平衡中的死结与活结优秀课件
受力平衡问题中“死结”和“活结”模型

受力平衡问题中 死结 和 活结 模型ʏ孟德飞受力平衡问题中的绳模型是近年高考题中常考的模型㊂靠跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段,且可以沿着绳子移动的结点称为 活结 ;而把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结 ㊂这类模型中的 死结 和 活结 问题考查的知识点丰富,题型变式多样,对同学们的思维能力要求高,是同学们学习的难点,同学们碰到这类问题时普遍有畏难情绪㊂但同学们如果掌握了该类问题的共性,也就是掌握其规律,再解答这类问题时就会容易得多㊂ 图1题型示例:如图1甲所示,右端固定有定滑轮的水平轻杆B C ,细绳左端固定在A 点,一质量为M 1的物体通过细绳挂在定滑轮上,其中øA C B =30ʎ;在图乙中,轻杆H G 一端用铰链(可让杆旋转)固定在竖直墙上,用固定在E 点的细绳拉住杆右端的G 点,也让E G 与水平方向成30ʎ,在G 点挂一质量为M 2的物体㊂求:(1)A C 绳与E G 段绳上的拉力之比;(2)绳在C 端对轻杆B C 的压力;(3)轻杆H G 所受到的压力㊂ 图2过程分析:(1)图甲中,物体M 1处于平衡状态,细绳A D 跨过定滑轮分成A C 段和C D 段,C 点是同一根上可移动的活结㊂由活结特点可知,绳子两端拉力相等且等于物体M 1的重力,即A C 段的拉力F T A C =F T C D =M 1g ㊂图乙中由F T EG s i n 30ʎ=M 2g ,得F T E G =2M 2g ㊂所以F T A C F T E G =M 12M 2㊂(2)要求绳在C 端对轻杆B C 的压力,需对结点C 进行受力分析㊂根据图2甲中的几何关系可知,三个力之间互成120ʎ的夹角㊂再根据平衡关系,可得F T A C =F N C =M 1g ,力的作用是相互的,压力方向与水平方向成30ʎ角指向左下方㊂(3)图乙中,对结点G 进行受力分析,根据共点力的受力平衡关系和几何关系,有F T E G s i n 30ʎ=M 2g ,F T E G c o s 30ʎ=F N G ,所以F N G =M 2g c o t 30ʎ=3M 2g ,压力方向水平向左㊂规律总结:在图2甲中,结点可以沿着绳子移动,这样的 活结 一般是由绳跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段而形成的㊂因为两段绳实际上是同一根绳,在 活结 处由于弯曲而分开的两段绳上张力的大小相等㊂两分力和合力根据平行四边形定则构成菱形,菱形的对角线是两边夹角的角平分线㊂因此,两段绳子合力的方向就沿着两段绳子夹角的平分线㊂如图2乙所示,把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结㊂ 死结 两边的轻绳因结点不可移动而变成了两根受力相互独立的绳,要求解两段绳子上的弹力,要先根据力平行四边形定则进行力的合成与分解,再找几何关系来处理㊂因此,与 活结 不同的是,两段绳上张力不一定相等㊂综上所述,在受力平衡问题中, 死结活结 模型分析过程一般为:先明确研究对象,识别是符合 死结 还是 活结 模型;再根据 死结 活结 模型的解答规律来求解㊂在 活结 中,由结点分开的两段绳上张力的大小一定相等,且两段绳合力方向沿着其夹角的平分线㊂ 死结 分开的两段绳子要根据力平行四边形定则进行力的合成与分解,找出几何关系后分别求出两个力的大小和方向㊂作者单位:云南民族大学附属中学57基础物理 障碍分析 自主招生 2020年7 8月。
绳上的“死结”和“活结”模型

A
B
m
小结
要点三 绳上的“死结”和“活结”模型
“死结”类型
“活结”类型
“死结”可理解为
“活结”可理解为把绳子分成
把绳子分成两段,且 两段,且可以沿绳子移动的结点。
不可以沿绳子移动的 “活结”一般是由绳跨过滑轮或者
结点。“死结”两侧 绳上挂一光滑挂钩而形成的。绳子
的绳因结而变成了两 虽然因“活结”而弯曲,但实际上
A
B
m
二、“活结”
“活结”可理解为把绳子分成两段, 且可以沿绳子移动的结点。“活结”一般 是由绳子跨过滑轮或者绳上挂一光滑挂钩 而形成的。
例2.一长为5m轻绳的两端分别固定在水平方向 距离为4m的A、B两点,在一个质量可忽略的动 滑轮的下方悬挂一个质量为m=1kg的重物,现将 动滑轮和重物一起挂到细绳上,在达到新的平 衡时,求绳AO、BO中的拉力大小。
Aα
βB O C
Aα
FA
FB
βB O C
FC
合成法
FC mg 10N
FA mg sin 6N FB mg cos 8N
效果分解法
Aα
βB O C
FC
正交分解法
y
FB
Aα
βB
FA
O
X
C
FC
一、“死结”
“死结”可理解为把绳子分成两段, 且不可沿绳子移动的结点。“死结”一般 是由绳子打结而形成的,“死结”两侧的 绳子因打结而变成两根独立的绳子。
例2.一长为5m轻绳的两端分别固定在水平方向 距离为4m的A、B两点,在一个质量可忽略的动 滑轮的下方悬挂一个质量为m=1kg的重物,现将 动滑轮和重物一起挂到细绳上,在达到新的平 衡时,求绳AO、BO中的拉力大小。
第五讲死结与活结,死杆与活杆

第五讲:绳上的‘死结’和‘活结’杆中的“活杆”与“死杆”模型一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.1. “活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.2. “死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:1.绳子的结点不可随绳移动2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等【典例1】如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是()【典例2】如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为F A、F B,物体受到的重力为G,下列表述正确的是( )A.F A一定大于G B.F A一定大于F BC.F A一定小于F B D.F A与F B大小之和一定等于G第2题图第3题图【典例3】如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,BO段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是( )A.细线BO对天花板的拉力大小是2G B.a杆对滑轮的作用力大小是2G C.a杆和细线对滑轮的合力大小是G D.a杆对滑轮的作用力大小是G 【典例4】如图所示,长为5 m的细绳的两端分别系于竖立在地面上的相距为4 m的两杆的顶端A、B,绳上挂一个光滑的轻质挂钩,其下连着一个重为12 N的物体,平衡时绳中的张力F T为多大?当A点向上移动少许,重新平衡后,绳与水平面夹角、绳中张力如何变化?.【典例5】如图所示,AO、BO和CO三根绳子能承受的最大拉力相等,O为结点,OB与竖直方向夹角为θ,悬挂物质量为m。
专题整理活结死结活杆死杆

共点力的平衡“活结,死结”、“活杆,死杆”问题1、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
2、“活杆”与“死杆”死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。
(一)“死结”和“活结”问题。
1. 如图所示,长为5 m的细绳的两端分别系于竖立在地面上的相距为4 m的两杆的顶端A、B,绳上挂一个光滑的轻质挂钩,其下连着一个重为12 N的物体,平衡时绳中的张力F T为多大?当A点向上移动少许,重新平衡后,绳与水平面夹角、绳中张力如何变化?2.如图所示,AO、BO和CO三根绳子能承受的最大拉力相等,O为结点,OB与竖直方向夹角为θ,悬挂物质量为m。
求:①OA、OB、OC三根绳子拉力的大小。
②A点向上移动少许,重新平衡后,绳中张力如何变化?3.如图所示,用绳AC和BC吊起一个物体,绳AC与竖直方向的夹角为60°,能承受的最大拉力为100N绳BC与竖直方向的夹角为30°,能承受的最大拉力为150N.欲使两绳都不断,物体的重力不应超过多少?4. 如图所示,轻绳绕过一光滑的小圆柱B,上端固定于A点,下端系一重为200 N的物体C,AB段绳子与竖直方向的夹角为60°,则绳中张力大小为____________ N,小圆柱B受到的压力大小为____________ N.(二)“死杆”和“活杆”问题。
5. 如图所示,质量为m的物体用细绳OC悬挂在支架上的O点,轻杆OB可绕B点转动,求细绳OA中张力T 大小和轻杆OB受力N大小。
6. 如图所示,水平横梁一端A 插在墙壁内,另一端装有小滑轮B ,一轻绳一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量为m =10 kg 的重物,∠CBA =30°,(g 取10 N /kg )则滑轮受到绳子作用力为【 】A .50 NB .50 3 N C .100 N D .100 3 N针对训练题1.三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定。
第五讲死结与活结,死杆与活杆

第五讲:绳上的‘死结’和‘活结’杆中的“活杆”与“死杆”模型一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.1. “活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.2. “死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:1.绳子的结点不可随绳移动2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等【典例1】如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是()【典例2】如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为F A、F B,物体受到的重力为G,下列表述正确的是( )A.F A一定大于G B.F A一定大于F BC.F A一定小于F B D.F A与F B大小之和一定等于G第2题图第3题图【典例3】如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,BO段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是( )A.细线BO对天花板的拉力大小是2G B.a杆对滑轮的作用力大小是2G C.a杆和细线对滑轮的合力大小是G D.a杆对滑轮的作用力大小是G 【典例4】如图所示,长为5 m的细绳的两端分别系于竖立在地面上的相距为4 m的两杆的顶端A、B,绳上挂一个光滑的轻质挂钩,其下连着一个重为12 N的物体,平衡时绳中的张力F T为多大?当A点向上移动少许,重新平衡后,绳与水平面夹角、绳中张力如何变化?.【典例5】如图所示,AO、BO和CO三根绳子能承受的最大拉力相等,O为结点,OB与竖直方向夹角为θ,悬挂物质量为m。
死结与活结 死杆和活杆

C.不变
D.可能变大,也可能变小
练习4:手握轻杆,杆的另一端安放有一个小滑轮C,支持着悬挂重物的绳子,如图所示.现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将( )
A.变大
B.不变
C.变小
D.无法确定
练习5:(多选)如图所示是某同学为颈椎病人设计的一个牵引装置的示意图,一根绳绕过两个定滑轮后两端各挂着一个相同质量的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内,如果要增大颈椎所受的拉力,可采取的办法是( )
例1:如图3所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是()
例2、将一根轻而柔软的细绳,一端拴在天花板上的A点,另一端拴在墙上的B点,A和B到O点的距离相等,绳的长度是OA的两倍,在一个质量可忽略的动滑轮K的下方悬挂一个质量为M的重物,现将动滑轮和重物一起挂到细绳上,在达到新的平衡时,绳子所受的拉力是多大?
1.轻绳的特点
绳的质量不计,伸长忽略不计,同一轻绳张力处处相等
2.“死结”与“活结”
“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:
1.绳子的结点不可随绳移动
2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等
D.B端在杆上位置不动,由物体A和B组成的系统处于静止状态。A、B的质量分别为mA和mB,且mA>mB。滑轮的质量和一切摩擦可不计。使绳的悬点由P点向右移动一小段距离到Q点,系统再次到达静止状态。则悬点移动前后图中绳与水平方向间的夹角θ将: