福建省福州市2018年初中毕业班质量检测数学试卷(WORD版,含答案)
2018年福建省福州市中考数学试卷含答案

福建省福州市2018年中考数学试卷<解读版)一.选择题<共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.<2018福州)2的倒数是<)A.B.﹣C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.<2018福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是<)A.20° B.40°C.50°D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.<2018福州)2018年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为<)A.7×105B.7×106C.70×106D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.<2018福州)下列立体图形中,俯视图是正方形的是<)A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5.<2018福州)下列一元二次方程有两个相等实数根的是<)A.x2+3=0 B.x2+2x=0 C.<x+1)2=0 D.<x+3)<x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0<a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.<2018福州)不等式1+x<0的解集在数轴上表示正确的是<)A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来<>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.<2018福州)下列运算正确的是<)A.a•a2=a3B.<a2)3=a5C.D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.<a2)3=a6,本选项错误;C.<)2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.<2018福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为<)A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.<2018福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是<)A.3个B.不足3个C.4个D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.<2018福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A<x+a,y+b),B<x,y),下列结论正确的是<)A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题<共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.<2018福州)计算:=.考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.。
┃精选3套试卷┃2018届福州市七年级下学期数学期末学业质量监测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.2.如图,点E在BC的延长线上,下列条件不能判定AB∥CD的是( )A.∠3=∠4 B.∠B=∠DCE C.∠4=∠2 D.∠D+∠DAB=180°【答案】A【解析】根据平行线的判定方法进行分析判断即可.【详解】A选项中,因为由∠3=∠4只能推出AD∥BC,而不能证明AB∥CD,所以可以选A;B选项中,因为由∠B=∠DCE可以证得AB∥CD,所以不能选B;C选项中,因为由∠4=∠2可以证得AB∥CD,所以不能选C;D选项中,因为由∠D+∠DAB=180°可以证得AB∥CD,所以不能选D.故选A.熟记“平行线的判定方法”及能够分辨“两个同位角或两个内错角或两个同旁内角是怎样形成的”是解答本题的关键.3.若与可以合并成一项,则的值是()A.2 B.0 C.-1 D.1【答案】A【解析】根据同类项的意义,可得答案.【详解】由题意,得解得,∴m+n=2+0=2,故选A.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.4.如图,已知△ABC ≌△AEF ,其中AB=AE ,∠B=∠E .在下列结论① AC=AF ,② ∠BAF=∠B ,③ EF=BC ,④ ∠BAE=∠CAF中,正确的个数有( )A.1个B.2 个C.3 个D.4 个【答案】C【解析】根据全等三角形的性质依次判断即可得到答案.【详解】∵△ABC ≌△AEF ,其中AB=AE ,∠B=∠E,∴AC=AF,EF=BC,∠BAC=∠EAF,∴∠BAE=∠CAF,① AC=AF 正确;②∠BAF=∠B 错误;③ EF=BC 正确;④∠BAE=∠CAF正确;【点睛】此题考查全等三角形的性质,根据全等即可判断对应的线段及角度相等的关系.5.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是( ) A .k 2≤B .k 2>C .k 2≥D .1k 2≤<【答案】C【解析】根据不等式组的解集的确定方法,由不等式组无解得到k 的取值范围. 【详解】由题意可知不等式组12x x k <≤⎧⎨>⎩无解 所以k≥4.故选:C.【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了解二元一次方程组. 6.已知不等式2x−a<0的正整数解恰是1,2,3,则a 的取值范围是()A .6<a<8B .6⩽a ⩽8C .6⩽a<8D .6<a ⩽8【答案】D【解析】根据题目中的不等式可以求得x 的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a 的取值范围.【详解】由2x−a<0得,x<0.5a ,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a ⩽4,解得,6<a ⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.7.已知a b >,则下列不等式一定成立的是( )A .a b -<-B .11a b -<-C .22a b +<+D .2a a b <+ 【答案】A【解析】根据不等式的基本性质,逐项判断,判断出不等式一定成立的是哪个即可.【详解】解:∵a >b ,∴-a <-b ,∴选项A符合题意;∵a>b,∴a-1>b-1,∴选项B不符合题意;∵a>b,∴a+2>b+2,∴选项C不符合题意;∵a>b,∴2a>2b,∴选项D不符合题意.故选:A.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是( )A.①②③B.①②④C.①③④D.②③④【答案】C【解析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【详解】∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE.①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED.故选C.【点睛】本题考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.已知点P(0,m)在y轴的负半轴上,则点M(−m,−m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】∵P(m,0)在x轴负半轴上,∴m<0,∴-m>0,-m+1>0,∴点M(-m,-m+1)在第一象限;故选A.10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()A.1个B.2个C.3个D.4个【答案】C【解析】根据全等三角形的性质判断即可.【详解】∵△ABC≌△ADE,∴BC=DE,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAD=∠CAE,但不能得出DB=CE,故选C.【点睛】本题考查了全等三角形的性质.找到全等三角形的对应边和对应角是解此题的关键.二、填空题题11.如图,一副三角尺△ABC与△ADE的两条斜边在一条直线上,直尺的一边GF∥AC,则∠DFG的度数为_____________.【答案】105°【解析】解法一:利用平行线的性质定理∠CFG=180°-∠C =90°,利用等角的余角相等得出∠CFD=∠CAD=15°,它们之和即为∠DFG;解法二:利用平行线的性质定理可求出∠FGE=∠CAB=60°,再利用三角形的外角和可求出∠FGE=∠FGE+∠DEA=105°.【详解】解法一:∵GF∥AC,∠C=90°,∴∠CFG=180°-90°=90°,又∵AD,CF交于一点,∠C=∠D,∴∠CAD=∠CFD=60°-45°=15°,∴∠DFG=∠CFD+∠CFG=15°+90°=105°.解法二:∵GF∥AC,∠CAB=60°,∴∠FGE=60°,又∵∠DFG是△EFG的外角,∠FEG=45°,∴∠DFG=∠FGE+∠FEG=60°+45°=105°,故答案为:105°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.12.请你列不等式:“x的3倍与4的差不小于6”为_____.【答案】3x﹣4≥1【解析】直接表示出x的3倍为3x,再减去4,其结果大于等于1,得出不等式即可.【详解】由题意可得:3x﹣4≥1.故答案为3x﹣4≥1;【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确列出不等关系是解题关键.13.如图,△ABC≌△AED,点D在BC边上。
最新福州质检数学试题及答案

2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 C DB A从正面看ADCBO边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分)(11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则ABAD的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF 求证:AB=DE .ABABDFABCOxyABCDEF(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性A BCD图1图2质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号 函数图象特征函数变化规律示例1 在y 轴右侧,函数图象呈上升状态 当0<x ≤4 ,y 随x 的增大而增大 示例2 函数图象经过点(-2,1) 当时x =-2时,y=1 (i) 函数图象的最低点是(0,0.5) (ii)在y 轴左侧,函数图象呈下降状态(3)当a <x≤4时,y 的取值范围为0.5≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题:xy(1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B .(1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点DABCDEF图1ABCDEF图2 ABCDEFG图3与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E , 连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3时, 求CEAB的取值范国.。
2018年福建省福州市初中毕业班质量检测数学试题及答案

(1) 抽样调查的人数共有
人;
(2) 就福州地铁建设情况随机采访该校一名学生,哪部分学生最可能 被采访到,为什么?
22. ( 9 分)某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如 果 35 名学生购票恰好用去 750 元,甲乙两种票各买了多少张? 23. (10 分 ) 如图, AB 为⊙ O的直径,弦 AC=2,∠ B= 30 °,∠ ACB的 平分线交⊙ O于 点 D,求: (1) BC , AD的长。 (2) 图中两阴影部分面积的和.
∴∠ BDE= ∠BAC= ,
∵ BD= 2BC=2sin , ∴ BE=BD· sin =2sin .sin ∴ AE=AB-BE=l-2sin 2 ,
=2sin 2 ,
∴ cos2
AE 1 2sin 2
cos DAE
AD
1
2
1 2sin
阅读以上内容,回答下列问题: (1) 如图 l ,若 BC=1 ,则 cos =
)
>2 .
3.下列图形中,是轴对称图形的是(
)
4. 福州近期空气质量指数 (AQI) 分别为: 78,80, 79, 79, 81, 78,
80, 80,这组数
据的中位数是(
)
A .79
B
.79.5
C
.80
D
.80.5
5.如图, ⊙ O中,半径 OC=4,弦 AB垂直平分 OC,则 AB的长是 ( )
3
(2) 求出 sin 2 的表达式(用含 sin
, cos2 =
;
或 cos 的式子表示) .
25. ( 13 分)如图,△ AABC 中, AC=8, BC=6, AB =10.点 P 在 AC 边
2018年福州质检数学试题及答案

2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108B .×109C .×108D .×1010(4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形 (7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 边形AA ’B ’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6C DB AADC BOAB(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分) (11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 若F 恰好是CD 的中点,则ABAD 的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB∥DE,AC∥DF,且AC=DF 求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)A BCEABCDEFABCD(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的 点,画出该函数的图象;图1图2Axy(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a <x≤4时,y 的取值范围为≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE⊥x 轴于点E ,连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.ABCDEF图1ABCDEF图2 ABCDEFG图3。
2018年福建省福州市中考数学试卷(解析版)

2018年福建省福州市中考数学试卷—解读版一、选择题<共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、<2018•福州)6的相反数是< )A、﹣6B、C、±6D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.b5E2RGbCAP2、<2018•福州)福州地铁将于2018年12月试通车,规划总长约180000M,用科学记数法表示这个总长为< )p1EanqFDPwA、0.18×106MB、1.8×106MC、1.8×105MD、18×104M考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.DXDiTa9E3d解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.RTCrpUDGiT3、<2018•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是< )A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.5PCzVD7HxA4、<2018•福州)如图是我们学过的反比例函数图象,它的函数解读式可能是< )A、y=x2B、C、D、考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
2018年福建福州中考数学试卷及答案(word解析版)
二〇一三年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2018福建福州,1,4分) 2的倒数是( ).A .12B .2C .-12D .-2【答案】A2.(2018福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( ).A .20°B .40°C .50°D .60°【答案】C3.(2018福建福州,3,4分)2018年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空.7 000 000用科学记数法表示为( ).A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2018福建福州,4,4分)下列立体图形中,俯视图是正方形的是( ).ABCD【答案】D .5.(2018福建福州,5,4分)下列一元二次方程有两个相等实数根的是( ).A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2018福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是( ).12 OACA B C D【答案】A.7.(2018福建福州,7,4分)下列运算正确的是( ).A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b b=D .a 3÷a 3=a【答案】A .8.(2018福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为( ).A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm【答案】A.9.(2018福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ).A .3个B .不足3个C .4个D .5个或5个以上【答案】D .10.(2018福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( ).A .a >0B .a <0C .b =0D .ab <0【答案】B.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2018福建福州,11,4分)计算:21a a-=_________. 【答案】1a; 12.(2018福建福州,12,4分)矩形的外角和等于_______度.【答案】360;13.(2018福建福州,13,4分)某校女子排球队队员的年龄分布如下表:AB C【答案】14;14.(2018福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.【答案】1000;15.(2018福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________.【答案】三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1)(2018福建福州,16(1),7分)计算:0(1)4-+-- 【答案】 解:0(1)4-+-- =1+4-=5-(2)(2018福建福州,16(2),7分)化简:2(3)(4)a a a ++-. 【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +9.17.(每小题8分,共16分)(1)(2018福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明一:∵AB 平分∠CAD ,∴∠BAC =∠BAD , 在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ABD . ∴BC =BD . 证明二:连接CD∵AC =AD ,AB 平分∠CAD , ∴AB 垂直平分CD ,∴BC =BD . (2)列方程解应用题(2018福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生? 【答案】解法一:设这个班有x 名学生,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学生.解法二:设这个班有x 名学生,图书一共有y 本. 320425y x y x =+⎧⎨=-⎩ ,解得45,155.x y =⎧⎨=⎩答:这个班共有45名学生.18.(10分)(2018福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm ) 男生身高情况直方图 女生身高情况扇形统计图CDBA(1)样本中,男生身高的众数在_______组,中位数在_______组; (2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?【答案】(1)众数在B 组;中位数在C 组. (2)样本女生人数=样本男生人数=40; E 组女生百分比=5%E 组女生人数=40×5%=2(人) (3)男生:400×1840=180(人). 女生:380×40%=152(人).19.(2018福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD . (1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转角等于120°. (2)∵△ACO 、△BOD 是等边三角形,∴∠CAO =60°,OA =OD , ∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE. (1)求证:BC 是⊙O 的切线; (2)求BN 的长.第20题图C【答案】(1)证明:∵ME =1,AM =2,AE∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°, ∵AB 为⊙O 的直径,∴BC 是⊙O 的切线. (2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°, ∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB∴BM =60180π. ∴BN .21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值; (3)若∠APD =90°,求y 的最小值.备用图第21题图BCB【答案】(1)如图2,过点A 作AH ⊥BC ,垂足为H . 在Rt △ABH 中,∠B =45°,AB =x ,所以AH =2x .由S △APD =12AD AH ⋅,可得11222y x =⋅.整理,得y x =.(2)当y =1时,x =如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2, 当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP ∽△PCD .因此AB PCBP CD=. 所以PC ·PD =AB ·CD =2.图2 图3 图4(3)如图5,当∠APD =90°时,点P 在以AD 为直径的圆上.如图6,当AD 最小时,圆与BC 相切于点P .此时△APD 是等腰直角三角形.所以AD =2AH ,即2y x =.由(1)知,y x=.于是可以解得此时y =.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a = ;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是 ;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n .若这组抛物线中有一条经过点D n ,求所有满足条件的正方形边长.【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=-. (2)设抛物线的顶点的坐标为(m ,km ), 那么222()2y a x m km ax amx am km =-+=-++.对照y =ax 2+bx ,可得20,2.am km b am ⎧+=⎨=-⎩ 由此得到b =2k .(3)正方形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线12y x =上. 由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-. 根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0). 所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=--. 联立12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m . 当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正方形的边长分别为3、6、9(如图1所示).图1。
2018-2019福州市质检试卷及答案
准考证号:姓名:1(在此卷上答题无效)2018—2019学年度福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束后,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是A B C D2.地球绕太阳公转的速度约为110000千米/时,将110000用科学记数法表示,其结果是A .61.110⨯B .51.110⨯C .41110⨯D .61110⨯3.已知△ABC ∽△DEF ,若面积比为4∶9,则它们对应高的比是A .4∶9B .16∶81C .3∶5D .2∶34.若正数x 的平方等于7,则下列对x 的估算正确的是A .1<x <2B .2<x <3C .3<x <4D .4<x <55.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是A .15°B .22.5°C .30°D .45°6.下列各式的运算或变形中,用到分配律的是A.=B .222()ab a b =C .由25x +=得52x =-D .325a a a+=7.不透明的袋子中装有除颜色外完全相同的a 个白球、b 个红球、c 个黄球,则任意摸出一个球,是红球的概率是A .b a c +B .a c a b c +++C .b a b c ++D .a c b+8.如图,等边三角形ABC 边长为5,D ,E 分别是边AB ,AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD的长是A .247B .218C .3D .29.已知Rt △ABC ,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到射线AD 的距离是A .2B.CD .310.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是A .容易题和中档题共60道B .难题比容易题多20道C .难题比中档题多10道D .中档题比容易题多15道AE D B CF A21C B a bA xy B CO 1098760成绩/环次数12345678910乙甲第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.分解因式:34m m -=.12.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.13.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是.14.若分式65m m -+-的值是负整数,则整数m 的值是.15.在平面直角坐标系中,以原点为圆心,5为半径的⊙O 与直线23y kx k =++(0k ≠)交于A ,B 两点,则弦AB 长的最小值是.16.如图,在平面直角坐标系中,O 为原点,点A 在第一象限,点B 是x 轴正半轴上一点,∠OAB =45°,双曲线k y x =过点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:3tan 30-+︒-(3.14π-)0.18.(本小题满分8分)如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .19.(本小题满分8分)先化简,再求值:(11x -)2221x x x -+÷,其中1x +.20.(本小题满分8分)如图,在Rt △ABC 中,∠ACB =90°,BD 平分∠ABC .求作⊙O ,使得点O 在边AB 上,且⊙O 经过B ,D 两点;并证明AC 与⊙O 相切.(要求尺规作图,保留作图痕迹,不写作法)B C AD 21CA BD如图,将△ABC 沿射线BC 平移得到△A ′B ′C ′,使得点A ′落在∠ABC 的平分线BD 上,连接AA ′,AC ′.(1)判断四边形ABB ′A ′的形状,并证明;(2)在△ABC 中,AB =6,BC =4,若AC ′⊥A′B′,求四边形ABB ′A ′的面积.22.(本小题满分10分)为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗?答:.(填“是”或“不是”)(2)下表是用简单随机抽样方法抽取的30名同学的体育测试成绩(单位:分):596977737262797866818584838486878885868990979198909596939299若成绩为x 分,当x ≥90时记为A 等级,80≤x <90时记为B 等级,70≤x <80时记为C 等级,x <70时记为D 等级,根据表格信息,解答下列问题:①本次抽样调查获取的样本数据的中位数是;估计全年级本次体育测试成绩在A ,B 两个等级的人数是;②经过一个多月的强化训练发现D 等级的同学平均成绩提高15分,C 等级的同学平均成绩提高10分,B 等级的同学平均成绩提高5分,A 等级的同学平均成绩没有变化,请估计强化训练后全年级学生的平均成绩提高多少分?23.(本小题满分10分)某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x 辆该款汽车.(总利润=销售利润+返利)(1)设每辆汽车的销售利润为y 万元,求y 与x 之间的函数关系式;(2)当x >10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x 的值.B AC A'B'C'D在正方形ABCD 中,E 是对角线AC 上一点(不与点A ,C 重合),以AD ,AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .(1)如图1,当AE <12AC 时,过点E 作EF ⊥BE 交CD 于点F ,连接GF 并延长交AC 于点H .①求证:EB =EF ;②判断GH 与AC 的位置关系,并证明;(2)过点A 作AP ⊥直线CG 于点P ,连接BP ,若BP =10,当点E 不与AC 中点重合时,求PA 与PC 的数量关系.B C D A E GM FH B CD A 图1备用图25.(本小题满分13分)已知抛物线1(5)()2y x x m =-+-(m >0)与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .(1)直接写出点B ,C 的坐标;(用含m 的式子表示)(2)若抛物线与直线12y x =交于点E ,F ,且点E ,F 关于原点对称,求抛物线的解析式;(3)若点P 是线段AB 上一点,过点P 作x 轴的垂线交抛物线于点M ,交直线AC 于点N ,当线段MN 长的最大值为258时,求m 的取值范围.答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:每小题4分,满分40分.1.A 2.B 3.D 4.B 5.C 6.D 7.C 8.B9.C 10.B 二、填空题:每小题4分,满分24分.11.(2)(2)m m m +-12.正方体13.甲14.415.16注:12题答案不唯一,能够正确给出一种符合题意的几何体即可给分,如:某个面是正方形的长方体,底面直径和高相等的圆柱,等.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程和演算步骤.17.解:原式31=+-·····································································6分311=+-··············································································7分3=.···················································································8分18.证明:∵∠1=∠2,∴∠ACB =∠ACD .·····································3分在△ABC 和△ADC 中,B D ACB ACD AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABC ≌△ADC (AAS ),··························································6分∴CB =CD .·············································································8分注:在全等的获得过程中,∠B =∠D ,AC =AC ,△ABC ≌△ADC ,各有1分.19.解:原式22121x x x x x--+=÷··································································1分21C A BD221(1)x x x x -=⋅-·······································································3分1x x =-,··············································································5分当1x 时,原式=·····················································6分==.······················································8分20.解:BC AD O·············································3分如图,⊙O 就是所求作的圆.·························································4分证明:连接OD .∵BD 平分∠ABC ,∴∠CBD =∠ABD .·····························································5分∵OB =OD ,∴∠OBD =∠ODB ,∴∠CBD =∠ODB ,·····························································6分∴OD ∥BC ,∴∠ODA =∠ACB又∠ACB =90°,∴∠ODA =90°,即OD ⊥A C .······································································7分∵点D 是半径OD 的外端点,∴AC 与⊙O 相切.······························································8分注:垂直平分线画对得1分,标注点O 得1分,画出⊙O 得1分;结论1分.21.(1)四边形ABB ′A ′是菱形.··································································1分证明如下:由平移得AA ′∥BB ′,AA ′=BB ′,∴四边形ABB ′A ′是平行四边形,∠AA ′B =∠A ′B C .··············2分∵BA ′平分∠ABC ,∴∠ABA ′=∠A ′BC ,∴∠AA ′B =∠A ′BA ,······················································3分∴AB =AA ′,∴□ABB ′A ′是菱形.·······················································4分(2)解:过点A 作AF ⊥BC 于点F .由(1)得BB ′=BA =6.D由平移得△A ′B ′C ′≌△ABC ,∴B ′C ′=BC =4,∴BC ′=10.·····························5分∵AC ′⊥A ′B ′,∴∠B ′EC ′=90°,∵AB ∥A ′B ′,∴∠BAC ′=∠B ′EC ′=90°.在Rt △ABC ′中,AC′8==.····································6分∵S △ABC ′1122AB AC BC AF ''=⋅=⋅,∴AF 245AB AC BC '⋅==',····························································7分∴S 菱形ABB ′A ′1445BB AF '=⋅=,∴菱形ABB ′A ′的面积是1445.···················································8分22.(1)是;···························································································2分(2)①85.5;336;··············································································6分②由表中数据可知,30名同学中,A 等级的有10人,B 等级的有11人,C 等级的有5人,D 等级的有4人.依题意得,15410551101030⨯+⨯+⨯+⨯··········································8分5.5=.·······································································9分∴根据算得的样本数据提高的平均成绩,可以估计,强化训练后,全年级学生的平均成绩约提高5.5分.············································10分23.解:(1)27250.1(2)0.1 2.2y x x =---=-+;··········································4分(2)依题意,得(0.1 2.2)0.5101(10)20.6x x x -++⨯+⨯-=,··················7分解得1216x x ==.···································································9分答:x 的值是16.·································································10分注:(1)中的解析式未整理成一般式的扣1分.24.(1)①证明:∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,CA 平分∠BCD .∵EF ⊥EB ,∴∠BEF =90°.证法一:过点E 作EN ⊥BC 于点N ,···········1分∴∠ENB =∠ENC =90°.∵四边形AEGD 是平行四边形,∴AD ∥GE ,∴∠EMF =∠ADC =90°,∴EM ⊥CD ,∠MEN =90°,∴EM =EN ,·······················································2分∵∠BEF =90°,∴∠MEF =∠BEN ,∴△EFM ≌△EBN ,∴EB =EF .························································3分B C D A E GM F N H证明二:过点E 作EK ⊥AC 交CD 延长线于点K ,··················1分∴∠KEC =∠BEF =90°,∴∠BEC =∠KEF ,∵∠BEF +∠BCD =180°,∴∠CBE +∠CFE =180°.∵∠EFK +∠CFE =180°,∴∠CBE =∠KFE .又∠ECK =12∠BCD =45°,∴∠K =45°,∴∠K =∠ECK ,∴EC =EK ,························································2分∴△EBC ≌△EFK ,∴EB =EF .························································3分证明三:连接BF ,取BF 中点O ,连接OE ,OC .·················1分∵∠BEF =∠BCF =90°,∴OE =12BF =OC ,∴点B ,C ,E ,F 都在以O 为圆心,OB 为半径的⊙O 上.∵ BEBE =,∴∠BFE =∠BCA =45°,·········2分∴∠EBF =45°=∠BFE ,∴EB =EF .························································3分②GH ⊥AC .···············································································4分证明如下:∵四边形ABCD 是正方形,四边形AEGD 是平行四边形,∴AE =DG ,EG =AD =AB ,AE ∥DG ,∠DGE =∠DAC =∠DCA =45°,∴∠GDC =∠ACD =45°.············································5分由(1)可知,∠GEF =∠BEN ,EF =EB .∵EN ∥AB ,∴∠ABE =∠BEN =∠GEF ,∴△EFG ≌△BEA ,·····················6分∴GF =AE =DG ,∴∠GFD =∠GDF =45°,∴∠CFH =∠GFD =45°,∴∠FHC =90°,∴GF ⊥AC .······························································7分(2)解:过点B 作BQ ⊥BP ,交直线AP 于点Q ,取AC 中点O ,∴∠PBQ =∠ABC =90°.∵AP ⊥CG ,∴∠APC =90°.C D G M F A E N B H B C D A E GM F O H G B C D A E M F K H①当点E 在线段AO 上时,(或“当102AE AC <<时”)∠PBQ -∠ABP =∠ABC -∠ABP ,即∠QBA =∠PBC .································8分∵∠ABC =90°,∴∠BCP +∠BAP =180°.∵∠BAP +∠BAQ =180°,∴∠BAQ =∠BCP .································9分∵BA =BC ,∴△BAQ ≌△BCP ,······························10分∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA +PC =PA +AQ =PQ=········································11分②当点E 在线段OC 上时,(或“当12AC AE AC <<时”)∠PBQ -∠QBC =∠ABC -∠QBC ,即∠QBA =∠PBC .∵∠ABC =∠APC =90°,∠AKB =∠CKP ,∴∠BAQ =∠BCP .·······························12分∵BA =BC ,∴△BAQ ≌△BCP ,∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴PA -PC =PA -AQ =PQ=············13分综上所述,当点E 在线段AO 上时,PA +PC=当点E 在线段OC 上时,PA -PC=25.(1)B (m ,0),C (0,52m );·····························································2分解:(2)设点E ,F 的坐标分别为(a ,2a ),(a -,2a -),························3分代入25111(5)()(5)2222y x x m x m x m =-+-=-+-+,得22511(5)2222511(5)2222a a m a m a a m a m ⎧-+-+=⎪⎨⎪---+=-⎩①,②·········································4分由①-②,得(5)m a a -=.∵0a ≠,∴6m =,·············································································5分∴抛物线的解析式为2111522y x x =-++.··································6分(3)依题意得A (5-,0),C (0,52m ),由0m >,设过A ,C 两点的一次函数解析式是y kx b =+,九年级数学—11—(共5页)将A ,C 代入,得5052k b b m -+=⎧⎪⎨=⎪⎩.,解得1252k m b m ⎧=⎪⎨⎪=⎩,,∴过A ,C 两点的一次函数解析式是5122y mx m =+.····················7分设点P (t ,0),则5t m - (0m >),∴M (t ,2511(5)222t m t m -+-+),N (t ,5122mt m +).①当50t - 时,∴MN 255111(5)()22222t m t m mt m =-+-+-+25122t t =--.·····························································8分∵102-<,∴该二次函数图象开口向下,又对称轴是直线52t =-,∴当52t =-时,MN 的长最大,此时MN 2555251()(22228=-⨯--⨯-=.·································9分②当0t m < 时,∴MN 255111[(5)]22222mt m t m t m =+--+-+25122t t =+.············10分∵102>,∴该二次函数图象开口向上,又对称轴是直线52t =-,∴当0t m < 时,MN 的长随t 的增大而增大,∴当t m =时,MN 的长最大,此时MN 25122m m =+.···············11分∵线段MN 长的最大值为258,∴25251228m m + ,·······························································12分整理得2550(24m + ,m ∵0m >,∴m 的取值范围是0m < .········································13分。
【数学答案】2018福州5月初三质检考试
E A
N
如图,MN 就是所求作的线段 AB 的垂直平分线,点 E 就是所求作的点,线段 BE 就 是所要连接的线段. ·········································································· 4 分 证明:在 Rt△ABC 中,∠C = 90°,∠CBA = 54°, ∴∠CAB = 90° − ∠CBA = 36°. ···················································· 5 分 ∵AD 是△ABC 的角平分线, ∴∠BAD = 1 ∠CAB = 18°. ······················································· 6 分 2 ∵点 E 在 AB 的垂直平分线上, ∴EA = EB, ∴∠EBA = ∠EAB = 18°, ∴∠DEB = ∠EBA + ∠EAB = 36°,∠DBE = ∠CBA − ∠EBA = 36°, ∴∠DEB = ∠DBE, ································································· 7 分 ∴DE = DB. ··········································································· 8 分 注:作图 3 分,垂直平分线画对得 2 分,连接 BE 得 1 分;结论 1 分(结论不全面 不给分) .
注:方程写对一个得 2 分,未知数解对一个得 2 分.
数学试题答案及评分参考 第 2 页(共 7 页)
(21)证法一:连接 AC. ··········································································· 1 分 = CB , ∵ CB ∴∠COB = 2∠CAB. ····························································· 2 分 ∵∠COB = 2∠PCB, ∴∠CAB = ∠PCB. ······························································· 3 分 ∵OA = OC, C ∴∠OAC = ∠OCA, ∴∠OCA = ∠PCB. ································ 4 分 A B P O ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ····································· 5 分 ∴∠OCA + ∠OCB = 90°, ∴∠PCB + ∠OCB = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法二:过点 O 作 OD⊥BC 于 D,则∠ODC = 90°, ································ 1 分 ∴∠OCD + ∠COD = 90°. ······················································ 2 分 ∵OB = OC, C ∴OD 平分∠COB, D ∴∠COB = 2∠COD. ······························ 3 分 A B P O ∵∠COB = 2∠PCB, ∴∠COD = ∠PCB, ································ 4 分 ∴∠PCB + ∠OCD = 90°, 即∠OCP = 90°, ··································································· 6 分 ∴OC⊥CP. ········································································ 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分 证法三:设∠PCB = x°, ····································································· 1 分 则∠COB = 2x°. ··································································· 2 分 ∵OB = OC, C ∴∠OCB = 180° − 2 x° = 90° − x°,··············· 4 分 2 A B P O ∴∠OCP = ∠OCB + ∠PCB = 90° − x° + x° = 90°, ··················· 6 分 ∴OC⊥PC. ·········································· 7 分 ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ···························································· 8 分
2018年福建省福州市中考数学试卷含答案
福建省福州市 2018 年中考数学试卷 <解读版)一 . 选择题 <共 10 小题,每小题 4 分,满分 40 分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. <2018 福州) 2 的倒数是 < )A .B .﹣C . 2D .﹣ 2考点:倒数.分析:根据倒数的概念求解.解答:解: 2 的倒数是 .故选 A .点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数, 0 没有倒数. b5E2RGbCAP倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.2. <2018 福州)如图, OA ⊥ OB ,若∠ 1=40°,则∠ 2 的度数是 < )A . 20°B . 40°C . 50°D . 60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵ OA ⊥ OB ,∠1=40 °,∴∠ 2=90°﹣∠ 1=90°﹣40°=50 °.故选 C .点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键. 3. <2018 福州) 2018 年 12 月 13 日,嫦娥二号成功飞抵距地球约 700 万公里远的深空, 7 000 000 用科学记数法表示为 < )p1EanqFDPw5 6 6 D . 7×17A . 7×10B . 7×10C . 70×10 考点:科学记数法 —表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中 1≤|a|<10, n 为整数.确定 n 的值是易错点,由于 7 000 000 有 7 位,所以可以确定 n=7﹣1=6 . DXDiTa9E3d解答:解: 7 000 000=7×106.故选 B .点评:此题考查科学记数法表示较大的数的方法,准确确定a 与 n 值是关键. 4. <2018 福州)下列立体图形中,俯视图是正方形的是 <)A .B .C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解: A .俯视图是带圆心的圆,故本选项错误;1 / 12B .俯视图是一个圆,故本选项错误;C .俯视图是一个圆,故本选项错误;D .俯视图是一个正方形,故本选项正确; 故选 D .点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5. <2018 福州)下列一元二次方程有两个相等实数根的是 < )2 2 2A . x +3=0B . x +2x=0C . <x+1 ) =0D . <x+3 ) <x ﹣1) =0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A 、B 、C 进行判断;由于D 的两根可直接得到,则 可对 D 进行判断. RTCrpUDGiT解答:解: A .△ =0 ﹣ 4×3=﹣ 12< 0,则方程没有实数根,所以A 选项错误;B .△ =4﹣ 4×0=4 >0,则方程有 两个不相等的实数根,所以 B 选项错误;C . x 2 +2x+1=0 , △=4﹣ 4×1=0,则方程有两个相等的实数根,所以 C 选项正确;D . x1=﹣3, x2=1,则方程有两个不相等的实数根,所以 D 选项错误.故选 C .点评:本题考查了一元二次方程ax 2+bx+c=0<a ≠0)的根的判别式 △ =b2﹣ 4ac :当 △ > 0,方程有两个不相 等的实数根;当 △=0,方程有两个相等的实数根;当 △ <0,方程没有实数根.5PCzVD7HxA 6. <2018 福州)不等式 1+x < 0 的解集在数轴上表示正确的是 < )A .B .C .D .考点:在数轴上表示不等式的解集;解一元一次不等式. 专题:计算题.分析:求出不等式的解集,即可作出判断. 解答:解: 1+x < 0,解得: x <﹣ 1,表示在数轴上,如图所示: 故选 A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来 <>, ≥向右画;<, ≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示; “<”, “> ”要用空心圆点表示.jLBHrnAILg 7. <2018 福州)下列运算正确的是< ) 2 3 2 3 5 C . 3 3 A . a?a =a B . <a ) =a D . a ÷a =a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析: A .原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.2 3解答:解: A . a?a =a ,本选项正确;2 / 122 3 6B . <a ) =a ,本选项错误;C . < ) 2= ,本选项错误;3 3D . a ÷a =1,本选项错误, 故选 A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. xHAQX74J0X8. <2018 福州)如图,已知 △ ABC ,以点 B 为圆心, AC 长为半径画弧;以点 C 为圆心, AB 长为半径画 弧,两弧交于点 D ,且点 A ,点 D 在 BC 异侧,连结 AD ,量一量线段 AD 的长,约为 < ) LDAYtRyKfEA . 2.5cmB . 3.0cmC . 3.5cmD . 4.0cm考点:平行四边形的判定与性质;作图 —复杂作图.分析:首先根据题意画出图形,知四边形ABCD 是平行四边形,则平行四边形 ABCD 的对角线相等,即 AD=BC .再利用刻度尺进行测量即可.Zzz6ZB2Ltk 解答:解:如图所示,连接 BD 、 BC 、 AD .∵ AC=BD , AB=CD ,∴四边形 ABCD 是平行四边形, ∴ AD=BC .测量可得 BC=AD=3.0cm ,故选: B .点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9. <2018 福州)袋中有红球4 个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是 < ) dvzfvkwMI1A . 3 个B .不足 3 个C . 4 个D . 5 个或 5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球 4 个,取到白球的可能性较大,∴袋中的白球数量大于红球数量, 即袋中白球的个数可能是 5 个或 5 个以上.故选 D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.rqyn14ZNXI3 / 1210. <2018 福州) A, B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A<x+a ,y+b ),B<x , y),下列结论正确的是< ) EmxvxOtOcoA . a> 0B . a< 0 C. b=0 D . ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y 随 x 的增大而增大, y+b< y,x+a< x 得出 b<0,a< 0,即可推出答案. SixE2yXPq5解答:解:∵根据函数的图象可知:y 随 x 的增大而增大,∴ y+b < y, x+a< x,∴ b< 0, a<0,∴选项 A 、 C、 D 都不对,只有选项B 正确,故选 B .点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题 <共 5 小题,每小题 4 分.满分 20 分;请将正确答案填在答题卡相应位置)11.<2018 福州)计算:=.考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式= = .故答案为.点评:本题比较容易,考查分式的减法运算.12. <2018 福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360 度.故答案为: 360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13. <2018 福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得: <13 ×4+14×7+15×4)÷15=14< 岁),故答案为: 14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.3 314. <2018 福州)已知实数a, b 满足 a+b=2, a﹣ b=5 ,则 <a+b ) <a﹣ b)的值是.4 / 12考点:幂的乘方与积的乘方. 专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值. 解答:解:∵ a+b=2,a ﹣ b=5 ,∴原式 =[<a+b )<a ﹣ b ) ]3 =10 3 =1000. 故答案为: 1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15. <2018 福州)如图,由 7 个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ ABC 的顶点都在格点上,则 △ ABC 的面积是. 6ewMyirQFL考点:正多边形和圆.分析:延长 AB ,然后作出 C 所在的直线,一定交于格点 E ,根据 S △ABC =S △ AEC ﹣S △BEC 即可求 解. kavU42VRUs解答:解:延长AB ,然后作出 C 所在的直线,一定交于格点E . 正六边形的边长为 1,则半径是 1,则 CE=4 ,相邻的两个顶点之间的距离是: ,则 △ BCE 的边 EC 上的高是: , △ ACE 边 EC 上的高是: , 则 S △ABC =S △ AEC ﹣S △BEC=×4×<﹣) =2 . 故答案是: 2 .点评:本题考查了正多边形的计算,正确理解 S △ ABC =S △ AEC ﹣ S △BEC 是关键.三 . 解答题 <满分 90 分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) y6v3ALoS8916. <2018 福州) <1)计算: ;2<2)化简: <a+3 ) +a<4﹣ a )考点:整式的混合运算;实数的运算;零指数幂.分析: <1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果; M2ub6vSTnP<2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解: <1 )原式 =1+4 ﹣ 2=5﹣ 2 ; 2 2<2)原式 =a +6a+9+4a ﹣a =10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.0YujCfmUCw17. <2018 福州) <1)如图, AB 平分∠ CAD , AC=AD ,求证: BC=BD ;5 / 12<2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3 本,则剩余20 本;如果每人分4本,则还缺 25 本,这个班有多少学生? eUts8ZQVRd考点:全等三角形的判定与性质;一元一次方程的应用.分析: <1)求出∠ CAB= ∠DAB ,根据 SAS 推出△ABC ≌△ ABD 即可;<2)设这个班有x 名学生,根据题意得出方程3x+20=4x ﹣ 25,求出即可.解答: <1)证明:∵ AB 平分∠ CAD ,∴∠ CAB= ∠ DAB ,在△ ABC 和△ ABD 中∴△ ABC ≌△ ABD<SAS ),∴ BC=BD .<2)解:设这个班有x 名学生,根据题意得:3x+20=4x ﹣ 25,解得: x=45,答:这个班有45 名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18. <2018 福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表<单位: cm)sQsAEJkW5T组别身高A x< 155B155≤x< 160C160≤x< 165D165≤x< 170E x≥170根据图表提供的信息,回答下列问题:<1)样本中,男生的身高众数在组,中位数在组;<2)样本中,女生身高在 E 组的人数有人;<3)已知该校共有男生400 人,女生380 人,请估计身高在160≤x< 170 之间的学生约有多少人?6 / 12考点:频数 <率)分布直方图;用样本估计总体;频数 <率)分布表;扇形统计图;中位数;众数.专题:图表型.分析: < 1)根据众数的定义,以及中位数的定义解答即可;<2)先求出女生身高在 E 组所占的百分比,再求出总人数然后计算即可得解;<3)分别用男、女生的人数乘以 C 、D 两组的频率的和,计算即可得解.解答:解:∵ B 组的人数为 12,最多,∴众数在 B 组,男生总人数为 4+12+10+8+6=40 ,按照从低到高的顺序,第20、 21 两人都在 C 组, ∴中位数在 C 组;<2)女生身高在 E 组的频率为: 1﹣ 17.5%﹣ 37.5%﹣ 25%﹣15%=5% , ∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有 40×5%=2 人;<3) 400× +380×<25%+15% ) =180+152=332< 人).答:估计该校身高在160≤x <170 之间的学生约有 332 人. 故答案为 <1) B ,C ; <2) 2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.GMsIasNXkA 19. <2018 福州)如图,在平面直角坐标系 xOy 中,点 A 的坐标为 <﹣ 2, 0),等边三角形 AOC 经过平移或轴对称或旋转都可以得到 △OBD .TIrRGchYzg<1) △ AOC 沿 x 轴向右平移得到 △ OBD ,则平移的距离是个单位长度;△AOC 与 △BOD 关于直线对 称,则对称轴是; △AOC 绕原点 O 顺时针旋转得到 △ DOB ,则旋转角度可以是度; 7EqZcWLZNX <2)连结 AD ,交 OC 于点 E ,求∠ AEO 的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.7 / 12分析: <1)由点 A 的坐标为 <﹣ 2, 0),根据平移的性质得到△ AOC 沿 x 轴向右平移 2 个单位得到△ OBD ,则△ AOC 与△ BOD 关于 y 轴对称;根据等边三角形的性质得∠ AOC= ∠BOD=60 °,则∠ AOD=120 °,根据旋转的定义得△ AOC 绕原点 O 顺时针旋转 120°得到△ DOB ; lzq7IGf02E<2)根据旋转的性质得到OA=OD ,而∠ AOC= ∠BOD=60 °,得到∠ DOC=60 °,所以 OE 为等腰△AOD 的顶角的平分线,根据等腰三角形的性质得到 OE 垂直平分 AD ,则∠AEO=90 °. zvpgeqJ1hk 解答:解: <1 )∵点 A 的坐标为 <﹣2, 0),∴△ AOC 沿 x 轴向右平移 2 个单位得到△ OBD ;∴△ AOC 与△ BOD 关于 y 轴对称;∵△ AOC 为等边三角形,∴∠ AOC= ∠ BOD=60 °,∴∠ AOD=120 °,∴△ AOC 绕原点 O 顺时针旋转120°得到△ DOB .<2)如图,∵等边△AOC 绕原点 O 顺时针旋转120°得到△DOB ,∴OA=OD ,∵∠ AOC= ∠ BOD=60 °,∴∠ DOC=60 °,即OE 为等腰△AOD 的顶角的平分线,∴ OE 垂直平分 AD ,∴∠ AEO=90 °.故答案为2; y 轴; 120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.NrpoJac3v120. <2018 福州)如图,在△ ABC 中,以 AB 为直径的⊙ O 交 AC 于点 M ,弦 MN ∥ BC 交 AB 于点 E,且 ME=1 , AM=2 , AE= 1nowfTG4KI<1)求证: BC 是⊙ O 的切线;<2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析: <1)欲证明 BC 是⊙ O 的切线,只需证明 OB⊥BC 即可;8 / 12<2)首先,在 Rt △ AEM 中,根据特殊角的三角函数值求得∠ A=30 °;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠ BON=2 ∠A=60 °,由三角形函数的定义求得 ON==;fjnFLDa5Zo最后,由弧长公式l=计算 的长.解答: <1)证明:如图,∵ ME=1 ,AM=2 ,AE= ,2 2 2∴ME +AE =AM =4 , ∴△ AME 是直角三角形,且∠ AEM=90 °.又∵ MN ∥BC ,∴∠ ABC= ∠ AEM=90 °,即 OB ⊥ BC . 又∵ OB 是⊙ O 的半径,∴ BC 是⊙ O 的切线;<2)解:如图,连接 ON .在 Rt △ AEM 中, sinA= = ,∴∠ A=30 °.∵ AB ⊥ MN ,∴ = , EN=EM=1 ,∴∠ BON=2 ∠ A=60 °.在 Rt △ OEN 中, sin ∠ EON= ,∴ ON= = ,∴ 的长度是: ? = .点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点 <即为半径),再证垂直即可. tfnNhnE6e521. <2018 福州)如图,等腰梯形 A BCD 中, AD ∥ BC ,∠ B=45 °, P 是 BC 边上一点, △ PAD 的面积为,设 AB=x , AD=y HbmVN777sL<1)求 y 与 x 的函数关系式;<2)若∠ APD=45 °,当 y=1 时,求 PB ?PC 的值; <3)若∠ APD=90 °,求 y 的最小值.9 / 12考点:相似形综合题.专题:综合题.分析: <1)如图 1,过 A 作 AE 垂直于 BC ,在直角三角形 ABE 中,由∠ B=45 °, AB=x ,利用锐角三角函数定义表示出 AE ,三角形 PAD 的面积以 AD 为底, AE 为高,利用三角形面积公式表示出,根据已知的面积即可列出y 与 x 的函数关系式;V7l4jRB8Hs<2)根据∠ APC= ∠APD+ ∠ CPD,以及∠ APC 为三角形 ABP 的外角,利用外角性质得到关系式,等量代换得到∠ BAP= ∠ CPD ,再由四边形ABCD 为等腰梯形,得到一对底角相等及AB=CD ,可得出三角形ABP 与三角形 PDC 相似,由相似得比例,将CD 换为 AB ,由 y 的值求出x 的值,即为AB 的值,即可求出 PB ?PC 的值; 83lcPA59W9<3)取 AD 的中点 F,过 P 作 PH 垂直于 AD ,由直角三角形PF 大于等于 PH,当 PF=PH 时,PF 最小,此时 F 与 H 重合,由三角形APD 为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于 AD 的一半,表示出PF 即为 PH,三角形APD 面积以AD 为底,PH 为高,利用三角形面积公式表示出三角形 APD 面积,由已知的面积求出y 的值,即为最小值.mZkklkzaaP解答:解: <1 )如图 1,过 A 作 AE ⊥ BC 于点 E,在 Rt△ ABE 中,∠ B=45 °, AB=x ,∴ AE=AB ?sinB= x,∵ S△APD = AD ?AE= ,∴?y? x= ,则 y= ;<2)∵∠ APC= ∠ APD+ ∠ CPD= ∠B+ ∠ BAP ,∠ APD= ∠ B=45 °,∴∠ BAP= ∠CPD,∵四边形 ABCD 为等腰梯形,∴∠ B=∠ C,AB=CD ,∴△ ABP ∽△ PCD ,∴= ,∴PB?PC=AB ?DC=AB 2,当 y=1 时,x= ,即 AB= ,则 PB ?PC=<2) =2;<3)如图 2,取 AD 的中点 F,连接 PF,过P 作 PH⊥ AD ,可得 PF≥PH,当 PF=PH 时, PF 有最小值,∵∠ APD=90 °,∴PF= AD= y,∴PH= y,10 / 12∵S △APD = ?AD ?PH= ,∴ ?y? y= ,即 y 2=2,∵ y > 0,∴ y= , 则 y 的最小值为 .点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键. AVktR43bpw222. <2018 福州)我们知道,经过原点的抛物线的解读式可以是y=ax +bx<a ≠0)<1)对于这样的抛物线:当顶点坐标为 <1, 1)时,a=;当顶点坐标为 <m , m ), m ≠0 时, a 与 m 之间的关系式是<2)继续探究,如果 b ≠0,且过原点的抛物线顶点在直线 y=kx<k ≠0)上,请用含 k 的代数式表示 b ;<3)现有一组过原点的抛物线,顶点A 1, A 2, ⋯,A n 在直线 y=x 上,横坐标依次为 1, 2,⋯, n<为正整 数,且 n ≤12),分别过每个顶点作 x 轴的垂线,垂足记为B 1, B 2, ⋯, B n ,以线段 A n B n 为边向右作正方 形 A nBnCnDn ,若这组抛物线中有一条经过 Dn ,求所有满足条件的正方形边长.ORjBnOwcEd 考点:二次函数综合题.分析: <1)利用顶点坐标公式 <﹣ , )填空;<2)首先,利用配方法得到抛物线的解读式y=a<x+ ) 2﹣ ,则易求该抛物线的顶点坐标<﹣ ,﹣);然后,把该顶点坐标代入直线方程 y=kx<k ≠0),即可求得用含 k 的代数式表示 b ;<3)根据题意可设可设 A n<n , n ),点 Dn 所在的抛物线顶点坐标为 <t , t ).由 <1 )<2)可得,点 Dn 所在的抛物线解读式为 2 推知点 D n 的坐标是 <2n , n ),则把点 D n的坐标y= ﹣ x +2x .所以由正方形的性质代入抛物线解读式即可求得4n=3t .然后由 n 、 t 的取值范围来求点 A n 的坐标,即该正方形的边 长. 2MiJTy0dTT解答:解: <1 )∵顶点坐标为 <1,1), ∴,解得,,即当顶点坐标为<1,1)时, a=1;11 / 12当顶点坐标为<m, m), m≠0 时,,解得,则 a 与 m 之间的关系式是:a=﹣或 am+1=0 .故答案是:﹣1; a=﹣或 am+1=0 .<2)∵ a≠0,∴y=ax 2+bx=a<x+ )2﹣,∴顶点坐标是<﹣,﹣).又∵该顶点在直线y=kx<k ≠0)上,∴ k< ﹣) =﹣.∵b≠0,∴b=2k ;<3)∵顶点 A 1,A 2,⋯, A n在直线 y=x 上,∴可设 A n<n, n),点 D n所在的抛物线顶点坐标为<t, t).由 <1) <2)可得,点 D n 所在的抛物线解读式为y=﹣x2+2x .∵四边形 A nBnCnDn 是正方形,∴点 D n的坐标是 <2n, n),2∴﹣<2n ) +22n=n ,∴4n=3t.∵ t、n 是正整数,且t≤12, n≤12,∴n=3 , 6 或 9.∴满足条件的正方形边长是3,6 或 9.点评:本题考查了待定系数法求二次函数的解读式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答<3)题时,要注意n 的取值范围.gIiSpiue7A 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省福州市2018年初中毕业班质量检测数学试卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分. 注意事项:
1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.
3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束后,考生必须将试题卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符
合题目要求的. (1)-3的绝对值是
(A )13 (B )13-
(C )-3 (D )3
(2
)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是
(A ) (B ) (C )
(D )
(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划,“一带一路”
地区覆盖总人口约为4 400 000 000人,将4 400 000 000用科学记数法表示,其结果是 (A )44108 (B )4.4109 (C )4.4108 (D )4.41010 (4)如图,数轴上M ,N ,P ,Q
(A )M (B )N (C )P
(D )Q
(5)下列计算正确的是
(A )8a -a =8 (B )(-a )4=a 4 (C )a 3a 2=a 6
(D )(a -b )2=a 2-b 2 从正面看
M Q
N P
(6)下列几何图形不.是中心对称图形的是
(A)平行四边形(B)正方形
(C)正五边形(D)正六边形
(7)如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若»»»
AB BC CD
==,则图中阴影部分的面积是
(A)6π(B)12π
(C)18π(D)24π
(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度.A,B在格点上,现将线段AB向下平移m个单位长度,再向左平移n个单位长度,
得到线段A′B′,连接AA′,BB′.若四边形AA′B′B是正方形,则m+n的值
是
(A)3 (B)4
(C)5 (D)6
(9)若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是
(A)a,b(B)a,b+2
(C)a+2,b(D)a+2,b+2
(10)在平面直角坐标系xOy中,A(0,2),B(m,m-2),则AB+OB的最小值是
(A)
(B)4
(C)
(D)2
第Ⅱ卷
注意事项:
1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.
二、填空题:本题共6小题,每小题4分,共24分. (11)2
-1
= .
(12)若∠α=40°,则∠α的补角是 °. (13)不等式2x +1≥3的解集是 .
(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同.
从袋子中随机摸出1个球,这个球是白球的概率是 .
(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE .
若F 恰好是CD 的中点,则AD AB
的值是 .
(16)如图,直线y 1=43-x 与双曲线y 2=k x
交于A ,B 两点,点C 在x 轴上,连
接AC ,BC .若∠ACB =90°,△ABC 的面积为10,则k 的值是 .
三、解答题:本题共9小题,共86
(17)(本小题满分8分)
先化简,再求值:2
212(1)11
x x x x -+-
÷++,其中x =1+.
(18)(本小题满分8分)
如图,点B ,F ,C ,E 在一条直线上,AB ∥DE ,AC ∥DF 且AC =DF ,求证:AB =DE .
(19)(本小题满分8分)
如图,在Rt △ABC 中,∠C =90°,∠B =54°,AD 是△ABC 的角平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明DE =DB .(要求:尺规作图,保留作图痕迹,不写作法)
A C
B
D A E
B
F C
D A
E C
B
F
我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图1所示的算
筹图用我们现在所熟悉的方程组的形式表述出来,就是41061134x y x y +=⎧⎨+=⎩
.,
请你根据图2所示的算
筹图,列出方程组,并求解.
图1
图2
(21)(本小题满分8分) 如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB =2∠PCB ,求证:PC 是⊙O 的切线. (22)(本小题满分10分)
已知y
x
-
3.5
-
3
-2
-1
1 2
3 4 y
4
2
1
0.67
0.5
2.03
3.13
3.78
4
象与性质进行探究.
(Ⅰ)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点.根据描出的
点,画出该函数的图象;
序号 函数图象特征 函数变化规律
示例1 在y 轴右侧,函数图象呈上升状态 当0<x ≤4时,y 随x 的增大而增大 示例2 函数图象经过点(-2,1) 当x =-2时,y =1 (ⅰ) 函数图象的最低点是(0,0.5)
(ⅱ) 在y 轴左侧,函数图象呈下降状态
的取值范围为 .
1 2 3 4 5 x
y 1 2 3 5 4 -1 -2 -3 -5 -4 O
B P
C
O
李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需的时间分别做了20次统计,并绘制如下统计图:
请根据以上信息,解答下列问题.
(Ⅰ)完成右表中(ⅰ),(ⅱ)的数据:
(Ⅱ)李先生从家到公司,除乘车时间外,
另需10分钟(含等车,步行等).该
公司规定每天8点上班,16点下班.
(ⅰ)某日李先生7点20分从家里
出发,乘坐哪路车合适?并说明理由;
(ⅱ)公司出于人文关怀,允许每个员工每个月迟到两次.若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)
(24)(本小题满分12分)
已知菱形ABCD,E是BC边上一点,连接AE交BD于点F.
(Ⅰ)如图1,当E是BC中点时,求证:AF=2EF;
(Ⅱ)如图2,连接CF,若AB=5,BD=8,当△CEF为直角三角形时,求BE的长;
(Ⅲ)如图3,当∠ABC=90°时,过点C作CG⊥AE交AE的延长线于点G,连接DG,若BE=BF,求tan∠BDG的值.
图1 图2 图3
(25)(本小题满分14分)
如图,抛物线y=ax2+bx(a>0,b<0)交x轴于O,A两点,顶点为B.
(Ⅰ)直接写出A,B两点的坐标(用含a,b的代数式表示);
(Ⅱ)直线y=kx+m(k>0)过点B,且与抛物线交于另一点D(点D
与点A不重合),交y轴于点C.过点D作DE⊥x轴于点E,连
接AB,CE,求证:CE∥AB;
(Ⅲ)在(Ⅱ)的条件下,连接OB,当∠OBA=120°
≤k
求AB
CE 的取值范围.
次数
/min
路公交
路公交
B
A
C
D
E
F
G
B
A D
C
E
F
B
A D
C
E
F
参考答案。