高中数学数列求和题解题方法技巧

合集下载

数列求和常见的7种方法

数列求和常见的7种方法

数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。

数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

高中数学数列求和的七种方法

高中数学数列求和的七种方法

高中数学数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

下面是小编给大家带来的数列求和的七种方法,希望能够帮助到大家!
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或
等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

数列求和的基本方法和技巧

数列求和的基本方法和技巧

2021/2/2141
[例3] 求和 :S n 1 3 x 5 x 2 7 x 3 ( 2 n 1 ) x n 1
………①
解:由题可知,{(2n1)xn1}的通项是等差数 列{2n-1}的通项与等比数列{ x n1 }的通项之积 设 x n S 1 x 3 x 2 5 x 3 7 x 4 ( 2 n 1 ) x n ……… ②
101010 10 10
10
.
2021/2/2140
第三步,两式进行错位相减得:
1 1S n 0 2 1 9 0 1 9 20 1 9 30 .. . 1 9 . .n0 .n 1 1 9 n 0 1
化简整理得:
Sn
9910n119n1
10
11
.
.
1
• 数列是高中代数的重要内容,又是学习高 等数学的基础. 在高考占有重要的地位. 数 列求和是数列的重要内容之一,除了等差
数列和等比数列有求和公式外,大部分数 列的求和都需要一定的技巧. 下面谈谈数列 求和的基本方法和技巧.
.
2
一.公式法:即 直 接 用 求 和 公 式 , 求 数 列 的 前 n 和 S n
【错位相减法】设 {an}的前n项和为Sn,an=n·2n,则Sn=
解析:∵Sn=1·21+2·22+3·23+…
+n·2n

∴2Sn=
1·22+2·23+3·24+…+(n-1)·2n+n·2n+1②
21-2n
① -②得-Sn=2+22+23+…+2n-n·2n+1=
-n·2n+1
1-2
=2n+1-2-n·2n+1
2、已知数列 1 ,3 a ,5 a2, ,(2 n 1 )an 1(a0 )

数列求和的常见方法

数列求和的常见方法

数列求和的常见方法数列求和是高中数学中重要的概念之一,常见的数列求和方法有多种,包括等差数列求和公式、等比数列求和公式、Telescoping Series(直线和数列)等。

在本文中,我将介绍这些常见的数列求和方法,并给出相应的例子以加深理解。

一、等差数列求和公式等差数列是指一个数列中每个数与它的前一个数的差都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等差数列的求和公式为:Sn = (a1 + an)n/2,其中Sn表示数列前n项和,a1表示首项,an表示末项,n表示项数。

例1:求等差数列1,4,7,...,97的和。

解:这是一个等差数列,首项a1 = 1,末项an = 97,项数n =(an - a1)/d + 1 = (97 - 1)/3 + 1 = 33、代入公式Sn = (a1 + an)n/2,得到S33 = (1 + 97)× 33/2 = 1617二、等比数列求和公式等比数列是指一个数列中每个数与它前一个数的比都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等比数列的求和公式为:Sn=a1×(1-q^n)/(1-q),其中Sn表示数列前n项和,a1表示首项,q表示公比。

例2:求等比数列2,4,8,...,1024的和。

解:这是一个等比数列,首项a1 = 2,末项an = 1024,q = an/a1= 1024/2 = 512、项数n = logq(an/a1) + 1 = log512((1024/2)/2) +1 = 10。

代入公式Sn = a1 ×(1 - q^n)/(1 - q),得到S10 =2 ×(1 - 512^10)/(1 - 512) = 2046三、Telescoping Series(直线和数列)Telescoping Series是一种特殊的数列,其中每个项都可以通过其前一项和下一项抵消,最终只剩下首项和末项。

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。

解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。

一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。

求等差数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。

例如,给定一个等差数列的首项为3,公差为2,求前10项的和。

根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。

然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。

二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。

求等比数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。

例如,给定一个等比数列的首项为2,公比为3,求前5项的和。

根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。

三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。

1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。

例如,1,1,4,16,...。

求平方数列的前n项和,可以利用平方数的求和公式来解决。

求和公式为:Sn = (2^(n+1) - n - 2) / 3。

2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。

例如,1,1,2,3,5,...。

求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。

高中数学数列求和方法

高中数学数列求和方法

高中数学数列求和方法数列是数学中常见的概念之一,它是由一系列有序的数所构成的集合。

数列求和是数列中的重要问题之一,可分为等差数列和等比数列求和两类。

一、等差数列求和1.表达式法对于等差数列,其通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差。

若已知数列的首项、末项和项数,则可以根据求和公式Sn=n(a1+an)/2来求和,其中Sn表示数列的和。

这种方法适用于已知数列的前n项求和。

2.规律法有些等差数列存在规律,可通过分组进行求和。

例如,对于等差数列1,4,7,…,97,可将其分解为(1+97)+(4+94)+(7+91)+…+(49+49),共有25组,每组的和都是98、因此,该数列的和等于25×98=2450。

3.差分法等差数列的求和还可以利用差分法进行求解。

首先将数列的前n项依次相减得到一个新的数列,然后再对新数列进行求和,即可得到原数列的和。

例如,对于等差数列1,2,3,…,100的和,首先得到的差分数列为1,1,1,…,1,接着对差分数列进行求和,得到的和等于100。

二、等比数列求和1.通项公式法等比数列的通项公式为an=a1×q^(n-1),其中a1表示首项,q表示公比。

已知数列的首项、末项和项数时,可以利用求和公式Sn=a1(q^n-1)/(q-1)来求和。

这种方法适用于已知数列的前n项求和。

2.等比中项法对于等比数列,若首项和第三项已知,则可以求出公比q=(第3项/首项)^(1/2),从而求得数列的和。

这种方法适用于已知数列的首项和第三项求和。

3.分组求和法对于一些等比数列,可以通过合理的分组求和来得到数列的和。

例如,对于等比数列1,3,9,…,6561,可以发现这个数列可以分解为(1+3)+(3+9)+(9+27)+…+(2187+6561),共有10组,每组的和为4、因此,该数列的和等于10×4=40。

三、求和公式的推导1.等差数列求和公式的推导我们将等差数列的前n项分别记作a1,a2,…,an。

学会数列求和的几种常用方法

学会数列求和的几种常用方法

学会数列求和的几种常用方法数列求和是高中数学的一个重要知识点,是高考的热点。

数列求和方法有很多,但在高考中离不开以下三种常用方法。

1、分解为等差数列与等比数列的前n 项和【例1】求222222)2()12(4321n n S n --++-+-=【解】)12(22)21(]2)12(4321[]2)12)][(2()12[()43)(43()21)(21(+-=+-=+-+++++-=+---+++-++-=n n nn n n n n n n S n【例2】设数列}{n a 满足:当5≤n 时,12-=n n a ,当6≥n 时,12-=n a n ,求它的前n项和n S .【解】当5≤n 时,122121222112-=--=++++=-n n n n S ;当6≥n 时,由于前5项成等比数列,从第6项起成等差数列,故)12()172()162()12(5-++-⨯+-⨯+-=n S n62)5)(12162()12(25+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)6(6)5(122n n n S n n 【例3】求)1()1()1(1122-+++++++++++=n n a a a a a a S【解】当1≠a 时,aa a a a n a a a a a a a a S nn n -+++--=--++--+--+--=1111111111232 即21)1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)1(2)1()1()1(121a n n a a a a a n S n n2、裂项相消法【例4】求∑=-=nk n kS 12141【解】由于)121121(211412+--=-k k k ,所以 12)1211(21)]121121()5131()311[(2114112+=+-=+--++-+-=-=∑=n n n n n k S nk n 【例5】求∑=-+=nk n k k S 122391【解】由于)231131(3123912+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(31239112+=+-=+--++-+-=-+=∑=n nn n n k k S nk n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=nk k k n a a S 111与∑=+=nk k k n a a S 121的求和问题都是用裂项求和法。

高中数列求和方法大全

高中数列求和方法大全

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+-Λ的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学数列求和题解题方法技巧
数列求和的七种解法
1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜
想证明起到了关键作用。

高中数学解题方法实用技巧
1
解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2
因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3
配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:
4
换元法
解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:
设元→换元→解元→还元
5
待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:
①设②列③解④写
6
复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:
(-----)(----)=0 两种情况为或型
②配成平方型:
(----)2+(----)2=0 两种情况为且型
7
数学中两个最伟大的解题思路
(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组
8
化简二次根式
基本思路是:把√m化成完全平方式。

即:
9
观察法
10
代数式求值
方法有:
(1)直接代入法
(2)化简代入法
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11
解含参方程
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论
(3)分类写出结论
12
恒相等成立的有用条件
(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13
恒不等成立的条件
由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14
平移规律
图像的平移规律是研究复杂函数的重要方法。

平移规律是:
15
图像法
讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分
值域图像在Y轴上对应的部分
单调性
从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像最高点处有最大值,图像最低点处有最小值
奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数
16
函数、方程、不等式简的重要关系
方程的根
函数图像与x轴交点横坐标
不等式解集端点
17
一元二次方程的解法
一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。

具体步骤如下:
二次化为正
判别且求根
画出示意图
解集横轴中
18
一元二次方程根的讨论
一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。

“图像法”解决一元二次方程根的问题的一般思路是:
题意
二次函数图像
不等式组
不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19
基本函数在区间上的值域
我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。

基本函数求值域或最值有两种情况:
(1)定义域没有特别限制时---记忆法或结论法;
(2)定义域有特别限制时---图像截断法,一般思路是:
画出图像
截出一断
得出结论
20
最值型应用题的解法
应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。

解决最值型应用题的基本思路是函数思想法,其解题步骤是:
设变量
列函数
求最值
写结论
21
穿线法
穿线法是解高次不等式和分式不等式的最好方法。

其一般思路是:
首项化正
求根标根
右上起穿
奇穿偶回
注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。

②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

相关文档
最新文档