非球面光学设计

非球面光学设计
非球面光学设计

非球面光学元件检测方法

非球面光学元件检测方法 学院:光电学院 学号: 2520120037 姓名:张宇碟 2012 年11 月 摘要:随着当今社会生活要求的提高,非球面在越来越广泛的领域所运用,因

此非球面的质量迫切需要提高,非球面的检测技术成为研究的热点。该文阐述了光学投影式、郎奇检验法、曲面CGH全息图检测法和双波带板产生径向剪切干涉法四中比较热门的非球面检测法,介绍了上述几种方法的原理、光学系统和数据处理方式,并且归纳了检测技术总体的发展趋势。 关键词:非球面;检测方法;郎奇光栅;波带板;剪切干涉 1 绪论 1.1 非球面的定义以及检测方法的分类 1.1.1 引言

人们在几百年前就认识到非球面光学元件在光学应用上相对于球面光学元件有很多优势。但是由于受到加工水平和加工工艺的限制,一直以来非球面光学元件没有得到真正的广泛应用。直到上世纪七十年代,非球面镜片才开始不断的被应用到实际生产中。由于实际生产的需要,人们不断的尝试加工出更精确的非球面光学元件,因此非球面光学技术得到发展。八十年代后,由于计算机的应用和激光干涉技术的发展,非球面技术得到了蓬勃的发展。 非球面光学元件的面形质量直接影响其成像质量,是其广泛应用的最关键的技术之一,面形质量就是指加工制成的表面形状和理论形状的符合程度。对光学表面来说,表面的实际形状相对于理论形状允许一定的偏差。一般用光的波长的几分之几来表示。光学元件的面形检测就是指找到实际面形相对于理论形状的偏差。找到这个偏差就是检验的基本目的。 1.1.2 非球面的定义: 非球面是相对于球面定义的,球面是由一个参数,即球面半径来决定它的面形,而非球面可以拥有多个参数,参数之间没有一定的关系可循,可以是连续变化的。按照有无回转轴可以将非球面划分为两大类:有回转轴的包括抛物面、椭圆面等;没有回转轴的包括离轴抛物面等[1]。 面上每一点的曲率半径都相同的面为球面。而面上每一点的曲率半径随着曲面的位置而改变的面就是非球面。非球面分为凸非球面和凹非球面两大类,包括双曲面、抛物面、椭圆面等等。非球面也可以理解为除了球面以外的曲面。 表示非球面的常用公式: () +++++-+?= 8866442 221X A X A X A X k L L X shape Z (1) 式中:X 表示距非球面对称轴的水平距离,L 表示顶点曲率半径,k 表示二次曲 线常数,4A 、 6A 、表示非球面修正系数,?? ?-+,凸面 ,凹面 11shape ,Z 表示非球面的旋转对称轴上的对应值。若式中的2X 换成22Y X +则表示相应的旋转曲面。 当非球面修正系数4A 、 6A 都为零时,上式可以写成二次圆锥曲线方程: ()2 2 21X k L L X shape Z +-+?= (2) 当L 值相同时,k 变化与形状的关系: 0>Z 凹面 0

非球面透镜

球面与非球面的区别 光学透镜的镜面通常是制成球面状的,从透镜中心到周边有一定的曲率,这种透镜称为球面透镜。非球面透镜的镜面则是从透镜中心到周边曲率作连续变化的,非球面透镜又有单面非球面和双面非球面两种。 现代相机镜头要求较高的光学性能、需要校正多种像差。前面已讲到,由球面透镜组成的镜头,是采用多片透镜的组合来克服像差的。这种由球面透镜组成的镜头,会不同程度地存在一定的“球差”。采用非球面透镜组成的镜头则能有效地克服“球差”。非球面透镜组成的镜头,其优点包括如下四个方面:一是能理想地克服球差,可以制成大口径高像质镜头;二是能全向提高镜头的成像质量;三是能减少镜头的透镜片数; 四是可以减少镜头的长度,有利于镜头小型化,参见图1—2。 所谓球面和非球面,主要是针对镜头(各种相继、显微镜等镜头)、眼镜(包括隐形眼镜)的镜片几何形状而言,即球面镜片与非球面镜片。二者在几何形状上的差别决定了它们在平行的入射光的折射方向上产生差异,从而影响其成像效果的好坏。 球面镜片,其镜片呈球面的弧度,其横切面亦呈弧状。当不同波长的光线,以平行光轴入射后镜片上不同的位置时,在菲林平面(与镜片中心和镜片焦点联机相垂直的、通过焦点的平面)上不能聚焦成一点,而形成像差的问题,影响影像的质素,例如出现清晰度下降和变形等现象。一般普通镜头是采用球面镜片组成的。 为解决这一成像问题,可以透过在镜身内增加镜片以作为对像差的矫正,但此举可能会引起反效果,进一步削弱影像质素,因为额外的镜片,除增加光线在镜身内反射的机会,引起耀光现象外,亦会增加镜头的体积和重量。 非球面镜片,其镜片并非呈球面的弧度,而是镜片边绿部份被「削」去少许,其横切面呈平面状。当光线入射到非球面镜面时,光线能够聚焦于一点,亦即菲林平面上,以消除各种象差。例如耀光现象在球面镜使用大光圈会比细光圈下拍摄来得严重,但若然加入非球面镜便可将耀光情况大大降低;又例如影像呈现变形(枕状或桶状),乃因镜头内的光线没有适当折射而产生,以变焦镜为例,短焦距时通常是桶状变形而变焦至长焦距时则为枕状变形,若采用非球面镜,则可以改善这方面的像差。 引用非球面镜技术,对生产大光圈、高倍数变焦、以至极端广角及远摄的镜头最为有利,影像质素因像差的减少而有所提高,镜身体积亦有缩小。现时市面有不少镜头生产商均表示旗下部份焦距的镜头采用了非球面镜片,以至轻便变焦相机(例如28至90mm、38至105mm

光学系统设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它是你要 的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你 要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第二、三行键入 0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学 系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的 effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue 上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO 即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。Zemax 的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负 值。再令第2面镜的thickness为100。 9、现在数据已大致输入完毕。如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的 Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。

明月光学:非球面镜片与球面镜片的区别

明月光学:非球面镜片与球面镜片的区别 大多人对镜片可能都有所了解,镜片分为球面镜片和非球面镜片。那么什么是非球面镜片,球面镜片和非球面镜片又有什么区别呢?。 非球面镜片它的表面弧度与普通球面镜片不同,为了追求镜片薄度就需要改变镜片的曲面,以往采用球面设计,使的像差和变形增大,结果出现明显的影像不清,视界歪曲、视野狭小等不良现象。现在非球面的设计,修正了影像,解决视界歪曲等问题,同时,使镜片更轻、更薄、更平。而且,仍然保持优异的抗冲击性能,使配戴者安全使用。 眼镜片球面和非球面的区别一副适合个人的眼镜片是好的镜片,而在配镜中,有人配非球面的,也有人配球面的镜片,都说适合自己,那么,眼镜片球面和非球面的区别是怎样的呢? 从镜片的外观相比较的话,一般非球面的镜片更为美观,这是因为非球面的镜片,在相同的材质和度数下,非球面的比球面的镜片要更平,更薄,因而一般度数偏高的人多数是配戴非球面镜片的,这种非球面镜片佩戴后感觉很舒适。 一般传统的非球面镜片周边看事物的话,出现扭曲的现象,而非球面设计的话,将镜片的边缘相差减少到最小。非球面镜片的表面弧度是非球面设计的,看事物更自然,事物变形小,看事物也更加逼真。 对于轻度近视患者而言,佩戴球面镜片和非球面镜片都差不多,可以选择球面镜片。但如果是超过-2.00DS的人以及有散光的人,选择非球面镜片会比较好,可以很好的减少事物变形,佩戴也很舒适。 球面镜片的度数越高的话,外观看起来也越差,球面镜片不能消除相差。而非球面镜片外观美观,减少了镜片的相差,可以获得更加清晰的视野。并且镜片镀膜后,非球面的镜片拥有更完美的视觉表现,视野更清晰,更舒适。 明月光学的负责人谢先生始终强调,不可忽视镜片。在做镜片、办企业的几十年从业过程中,谢先生始终将质量放于第一位,在明月镜片的理念中,依次排序为质量、需求、创新。拿谢先生的话说,质量无论如何都是第一位的,无论是再高科技的东西,质量不行,产品就是废品,反而因为技术含量越高,因为质量问题导致消费者的伤害与反感也越大。明月镜片在生产品过程中的工序到产品流水线的检测都必须严谨,任何苛刻在产品质量上,都不是一个贬义词。 而需求,则在做产品的过程中,都要从消费者角度出考虑。从现实的生活情况出发,明月镜片在非球面镜片的研发中,从来不满足于消除像差这一变革,而是充分去考虑消费者在实际生活中遇到的更多问题,例如辐射,防蓝光,镜片强度等问题。试想一个户外工作者,一个运动爱好者,固然非球面镜片是好的,但是他可能更需要一副镜片——不易碎,更安全。所以只有当满足了消费者这2个需求,例如像超韧,那么消费者才会认同你。 非球面镜片是什么?明月镜片的理解是,是解决了一个消费者都有的问题:影像不清,视界歪曲、视野狭小;还要解决不同消费者不同问题:结合消费者的不同属性、要求的镜片。

非球面光学零件超精密加工技术

非球面光学零件超精密加工技术 1.概述 1.1 非球面光学零件的作用 非球面光学零件是一种非常重要的光学零件,常用的有抛物面镜、双曲面镜、椭球面镜等。非球面光学零件可以获得球面光学零件无可相比的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,进步系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低本钱并有效的减轻仪器重量。 非球面光学零件在军用和民用光电产品上的应用也很广泛,如在摄影镜头和取景器、电视摄像管、变焦镜头、电影放影镜头、卫星红外看远镜、录像机镜头、录像和录音光盘读出头、条形码读出头、光纤通讯的光纤接头、医疗仪器等中。 1.2 国外非球面零件的超精密加工技术的现状 80年代以来,出现了很多种新的非球面超精密加工技术,主要有:计算机数控单点金刚石车削技术、计算机数控磨削技术、计算机数控离子束成形技术、计算机数控超精密抛光技术和非球面复印技术等,这些加工方法,基本上解决了各种非球面镜加工中所存在的题目。前四种方法运用了数控技术,均具有加工精度较高,效率高等特点,适于批量生产。 进行非球面零件加工时,要考虑所加工零件的材料、外形、精度和口径等因素,对于铜、铝等软质材料,可以用单点金刚石切削(SPDT)的方法进行超精加工,对于玻璃或塑料等,当前主要采用先超精密加工其模具,而后再用成形法生产非球面零件,对于其它一些高硬度的脆性材料,目前主要是通过超精密磨削和超精密研磨、抛光等方法进行加工的,另外.还有非球面零件的特种加工技术如离子束抛光等。 国外很多公司己将超精密车削、磨削、研磨以及抛光加工集成为一体,并且研制出超精密复合加工系统,如Rank Pneumo公司生产的Nanoform300、Nanoform250、CUPE研制的Nanocentre、日本的AHN60―3D、ULP一100A(H)都具有复合加工功能,这样可以便非球面零件的加工更加灵活。 1.3 我国非球面零件超精密加工技术的现状 我国从80年代初才开始超精密加工技术的研究,比国外整整落后了20年。近年来,该项工作开展较好的单位有北京机床研究所、中国航空精密机械研究所、哈尔滨产业大学、中科院长春光机所应用光学重点实验室等。 为更好的开展对此项超精密加工技术的研究,国防科工委于1995年在中国航空精密机械研究所首先建立了国内第一个从事超精密加工技术研究的重点实验室。

非球面透镜技术的基础知识

非球面透镜技术的基础知识 光学人生,你的精彩人生!球面透镜是指从透镜的中心到边缘具有恒定的曲率,而非球而透镜则是从小心到边缘之曲率连续发生变化。在摄影镜头中,为了保证光学性能,必须校正众多的“像差”。若仅仅用球面透镜来校正,则对应镜 头的技术要求需要有许多透镜组合。仆巳对于特殊的高级镜头,汉仅用球面透镜有时不能使像差校正到用户满意的程度。光学设计中的计算公式:1,技术原理 非球面透镜,曲率半径随着中心轴而变化,用以改进光学品质,减少光学元件,降低设计成本。非球面透镜相对于球面透镜具有独特的优势,因此在光学仪器、图像、光电子工业得到了广泛的应用,例如数码相机、CD播放器、高端 显微仪器。2,对比优势 a 球差校准非球面透镜用以替换球面透镜,最显著的优势在于可以修正球面透镜在准直和聚焦系统中所带来的球差。通过调整曲面常数和非球面系数,非球面透镜可以最大限度的消除球差。非球面透镜(光线汇聚到同一点,提供光学品质),基本上消除了 球面透镜所产生的球差(光线汇聚到不同点,导致成像模糊)。采用三片球面透镜,增大有效焦距,用于消除球差。但是,一片非球面透镜(高数值孔径,短焦距)就可以实现,并且简化系统设计和提供光的透过率。 b 系统优势非

球面透镜简化了光学工程师为了提高光学品质所涉及的元素,同时提高了系统的稳定性。例如在变焦系统中,通常情况下10片或者更多的透镜被采用(附加:高的机械容差, 额外装配程序,提高抗反射镀膜),然而1片或者2片非球 面透镜就可以实现类似或更好的光学品质,从而减小系统 尺寸,提高成本率,降低系统的综合成本。3,成型工艺 a 精密玻璃模压成型精密玻璃模压成型,是将玻璃材料加热至高温而变得具有可塑性,通过非球面模具来成型,然后逐步冷却至室温。目前,精密玻璃模压成型,不适用于直径大于10mm的非球面透镜。但是,新的工具、光学玻璃和计量过程,都在推动该项技术的发展。精密玻璃 模压成型,虽然在设计初期时成本较高(高精密的模具开发),但是模具成型后,生产的高品质产品可以平摊掉前期的开发成本,特别适合于需要大批量生产的场合。 b 精密抛 光成型研磨和抛光一般适用于一次生产单片非球面透 镜的场合,随着技术的提高,其精度越来越高。最为显著,精准抛光由计算机进行控制,自动调整以实现参数优化。如果需要更高品质的抛光,磁流变抛光(magneto-rheological finishing)将被采用。磁流变抛光相对于标准抛光而言,具 有更高的性能和更短的时间。精密抛光成型,需要专业的设备,目前是样品制作和小批量试样的首要选择。 c 混 合成型混合成型,以球面透镜为基底,通过非球面模

应用光学简答题

应用光学试题 一、问答题 1、在几何光学框架内,光的传播规律可归纳为四个基本定律,请分别简述其内容。 (1)光的直线传播定律:在各向同性介质中,光沿直线传播。 (2)光的独立传播定律:从不同的光源发出的光束以不同的方向通过空间某点时,彼此互不影响,各光束独立传播。 (3)反射定律:入射光线、反射光线和投射点法线三者在同一平面内,入射角和反射角二者绝对值相等且符号相反,即入射光和反射光在法线两侧。 (4)折射定律:入射光线、折射光线和投射点法线三者在同一平面内,入射角的正弦与折射角的正弦之比与入射角的大小无关,而与两种介质的性质有关。对一定波长的光线,在一定温度和压力的条件下,该比值为一常数,等于折射光线所在介质的折射率n'和入射光线所在介质的折射率n之比。 2、何为马吕斯定律?光学系统成完善像的条件是什么? (1)马吕斯定律:光线在各向同性的均匀介质中传播时,始终保持着与波面的正交性;并且入射波面和出射波面对应点之间的光程均为定值。 (2)光学系统成完善像的条件: 光束一致(入射、出射光束均为同心光束);波面一致(入射、出射波面均为球面波);物、像点间任意光路的光程相等。 3、何为阿贝不变量和拉赫不变量?它们的物理意义是什么? (1)阿贝不变量:1111''Q n n r l r l ????=-=- ? ????? ;其物理意义是,近轴区,一折射面的物空间和像空间的一对共轭点的位置是确定的。 (2)拉赫不变量:'''nyu n y u J == ,'''nytgu n y tgu J == ;进入光学系统的总能量是保持不变的(前者针对近轴区而言,后者是对前者的推广,是系统对任意大小物体用任意光束成像的普式)。 4、光学系统对轴上点成像时会存在哪些像差?它们有什么特点? 会存在球差和位置色差。 (1)球差:轴上点发出的同心光束经过光学系统后,不在是同心光束,不同入射高度(h )的光线将于光轴于不同的位置,相对近轴像点(理想像点)有不同程度的偏离,这种偏离称轴向球差。轴上点的球差,具有关于光轴对称性,其只与系统的孔径有关。 (2)位置色差: 轴上点两种色光成像位置的差异称位置色差。其轴上物点成像是彩色弥散斑。 5、光学系统中有哪几类光栏?并概述它们的作用? 光学系统中有孔径光阑、视场光阑和渐晕光阑,其作用分别如下: (1)孔径光阑:限制轴上物点成像光束孔径大小。 (2)视场光阑:限制系统的成像范围。

光学基础知识:球面像差与非球面镜片

光学基础知识:球面像差与非球面镜片 作者:色影无忌小西整理 球面像差(spherical aberration)是由于透镜表面是球面而引起的。由光轴上同一物点发出的光线,通过镜头后,在像场空间上不同的点会聚,从而发生了结像位置的移动。 对于全部采用球面镜片的镜头而言,这是一种无可避免的像差。它的产生是由于离轴距离不同的光线在镜片表面形成的入射角不同而造成的。 当平行的光线由镜面的边缘(远轴光线)通过时,它的焦点位置比较靠近镜片;而由镜片的中央通过的光线(近轴光线),它的焦点位置则比较远离镜片(这种沿着光轴的焦点错间开的量,称为纵向球面像差)。 由于这种像差的缘故,就会在通过镜头中心部分的近轴光线所结成的影像周围,形成由通过镜头边缘部分的光线所产生的光斑(Halo,光晕),使人感到所形成的影象变成模糊不清,画面整体好象蒙上一层纱似的,变成缺少鲜锐度的灰蒙蒙的影像。这个光斑的半径称为横向球面像差。 球面像差在镜头光圈全开或者接近全开的时候表现最为明显,口径愈大的镜头,这种倾向愈明显。 在镜头使用上,通过缩小光圈可适当消除球面像差。 但是需要注意的是:如果像差过大,通过缩小光圈消除像差,可能会引起聚焦平面(就是焦点)的移动。 对于球面镜片的球面像差进行矫正,是件非常困难的事情。通常是以某一个入射距(从光轴起算的距离)的光线为基准,然后使用凸、凹两枚镜片加以适当的组合来完成。但是,只要使用球面镜片,某种程度的球面像差就无法获得很大的改善。 要想彻底消除大口径镜头全开状态的球面像差,除了采用非球面镜片(Aspherical Lens)之外,别无他法。 非球面镜片的作用就是通过修改镜片表面的曲率,让近轴光线与远轴光线所形成的焦点位置重合。 目前主要有三种制造非球面镜片的方法:

数控加工光学非球面技术研究

数控加工光学非球面技术的研究 The Aspheric optics processing technology studies CNC

摘要 自从非球面加工技术出现以来,至今几百年来采用的加工方法已有50多种,传统的加工方法虽然能达到较高的精度,但这种加工方法加工效率低、重复精度差。在最近几年出现的数控加工光学非球面技术大大解决了传统加工方法存在的缺陷。它提高了加工精度和加工质量、缩短了产品研制周期等。在诸如航空工业、汽车工业等领域有着大量的应用。由于生产实际的强烈需求,国内外都对数控加工技术进行了广泛的研究,并取得了丰硕成果。本文将简单的介绍一些非球面和数控机床的理论知识,传统加工非球面技术。最后重点介绍数控加工光学非球面技术。 关键词: 数控加工非球面抛光技术计算机控制

ABSTRACT Since the emergence of non-spherical processing technology ,about 50 methods in the optical processing have been used. Although traditional processing methods can achieve high accuracy, this processing method has processing inefficiency and poor repeatability precision . In recent years the NC aspheric optics technology greatly solve the traditional processing methods flawed. It improves processing accuracy and processing quality, and shorten the product development cycle and so on. A large number of applications has been found in some areas such like the aviation industry, and the auto industry. Because of the strong demand, Home and Abroad are on the NC machining techniques for a wide range of research, and achieved fruitful results.This paper will briefly introduces some technology of the Non-spherical and NC machine tools and the traditional processing.And highlights NC aspheric optical processing technology in the last part. Keywords : CN Aspheric optics Polishing Technology CCOS

非球面透镜

产品名称:非球面透镜 产品说明: 专注非球面透镜 产品的非球面生产采用日本超精密单点金刚石多轴自由曲面加工机床加工,应用了脆硬材料塑性域的超高精密磨削技术、超高精密抛光(研磨)技术等等,其加工金刚石刀具每刀的加工深度可以控制在2纳米;整个多轴自由曲面加工机床系统在高精度工业控制计算机的控制下,可以加工任意形状的自由曲面,包括非球面系列产品,能达到0.1微米的面形等等加工尺寸精度和0.01微米的表面粗糙度。 非球面测量使用英国泰勒×霍普森公司生产的非球面测量仪,对非球面的表面粗糙 度、轮廓、形状误差、圆弧和非球面形状误差等等项目进行测量。 主要产品是高精密等级及超高精密等级的非球面透镜、非球面反射镜、非球面高温成型模具,可以加工的材质及其应用如下表所示: 器件类型 材料 应用领域 非球面镜头 光学玻璃 显微镜、照相、摄影系统中的大口径透镜、广角镜头、鱼眼透镜、 变焦镜头等等 红外线非球面镜头 单晶锗、单晶硅 等等 夜视镜、医用内视镜、激光加工、红外热像仪、温度记录仪、红外眼底照相机、卫星红外望远镜等等 非球面反射镜 铝合金、铜、磷 青铜 激光加工机、大型显示器等等 非球面高温成型模具 碳化硅、氮化硅、 陶瓷、镍合金等 等 大批量生产注射成型、模压成型的玻璃非球面、光学塑料非球面 产品所用模具等等 椭圆体非球面反射镜 石英玻璃、碳化 硅 X 射线系统等等 特征: 1、按照图纸要求来加工各种凸凹抛物面、凸凹椭圆面、凸凹双曲面等等非球面产品,包括非球面透镜、反射镜、红外线非球面透镜、反射镜等等。 2、按照图纸要求来加工注射成型及模压成型的玻璃非球面、光学塑料、树脂等等材料非球面产品所用的超高精密模具。 特性: 1、产品非球面部分最大外形尺寸: 圆形:直径φ150mm ×高度25mm 方形:长150mm ×宽150mm ×高度25mm 2、以上产品按照要求可以达到以下精度等级: 超高精密等级:面形误差<0.1μm ,表面粗糙<0.025μm 高精密等级:面形误差<1μm ,表面粗糙度<0.1μm 3、其它技术参数指标按照图纸要求进行生产。 4、镀膜:按照要求进行镀膜 镜片部:销售经理

改进型卡塞格林光学系统的设计

收稿日期:2011-09-12 基金项目:国家863计划项目资助 作者简介:张磊(1981-),男,博士,讲师,主要从事光学设计、光电设计、光电检测及光通信等研究,E-mail :zhangl@https://www.360docs.net/doc/2c8275196.html, 。 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition ) 第34卷第4期2011年12月 Vol.34No.4Dec.2011 改进型卡塞格林光学系统的设计 张磊,刘智颖,胡源,高天元 (长春理工大学 光电工程学院,长春 130022) 摘 要:普通的卡塞格林光学系统,其主次镜分别由抛物面和双曲面组合而成,非球面镜的加工难度大、成本高,针对这 些特点对卡塞格林光学系统进行了改进。改进型的卡塞格林光学系统与传统的卡塞格林光学系统对比具有加工难度小、成本低等特点,通过在系统最前面附加前校正组,使得主次镜可以由球面面型实现,通过在像面前设置后校正组使视场也得到了提高,与传统的卡塞格林光学系统20'相比,它的视场可以拓宽到1.3°。系统设计结果通过传递函数与点列图的分析与衍射极限非常接近,为中等口径卡塞格林光学系统的设计提供了一个新的思考方法。关键词:改进型卡塞格林光学系统;球面;遮拦比;视场;传递函数中图分类号:TH706 文献标识码:A 文章编号:1672-9870(2011)04-0030-03 Improved Design of Cassegrain Optical System ZHANG Lei ,LIU Zhiying ,HU Yuan ,GAO Tianyuan (School of Opto-electronic Engineering ,Changchun University of Science and Technology ,Changchun ,130022)Abstract :The traditional cassegrain system is generally composed of the parabolic primary mirror and the hyperbolic secondary mirror.The difficulty and cost of the manufacturing of the aspherical surface is very high.And the image quality is easy to be effected by the manufacture error and environment variation.Based on these characteristic ,the im-proved cassegrain system is designed with preference of lower difficulty and cost manufacturing.The primary mirror and the secondary mirror are both spherical surface instead of the aspherical surface.The image quality is analyzed related to not only the optical component radius ,thickness and the material but also secondary mirror central obscuration.The central obscuration ratio is chose reasonably based on the theory of annular diffraction.The field of view of the im-proved cassegrain system is enlarged from 20'to 1.3°.It is shown that the system assessed by optical transfer function and spot diagram is much closed to the diffraction limit.The successful improved cassegrain system design is demon-strated.It provides meaningful view for reflected optical system design. Key words :improved cassegrain system ;spherical surface ;obscuration ratio ;field of view ;optical transfer function 随着空间光通信的发展对其所使用的光学系统的分辨率也提出了更高的要求,所使用的光学系统主要有卡塞格林、格里高利和牛顿式系统等,其中应用最广泛的就是卡塞格林光学系统。传统的卡塞格林光学系统属于反射式系统,没有色差,口径可以做得较大,尽可能接收多的能量。从消除像差的角度上看,卡塞格林光学系统可以在减少光学元件个数的同时消除球差,其系统具有体积小、重量轻、结构 紧凑等特点。传统的卡塞格林光学系统虽然具有上述优点,也同时存在一些弊端,其缺点之一是其主镜和次镜都是非球面,其制造比球面困难得多;其缺点之二是没有满足正弦条件,像质优良的视场太小,当视场增大时,其轴外像差也会加大,为此,Ritchey 和Cretien 提出了所谓R-C 系统,但是R-C 系统的视场也不过20′左右是比较好的。对于实验室中的平行光管设计可以,但是这对于空间光通信的系

非球面光学技术综述(激光杂志)

非球面光学设计技术综述 勾志勇1 摘要非球面光学在工业、国防和商业等领域的应用中具有十分重要的意义。当用非球面设计光学系统时,非球面方程的选用十分重要,决定着系统最佳优化结果。文章介绍了非球面光学技术的发展过程,分析了常用非球面的应用方程,并对非球面应用方程的特点及非球面系数的关系进行了概述,较详细地分析了各类非球面应用方程的适用范围,最后概述了非球面光学在军事、工业等领域的应用以及发展趋势。 关键词非球面光学;非球面透镜;非球面系数;光学设计 The summary of aspheric optical design technology Abstract Aspheric optics is important in national defence, industry and other fields of application. While using aspheric surfaces in the design of optical system, it is quite important to decide which aspheric equations to choose. And it can also make the optics system perfect. This paper mainly introduces the development of aspheric optics and analyzes some kinds of aspheric equations. It also summarizes the characteristics of aspheric equations and their relationship with aspheric coefficient. And it details the areas of applications on some kinds of aspheric equations. In the end, the paper presents the typical applications and development tendency of aspheric optics in military, industry field, and so on. Keyword aspheric optics; aspheric lens; aspheric coefficient; optical design 引言 16世纪,人们逐渐开始对非球面光学感兴趣,在古代和中世纪,人们就知道用抛物镜通过反射对远距离物体成像。1611年,Johannn Kepler打算把双曲面应用在透镜表面上。可在折射定律为人们所不知的年代,就透镜而言,他不能用科学证明来支持他的观点。直到1618年,Snell确立了折射定律。基于此发现,1638年,Johannn Kepler把非球面面型在透镜上进行实验,使在近、远距离获得无球差像面,从而逐渐奠定了非球面光学基础,此面型也被命名为笛卡儿面 (Cartesian surfaces)[1]。自从加工工艺和光学检测水平提高,非球面光学得到了广泛的应用,在美国AN/AVS-6型飞行员微光夜视眼镜中就采用了9块非球面塑料透镜,另外,在AN/PVS-7步兵微光夜视眼镜、HOT夜视眼镜、“铜斑蛇”激光制导炮弹导引头和其他激光测距机、军用望远镜及各种照相机的取景器中都采用了非球面透镜。 1.非球面之定义 非球面光学元件,是指面形由多项高次方程决定、面形上各点的半径均不相同的光学元件。一般应用在光学系统中的透镜及反射镜,曲面型式多数为平面和球面,原因是这些简单型式的曲面加工、检验容易,但是用在某些高度精密成像系统有一定的限度。虽然非球面的复杂曲面制造困难,但在某些光学系统中依然是需要的。采用非球面技术设计的光学系统,可消除球差、慧差、像散、场曲,减少光能损失,从而获得高质量的图像效果和高品质的光学特性(如图1)。 作者简介:勾志勇(1979-),男,重庆人,土家族,硕士研究生,主要从事光学系统设计工作。 作者e-mail:gouzhiyong@https://www.360docs.net/doc/2c8275196.html,

分析报告-非球面光学镜头

非 球 面 光 学 镜 头 项 目 建 议 书 昆明禹诚投资管理咨询有限公司编制 Kunming Yunnan China 昆明钱局街186号兴云大厦606室 邮编:650031 电话:(0871)5339860 非球面光学镜头 项 目 建 议 书 昆明禹诚投资管理咨询有限公司编制 昆明钱局街186号兴云大厦606室 邮编:650031 电话:(0871)5339860 Kunming Yunnan China 目 录 第1章 总论 1. 项目提出的必要性和依据 2. 主要经济技术指标 第2章 产品市场现状及初步预测 第3章 资源情况及原材料供应状况 3.1 资源情况 3.2 原材料供应状况 第4章 项目主要技术内容 4.1 技术指标及技术来源 4.2 技术负责单位和主要技术负责人简介

第5章 项目实施方案 5.1 项目选址及拟建规模 5.2 产品工艺方案 5.3 项目承担单位和项目负责人简介 第6章 项目投资估算及资金筹措 第7章 项目社会经济效益分析 7.1 项目经济效益分析 7.2 项目社会效益及生态效益分析 第8章 项目实施进度 第1章 总 论 1. 1 项目提出的必要性和依据 随着光学和电子技术的发展,光电技术不仅广泛地应用于国民经济、科学技术和日常生活的各个领域,而且光学零件也由大而分散的零件发展成为小的集成元件。在这个发展过程中非球面光学零件起着很重要的作用。所谓非球面光学零件简单地说就是光学零件的面形是一个高次曲面,其数学方程是一个高次方程。非球面光学零件不仅可以校正球差、慧差、畸变、像散等像差,使光学系统的像质提高,从而增大观察或瞄准的视场和作用距离,而且使用少量的非球面光学零件就能显著地减少整个系统的零件数量,缩小系统的尺寸,从而节省大量的材料和劳动工作量,在降低成本的同时还减少光能损失,提高成像的清晰度。非球面技术是近几年少数几个发达国家首先发展起来的高科技应用技术。 自从有光学仪器以来,其光学系统的透镜都是采用玻璃球面透镜,据不完全统计,目前仅在中国的光学仪器制造行业中,透镜每年的生产量有2亿件左右。早在17世纪,科学家就认识到在光学系统中采用非球面光学零件的优点,但长期以来一直未能推广应用,这主要是非球面光学零件的制造和检测要比球面光学零件困难得多。过去,非球面光学零件主要靠技术熟练的工人用手工进行修抛,生产率很低,成本很高,重复精度不能保证。随着科学技术的发展,特别是精密加工和计算机技术的发展,在70年代在非球面光学零件的加工方法上有了突破。加工效率、精度和成本等方面取得了许多令人满意的研究成果。目前国外非球面光学零件的制造技术主要有计算机数控精磨抛光技术,计算机数控单点金刚石车削技术,光学玻璃透镜精密模压成型技术,光学塑料注射成型技术等。目前国外的各种非球面加工工艺已经处于比较成熟的阶段。从大到几米直径小到几毫米直径、从单件到大批量、从高精度到一般精度都能加工。可以根据产品的规格和批量的要求选用不同的非球面加工工艺,经济合理地加工出非球面光学零件。

应用光学知识点

第一章几何光学基本定律与成像概念 1、波面:某一时刻其振动位相相同的点所构成的等相位面成为波阵面,简称波面。光的传播即为光波波阵面的传播。 2、光束:与波面对应的所有光线的集合。 3、波面分类: a)平面波:对应相互平行的光线束(平行光束) b)球面波:对应相较于球面波球心的光束(同心光束) c)非球面波 4、全反射发生条件: a)光线从光密介质向光疏介质入射 b)入射角大于临界角 5、光程:光在介质中传播的几何路程l与所在介质的折射率n的乘积s。光程等于同一时间内光在真空中所走的几何路程。 6、费马原理:光从一点传播到另一点,期间无论经过多少次折射和反射,其光程为极值。 7、马吕斯定律:光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 8、完善像: a)一个被照明物体每个物点发出一个球面波,如果该球面波经过光学系统后仍为一球 面波,那么对应光束仍为同心光束,则称该同心光束的中心为物点经过光学系统后 的完善像点。 b)每个物点的完善像点的集合就是完善像。 c)物体所在空间称为物空间,像所在空间称为像空间。 10、完善成像条件: a)入射波面为球面波时,出射波面也为球面波。 b)或入射光为同心光束时,出射光也为同心光束。 c)或物点A1及其像点之间任意两条光路的光程相等。 11、物像虚实:几个光学系统组合在一起时,前一系统形成的虚像应看成当前系统的实物。 12、子午面:物点和光轴的截面。 13、决定光线位置的两个参量: a)物方截距:曲面顶点到光线与光轴交点A的距离,用L表示。 b)物方孔径角:入射光线与光轴的夹角,用U表示。 14、符号规则 a)沿轴线段:以折射面顶点为原点,由顶点到光线与光轴交点或球心的方向于光线传 播方向相同时取证,相反取负 b)垂轴线段:以光轴为基准,在光轴上方为正,下方为负。 c)夹角: i.优先级:光轴》光线》法线。 ii.由优先级高的以锐角方向转向优先级低的。 iii.顺时针为正,逆时针为负。 15、球差:单个折射球面对轴上物点成像是不完善的。球差是固有缺陷。 16、高斯像:轴上物点在近轴区以细光束成像是完善的,这个像称为高斯像。 a)通过高斯像点且垂直于光轴的平面称为高斯像面。 b)这样一对构成物象关系的点称为共轭点。

非球面光学元件行业概述

非球面光学元件行业概述 第一节行业特性 一、行业定义 非球面光学元件,是指面形由多项高次方程决定、面形上各点的半径均不相同的光学元件。一般应用在光学系统中的透镜及反射镜,曲面型式多数为平面和球面,原因是这些简单型式的曲面加工、检验容易,但是用在某些高度精密成像系统有一定的限度。虽然非球面的复杂曲面制造困难,但是在某些光学系统中依然是需要的。采用非球面技术设计的光学系统,可消除球差、彗差、像散、场曲,减少光能损失,从而获得高质量的图像效果和高品质的光学特性。非球面光学与球面光学相比有很大的优势,非球面可以提高系统的相对口径比,扩大视场角,在提高光束质量的同时透镜数比球面构成的少,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,镜头的形状小型化、降低成本并有效的减轻仪器重量。 非球面光学元件是一种非常重要的光学元件,常用的有抛物面镜、双曲面镜、椭球面镜等。非球面光学元件可以获得球面光学元件无可比拟的良好的成像质量,非球面光学元件在军用和民用光电产品上的应用很广泛,如在摄影镜头和取景器、电视摄像管、变焦镜头、电影放影镜头、卫星红外望远镜、录像机镜头、录像和录音光盘读出头、条形码读出头、光纤通信的光纤接头、医疗仪器等中。 二、行业发展概况 随着光学事业不断发展以及光学仪器在各个领域的高要求、高精

度应用,非球面光学设计由原来的单一型、低阶次逐渐向复合型、多阶次方向发展,为满足非球面加工、检验,新的加工技术、检验技术也在不断地完善。 目前,国内外非球面加工技术主要有:计算机数控、单点金刚石车削技术、高精密数控抛光技术、光学玻璃透镜模压成型技术、光学塑料成型技术等;检测非球面光学系统的方法主要有:干涉法、阴影法、激光束平移旋转法等。 在光学组件进展历程中,大概可以1980年为界,在这之前以使用球面光学组件为主,之后则开始进展到使用非球面光学组件,到了1990年以后,则开始使用精密的非球面光学组件与自由曲面光学组件。现今对光学组件的要求愈趋于微小化、复杂化,且形状精度要求极高,自由曲面的应用领域愈来愈广,如何有效且快速地制作与检测自由曲光学组件已成为目前光学产业的重要课题。 1、国外非球面零件的超精密加工技术的现状 80年代以来,出现了许多种新的非球面超精密加工技术,主要有: 计算机数控单点金刚石车削技术、计算机数控磨削技术、计算机数控离子束成形技术、计算机数控超精密抛光技术和非球面复印技术等,这些加工方法,基本上解决了各种非球面镜加工中所存在的问题。前四种方法运用了数控技术,均具有加工精度较高,效率高等特点,适于批量生产。 进行非球面零件加工时,要考虑所加工零件的材料、形状、精度

相关文档
最新文档