高中数学《椭圆及其标准方程(2)》公开课优秀教案

合集下载

《椭圆及其标准方程》第二课时教学设计

《椭圆及其标准方程》第二课时教学设计

教学篇•方法展示一、教学背景1.教材分析《椭圆及其标准方程》是继学习“圆及其标准方程”之后运用“曲线与方程”的思想解决二次曲线问题的又一实例。

从知识体系上讲,本节课是对用坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础。

从教材安排上讲,椭圆是三种圆锥曲线当中最重要的一种,教材中以椭圆为例,求椭圆方程,利用方程讨论几何性质,以及探究轨迹方程和符合椭圆标准方程的动点的轨迹的方法。

从方法上说为我们后面研究双曲线、抛物线提供了基本模式和理论基础,起着承上启下的重要作用。

2.学情分析在学习本节课前,学生已经学习了“曲线和方程”和“椭圆及其标准方程”,对用坐标法研究几何问题已经有了一些了解,基本能运用求曲线方程的一般方法求曲线的方程,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何的时间还不长,学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免有些困难,比如:自我检测2学生想不到把1a2和1b2分别看作整体,例1动点A 的运动轨迹不是椭圆,而要叙述为动点A在椭圆上运动,还有会把轨迹和轨迹方程这两个概念混淆。

二、教学目标1.知识目标:求椭圆的标准方程;求符合条件的点的轨迹方程。

2.能力目标:使学生掌握确定椭圆标准方程中参数a,b的方法;掌握求动点轨迹方程的一些方法(如直接法、相关点法等)。

3.情感目标:激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

通过主动探索、合作交流,感受探索的乐趣和成功的经验,体会数学的理性和严谨。

三、教学重点、难点重点:椭圆的标准方程,求动点的轨迹方程。

难点:求动点的轨迹方程。

四、教法和学法教法:设疑诱思、问题导学、合作探究。

学法:动手练习、主动探索、共同交流。

五、教学准备1.学生准备:复习椭圆及其标准方程,预习教材第41、42页例题。

2.教师准备:教学设计,多媒体课件制作。

3.教学手段:利用计算机多媒体教学。

说课椭圆及其标准方程(2)公开课一等奖课件PPT

说课椭圆及其标准方程(2)公开课一等奖课件PPT
说课椭圆及其标准方程(2)公开课一等 奖课件
汇报人:可编辑
2023-12-23
目 录
• 课程导入 • 椭圆的标准方程 • 椭圆的几何性质 • 椭圆的实际应用 • 课堂练习与巩固 • 课程总目的
01
02
03
激发学生学习兴趣
通过有趣的导入内容,引 起学生对本节课主题的兴 趣,使他们更加投入地参 与到课堂中。
在说课环节,部分学生的表达不够流 畅,需要加强口语表达能力的训练。
下节课的展望
针对学生在本节课中存在的问题 ,制定针对性的练习和巩固措施 ,帮助他们更好地掌握椭圆的标
准方程。
加强口语表达能力的训练,提高 学生的说课水平。
增加探究性学习的内容,满足学 生的探究需求,培养他们的创新
思维和实践能力。
THANKS
观测数据
通过观测椭圆轨道上的天体,可以获 取精确的天文数据,有助于科学家研 究宇宙的奥秘。
工程设计
桥梁设计
桥梁的曲线设计有时采用椭圆形状,以实现结构的稳定和美 观。
建筑设计
椭圆在建筑设计中也常被用作装饰元素或结构设计的灵感来 源。
05
课堂练习与巩固
基础练习
01
02
03
04
椭圆的标准方程
请写出椭圆的标准方程,并解 释其含义。
形。
04
椭圆的实际应用
地球轨道研究
椭圆轨道
地球围绕太阳的公转轨道是一个 椭圆,通过研究椭圆的性质,可 以更好地理解地球的运动规律。
卫星轨道
卫星的轨道设计也经常采用椭圆 形,利用椭圆的特性实现卫星的 精确控制和稳定运行。
天文观测
天体轨迹
椭圆形状在天文学中广泛用于描述行 星、卫星和其他天体的运动轨迹。

说课:椭圆及其标准方程 (2) 公开课一等奖课件PPT

说课:椭圆及其标准方程 (2) 公开课一等奖课件PPT

二、过程意识
3、练习巩固,感悟新知----知识的运用
(1)写出适合下列条件的椭圆的标准方程(课本P40)
①a=4,b=1,焦点在x轴上
②a=4,c= 15 ,焦点在y轴上
如果该椭圆上一点P到焦点F1的距离等于6,那么P到
另一个焦点F2距离是---------------
(2)已知椭圆两个焦点的坐标分别为 (2,0),(2,0) ,并
图1
二、过程意识
现在请同学们将细绳的两端拉开一段距离,分别固 定在圆板的两点F1、F2处,移动笔尖一周,看看这时笔 尖画出的轨迹是什么图形?
这时候动点P满足的几何条件又是什么?学生不难说 出动点到两定点距离之和等于定长(常数)。
这时根据学生回答的情况结合
教具的演示让学生直观感知,假如 绳子的的长度(常数)小于或等于
36 16
36 16
D. x2 y2 1
64 4
二、过程意识
(4)如图:画出所给的椭圆的焦点的位 置,并说明理由。(补充练习)
y
x o
二、过程意识
说明:这个环节结合教学目标对教材例题、习 题进行了重组和加工,以学生的练习、感悟为 主,不预设例题,那个题目需要分析、讲解由 课堂实际而定,另外练习尽可能体现题形多样 性和层次性,以满足不同层次的学生的需要。 分析解答中注意发现学生思维的闪光点,注意 不同思维、方法的碰撞。 设计意图:不同于以往,这个环节通过放手让 学生自己练习、感悟,让学生在“游泳中学会 游泳”,以增强对学生能力培养的针对性和实 效性。
三、探究意识
y p
o
课外探究(2)
设计意图:通过创造性的使用 教材,一方面使针对教材内容所 开展的探究性活动成为一种真 x 实的可能;另一方面通过这样 的设计可逐渐培养学生自主学 习、自我探索的良好习惯,并 最终从根本上转变学生的学习 方式,同时为对学生数学学习 的过程性评价找到一种比较好 的形式和一个很好的落脚点。

高中数学选修2椭圆及其标准方程公开课教学设计

高中数学选修2椭圆及其标准方程公开课教学设计

§2.2.1 椭圆及其标准方程■一、教学背景——————————————————————————————1.1 学生特征分析学生的知识储备:必修二学习了直线方程,圆的方程,初步体会了方程与几何对象的对应关系,并能运用代数方程解决一些简单的几何问题。

学生的方法储备:由于必修二直线方程和圆的方程的学习和本章第一节曲线与方程的学习,学生应基本理解运用坐标法将几何问题代数化的想法,但还缺少实际运用,对方法的认识不够深刻。

1.2教师特点分析自己教学中的优势:注重问题引导、思路分析、善于将学科课程与信息技术的整合、善于鼓励学生,能对学生进行有效指导。

不足:课堂教学语言相对不够准确简练、板书不够清晰美观。

1.3 学习内容分析从知识上来讲:椭圆是本章中学到的第一个圆锥曲线,也是三种圆锥曲线中最重要的一个。

对上一节来言,是运用坐标法研究曲线几何性质的一次实际运用,也是进一步研究椭圆几何性质的基础。

从方法上来讲:为后续双曲线和抛物线的学习奠定了理论基础,起示范的作用。

因此无论内容上还是方法上,本节都起着承上启下的作用。

■二、设计思想————————————————————————————————学生已经学习了直线和圆的方程,并且学习了曲线与方程的关系,初步理解求曲线方程的想法。

本节课椭圆无论在定义的发现还是方程的推导上都是很好的教学素材。

因此在定义的发现环节,精心设计学生活动,有教师的展示,有学生的动手实验,注重概念的生成过程。

在方程的推导阶段,注重数学思想方法的渗透,类比的思想,数形结合的思想。

不断强调几何关系和代数表示之间的关系,为学生充分领会解析几何的思想方法提供指导。

在例题的选取上,注重层次感,让不同层次的学生都能学到不同层次的数学。

讲练结合,讲在关键处,讲在练之后,让学生经历挫折,调整,成功的过程。

在问题的设计方面,充分考虑不同层次的学生情况,充分体现学生的分组讨论,团结合作。

在学生的分组上,考虑4人小组,每组依据层次编为1—4号,不同小组同号码段学生层次接近,营造即有合作又有竞争的课堂教学氛围。

高中数学《椭圆及其标准方程》公开课优秀教学设计

高中数学《椭圆及其标准方程》公开课优秀教学设计

《椭圆及其标准方程》教学设计说明一、教学内容解析本节课是人教A版《普通高中课程标准实验教科书·数学》选修2-1中的第二章第二节第一课时的内容,其主要内容是研究椭圆的定义及其标准方程,属于概念性知识.解析几何是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科.从知识上讲,本节是在必修课程《数学2》中直线和圆的基础上,对解析法的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上讲,为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲,三种圆锥曲线独编为一章,体现椭圆的重要地位。

解析几何的意义主要表现在数形结合的思想上.在研究椭圆定义和方程的过程中,几何直观观察和代数严格推导相互结合,同时要借助圆作类比,用类比的思想为学生的思维搭桥铺路.因此本节课内容起到了承上启下的重要作用,是本章和本节的重点.教学重点:椭圆的定义及其标准方程。

二、教学目标设置1.课程目标(1)了解圆锥曲线与二次方程的关系;(2)掌握圆锥曲线的基本几何性质;(3)感受圆锥曲线在刻画现实世界和解决实际问题中的作用;(4)结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想.2.单元目标(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;(2)经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;(3)了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质;(4)能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题;(5)通过圆锥曲线的学习,进一步体会数形结合的思想.3.本节课教学目标(1)通过用细绳画椭圆的实验,能用自己的语言叙述椭圆的定义,会用定义判定点的轨迹;(2)类比建立圆的方程的方法,通过交流讨论,能选择适当的直角坐标系建立椭圆的方程;(3)结合椭圆的标准方程和它的几何图形,能指出参数a、b、c的几何意义;(4)会用椭圆定义和标准方程解决与课本上类似的题目;(5)通过椭圆知识的学习,体会类比思想、数形结合思想和坐标法。

椭圆及其标准方程第二课时(教学设计)高中数学新教材选择性必修第一册

椭圆及其标准方程第二课时(教学设计)高中数学新教材选择性必修第一册

3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。

当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。

椭圆及其标准方程(第2课时)高中数学获奖教案

椭圆及其标准方程(第2课时)高中数学获奖教案

3.1.1 椭圆及其标准方程(第二课时)(人教A 版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.巩固椭圆的定义和标准方程,掌握求点的轨迹方程的三种方法:定义法、直接法、代入法(相关点法);2.通过动点轨迹方程的求解过程,培养学生归纳、类比、迁移的能力,激发学生学习兴趣,提高学生的创新意识.二、教学重难点1.重点:求动点轨迹方程的三种方法.2.难点:结合条件选取恰当的方式求动点的轨迹方程.三、教学过程1.复习巩固,引入新课上节课我们学习了椭圆的定义并推导出了它的标准方程,那椭圆的定义是什么?标准方程有哪几种形式?【答案预设】(1)平面内到两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆.其中,叫椭圆的焦点,叫椭圆的焦距.1F 2F 21F F 1F 2F 21F F(2)椭圆标准方程有两种形式:焦点在x轴上, 焦点在y 轴上, 其中【设计意图】加深对椭圆定义及其标准方程的理解,为求动点的轨迹方程做准备.2.自主探究,得出新知活动1:如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :的内部与其内切,求动圆圆心P 的轨迹方程.【活动预设】经过分析,发现点P 的轨迹符合椭圆的定义,再根据椭圆的定义求出点P 满足的标准方程.)(12222>>=+b a by a x )0(12222>>=+b a bx a y 22c a b -=64)3(22=+-y x【设计意图】让学生掌握定义法求动点的轨迹方程.活动2:如图设A ,B 两点的坐标分别为(-5,0),(5,0). 直线AM ,BM 相交于点M ,且他们的斜率之积是,求点M 的轨迹方程.【活动预设】设动点M 的坐标为(x ,y),根据题目意思用含x ,y 的式子表示直线AM ,BM 的斜率,得到x ,y 的关系式,求出轨迹方程.写出的关系式若学生没有注明限制条件时,引导学生关注特殊点的要求.【设计意图】类比椭圆标准方程推导过程,利用直接法求动点的轨迹方程,并去除不符合条件的特殊点.活动3:如图,在圆上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?【活动预设】由点M 是线段PD 的中点得到点M 的坐标与点P 坐标之间的关系式,并由点P 坐标满足圆的方程代入得到点M 的坐标所满足的方程.94-422=+y x【设计意图】让学生体会椭圆生成的另一种方式,利用代入法(相关点法)求动点的轨迹方程.思考:由活动3我们发现,可以由圆通过“压缩”得到椭圆.想一想,能由圆通过“拉伸”得到椭圆吗?如何“拉伸”?由此你能发现椭圆与圆之间的关系吗?3.应用巩固,强化方法已知A(0,-1),B(0,1),三角形ABC的周长为6,求顶点C的轨迹方程.4.归纳小结,思维提升(1)回顾了椭圆的定义和标准方程,学习并体会了生成椭圆轨迹的几种方式,掌握了求轨迹方程的三种方法:①定义法②直接法③代入法(相关点法).(2)数学思想:数形结合、转化化归、类比归纳【设计意图】(1)梳理本节课学习的数学知识,体会探究过程中渗透的数学思想方法;(2)培养学生敢于思考,不断总结的思维习惯,提升学生的数学核心素养,鼓励学生积极攀登知识高峰,为进一步的数学学习做好准备.四、课外作业1. 课本109页,练习第3、4题;2. 课本115页,习题3.1 第6、8、9、10题.课后探究:课下与同学一起探究完成思考题,体会由圆得到椭圆的两种方式,并思考由圆得到的椭圆有哪些性质.【设计意图】(1)通过练习巩固本节课所学的内容和方法,让学生学会用知识解决问题;(2)分层布置作业,让学有余力的同学多思考,多花时间研究问题.。

高中数学《椭圆及其标准方程(2)》公开课优秀教案

高中数学《椭圆及其标准方程(2)》公开课优秀教案

高中数学《椭圆及其标准方程(2)》公开课教案一、教学目标: 知识与技能:①能正确运用椭圆的定义与标准方程解题;学会用待定系数法与定义求曲线的方程; ②进一步感受曲线方程的概念,掌握建立椭圆方程的基本方法,体会数形结合的思想。

过程与方法:①培养学生的观察归纳能力、探索发现能力以及合作学习能力。

②提高运用坐标法解决几何问题的能力及运算能力; 同时体会运用数形结合思想解决问题的能力. 情感态度与价值观:①激发学生学习数学的兴趣、培养学生勇于探索,敢于创新的精神.②通过探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨, ③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

二、教学重点与难点重点:用待定系数法与定义法求椭圆方程。

难点:掌握求椭圆方程的基本方法。

三、教学方法:四环节教学法,启发引导法 四、教学手段:多媒体辅助教学 五、教学过程: (一)问题情境:如果点M(x,y)在运动过程中,总满足关系式:10)3()3(2222=-++++y x y x ,点M 的轨迹是什么曲线?写出它的方程.(复习旧知,学生讨论,教师引导得出答案)回答问题:由题意得:点M (x ,y )到点F1(0,-3)与点F2(0,3)的距离之和为常数10。

回顾旧知:1.椭圆的定义:我们把 叫做椭圆,这两个定点F 1、F 2叫做椭圆的 ,两个焦点之间的距离叫做椭圆的 ,通常用2c (c>0)表示,而这个常数通常用2a 表示,椭圆用集合表示为 。

2.椭圆的标准方程焦点在X 轴的椭圆的标准方程为:焦点在Y 轴上椭圆的标准方程为: . (二)新知探究:1.口答练习:(提问学生完成以下问题)①方程194522=+y x 表示到焦点F1 和F2 _____的距离和为常数____的椭圆; ②求满足下列条件的椭圆的标准方程 ③如果方程1my 4x 22=+表示焦点在X 轴的椭圆,则实数m 的取值范围是 . ④ 已知∆ABC 中,B (-3,0),C (3,0),且AB ,BC ,AC 成等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《椭圆及其标准方程(2)》公开课教案
一、教学目标: 知识与技能:
①能正确运用椭圆的定义与标准方程解题;学会用待定系数法与定义求曲线的方程; ②进一步感受曲线方程的概念,掌握建立椭圆方程的基本方法,体会数形结合的思想。

过程与方法:
①培养学生的观察归纳能力、探索发现能力以及合作学习能力。

②提高运用坐标法解决几何问题的能力及运算能力; 同时体会运用数形结合思想解决问题的能力. 情感态度与价值观:
①激发学生学习数学的兴趣、培养学生勇于探索,敢于创新的精神.
②通过探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨, ③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

二、教学重点与难点
重点:用待定系数法与定义法求椭圆方程。

难点:掌握求椭圆方程的基本方法。

三、教学方法:四环节教学法,启发引导法 四、教学手段:多媒体辅助教学 五、教学过程: (一)问题情境:
如果点M(x,y)在运动过程中,总满足关系式:10)3()3(2222=-++++y x y x ,点M 的轨迹是什么曲线?写出它的方程.
(复习旧知,学生讨论,教师引导得出答案)
回答问题:由题意得:点M (x ,y )到点F1(0,-3)与点F2(0,3)的距离之和为常数10。

回顾旧知:
1.椭圆的定义:
我们把 叫做椭圆,这两个定点F 1、F 2叫做椭圆的 ,两个焦点之间的距离叫做椭圆的 ,通常用2c (c>0)表示,而这个常数通常用2a 表示,椭圆用集合表示为 。

2.椭圆的标准方程
焦点在X 轴的椭圆的标准方程为:
焦点在Y 轴上椭圆的标准方程为: . (二)新知探究:
1.口答练习:(提问学生完成以下问题)
①方程
19
452
2=+y x 表示到焦点F1 和F2 _____的距离和为常数____的椭圆; ②求满足下列条件的椭圆的标准方程 ③如果方程1m
y 4x 2
2=+表示焦点在X 轴的椭圆,则实数m 的取值范围是 . ④ 已知∆ABC 中,B (-3,0),C (3,0),且AB ,BC ,AC 成等差数列。

(1)求证:点A 在一个椭圆上运动; (2)写出这个椭圆的焦点坐标。

2.探究1:
已知椭圆两个焦点的坐标分别是1F (-2,0),F 2(2,0),并且经过点P )2
3
,25(-,求
它的标准方程.
先让学生自己思考,然后引导学生得出:可类比圆的标准方程,先确定标准方程的形式,用椭圆的定义或待定系数法求解。

教师指出:注意椭圆有两种标准方程,要正确选择。

法1.定义法:
12(1)5,(3,0),(3,0)=-a F F (2)5,3
==a c
因为椭圆的焦点在x 轴上,所以设它的标准方程为).0(122
22>>=+b a b
y a x
由椭圆的定义知,,102232252322522
222=⎪⎭

⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=a
所以10=a .又因为c=2,所以.6410222=-=-=c a b
因此,所求椭圆的标准方程为.16
102
2=+y x 法2.待定系数法:
由题意,椭圆的两个焦点在x 轴上,所以设它的标准方程为
).0(122
22
>>=+b a b
y
a x 由已知,c=2,所以.422=-
b a ①
又由已知,得123252
2
22=⎪⎭⎫
⎝⎛-+⎪⎭⎫ ⎝⎛b a ② 联立①②解方程组,得6,102
2
==b a .因此,所求椭圆的标准方程为.16
102
2=+y x 探究2:
等腰直角三角形ABC 中,斜边BC 长为
,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点A ,B 。

求:该椭圆方程。

(学生自己画图探究,教师适时引导建立合适的直角坐标系,认真分析等腰三角形特征,结合椭圆的定义及椭圆方程中的a,b,c 的关系最终确定椭圆的方程) 解:24=BC
.以直线DC 为x 轴,线段DC 设椭圆方程为)0(12
2>>=+b a b
y a x 则|AD| + |AC| = 2a ,所以,即 得 2242422
22
2=⇒⎪⎪⎪
⎭⎪
⎪⎪⎬⎫
=⨯==++=AD AC a AC AD a
在∆ADC 中, ()
2416222
2
2
2
=+=+=AC AD DC ()
246222,62
2222=-+=-==∴c a b c 故所求椭圆方程为12
42
4622=++y x
(三)反思总结:
1.本节课你的收获有哪些?
2.本节课你的困惑有哪些?
(四)课后作业:课本36页练习3; 42页习题2.1A 组第7题 (五)板书设计
椭圆及其标准方程
1、回顾旧知
2、口答练习
3、探究1
4、探究2
24a
4248=+。

相关文档
最新文档