Functional Mole *ity Functional ty unctionali CrossLinkF Blowing Index [mol/kg]Equals the total number of moles blowing agent per kilogram formulation. This value can be used, in combination with the initial cell-pressure at room-temperature, to calculate the foam density (Smits G.F. ,J.Cellular Plastics vol 29 jan. (1993) pp57-98.)1000*AgentBlowing But Parts All Total Moles =ex BlowingInd BA ∑ ∑=PartWeight M total foam ,。