死结活结及动态平衡(含答案)
专题10 活结与死结绳模型、动杆和定杆模型和受力分析(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题10 活结与死结绳模型、动杆和定杆模型和受力分析导练目标 导练内容目标1 活结与死结绳模型 目标2 动杆和定杆模型 目标3受力分析一、活结与死结绳模型 1.“活结”模型模型结构模型解读模型特点“活结”把绳子分为两段,且可沿绳移动,“活结”一般由绳跨过滑轮或绳上挂一光滑挂钩而形成,绳子因“活结”而弯曲,但实际为同一根绳“活结”绳子上的张力大小处处相等 常见模型 力学关系和几何关系 端点A 上下移动 挡板MN 左右移动①θsin 221GT T == ②d l l =+θθcos cos 21d l l =+θcos )(21ld =θcos 因为d 和l 都不变,所以根据ld=θcos 可知θ也不变,则T 1和T 2也不变。
因为MN 左右移动时,d 变化,而l 不变,根据ld=θcos 可知θ将变化,则T 1和T 2也变。
常见模型力学关系和几何关系 端点A 左右移动 两物体质量比变①角度:θ4=2θ3=2θ2=4θ1两物体质量比不变,角度变,②拉力:T=M Q g③2M Q cosθ2=M P左右移动轻绳端点,角度都不变。
但让保持原有倍数关系。
【例1】如图所示,衣服悬挂在不可伸长的轻绳上,衣架的挂钩是光滑的,轻绳的两端固定在两根竖直杆上的A、B两点,衣服处于静止状态。
保持A端位置不变,将B端分别移动到1B、2B两点。
下列说法正确的是()A.B端移到1B,绳子张力变大B.B端移到1B,绳子张力变小C.B端移到2B,绳子张力变大D.B端移到2B,绳子张力不变【答案】D【详解】设绳子间的夹角为2θ,绳子总长为L,两杆间距离为d,如图所示根据几何关系有12sin sinL L dθθ+=得12sind dL L Lθ==+当B端移到B1位置或B2位置时,d、L都不变,则θ也不变;由平衡条件可知2cosF mgθ=解得2cosmgFθ=可见,绳子张力F也不变,故D正确,ABC错误。
高考物理专题“死结”与“活结”及动态平衡问题易错分析

二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。
典例1 如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO 总是先断答案 C 以结点O 为研究对象,受力情况如图所示,根据对称性可知,BO 绳与CO 绳拉力大小相等,由平衡条件得,F AO =2F BO cos θ2,当钢梁足够重时,AO 绳先断,说明F AO >F BO ,则有2F BO cos θ2>F BO ,解得θ<120°,故选项C 正确。
典例2 (多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b 。
外力F 向右上方拉b,整个系统处于静止状态。
若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力Ga,C项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N +T1cos θ+F sin α-Gb=0f+T1sin θ-F cos α=0FN、f均随F的变化而变化,故B、D项正确。
“死结”与“活结”及动态平衡问题易错分析可自主编辑

二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。
典例1如图所示,AO、BO、CO是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO总是先断答案 C 以结点O为研究对象,受力情况如图所示,根据对称性可知,BO绳与CO绳拉力,当钢梁足够重时,AO绳先断,说明F AO>F BO,则有2F BO 大小相等,由平衡条件得,F AO=2F BO cos ??2>F BO,解得θ<120°,故选项C正确。
cos ??2典例2(多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。
外力F向右上方拉b,整个系统处于静止状态。
若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力G a,C 项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N+T1cos θ+F sin α-G b=0f+T1sin θ-F cos α=0F N、f均随F的变化而变化,故B、D项正确。
高考物理 3年高考2年模拟1年原创 专题2.5 活结与死结(含解析)

专题2.5 活结与死结【考纲解读与考频分析】所谓活结是指光滑滑轮或光滑挂钩,活结的特征是光滑滑轮或光滑挂钩可自由移动,光滑滑轮或光滑挂钩两侧细绳中的拉力相等;所谓死结是指几段细线连接在一起,死结的特征组成结的细绳中一般拉力不相等。
高考经常以活结与死结为情景命题,考查灵活运用知识的能力。
【高频考点定位】:活结死结考点一:活结【3年真题链接】1.(2019全国理综I卷19)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。
一细绳跨过滑轮,其一端悬挂物块N。
另一端与斜面上的物块M相连,系统处于静止状态。
现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。
已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加【参考答案】BD【命题意图】本题考查动态平衡及其相关知识点。
【解题思路】用水平向左的拉力缓慢拉动N,水平拉力一定逐渐增大,细绳对N的拉力一定一直增大,由于定滑轮两侧细绳中拉力相等,所以M所受细绳的拉力大小一定一直增大,选项A错误B正确;由于题述没有给出M、N的质量关系,所以M所受斜面的摩擦力大小可能先减小后增大,选项C错误D正确。
【方法归纳】解答此题也可设出用水平向左的拉力缓慢拉动N后细绳与竖直方向的夹角,分析受力列出解析式,得出细绳的拉力随细绳与竖直方向的夹角表达式,进行讨论。
2.(2017天津理综卷)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态。
如果只人为改变一个条件,当衣架静止时,下列说法正确的是A .绳的右端上移到b ',绳子拉力不变B .将杆N 向右移一些,绳子拉力变大C .绳的两端高度差越小,绳子拉力越小D .若换挂质量更大的衣服,则衣架悬挂点右移【参考答案】AB【名师解析】设两杆间距离为d ,绳长为l ,Oa 、Ob 段长度分别为l a 和l b ,则b a l l l +=,两部分绳子与竖直方向夹角分别为α和β,受力分析如图所示。
高中物理:专题11 “活结”和“死结”、“动杆”和“定杆”模型-高一上学期同步重难讲练之相互作用

重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【典例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2B.32m C.mD.2m【☆答案☆】 C 【解析】 如图所示,【典例2】 如图所示,一轻绳的两端分别固定在不等高的A 、B 两点,现用另一轻绳将一物体系于O 点,设轻绳AO 、BO 相互垂直,α>β,且两绳中的拉力分别为F A 、F B ,物体受到的重力为G ,下列表述正确的是( )A.F A一定大于G B.F A一定大于F BC.F A一定小于F B D.F A与F B大小之和一定等于G【☆答案☆】 B【解析】分析O点受力如图所示,由平衡条件可知,F A与F B的合力与G等大反向,因F A⊥F B,故F A、F B均小于G;因α>β,故F A>F B,B正确,A、C错误;由三角形两边之和大于第三边可知,|F A|+|F B|>G,D错误.【典例3】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M2的物体,求:(1)轻绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【☆答案☆】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)3M2g方向水平向右【解析】题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.【跟踪训练】1. 如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是( )【☆答案☆】C2.如图所示,当重物静止时,节点O 受三段绳的拉力,其中AO 沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A . AO 承受的拉力最大B . BO 承受的拉力最大C . CO 承受的拉力最大D . 三段绳承受的拉力一样大 【☆答案☆】B【解析】以结点O 为研究对象,分析受力情况,受力分析如图:由平衡条件得: 1tan T G θ=,2cos GT θ=,故T1小于T2,G 小于T2;所以BO 承受的拉力最大;故B 正确。
物体的平衡专题(二):活结、活杆问题分析

物体的平衡专题(二)——“活结,死结”、“活杆,死杆”问题一、“活结,死结”问题分析1、如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B 。
绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体。
平衡时,绳中的张力T =_____2、如图所示,将一根不能伸长的柔软轻绳两端分别系于A 、B 两点上,一 物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳 子张力为F 1;将绳子B 端移到C 点,保持整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F 2;将绳子B 端移到D 点,待整个系统达 到平衡时,两段绳子间的夹角为θ3,绳子张力为F 3,不计摩擦,则( ) A .123θθθ== B .123θθθ=<C .123F F F >>D .123F F F =<3、如图所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。
求:①OA 、OB 、OC 三根绳子拉力的大小 。
②A 点向上移动少许,重新平衡后,绳中张力如何变化? 4、如图所示,用绳AC 和BC 吊起一个物体,绳AC 与竖直方向的夹角为60°,能承受的最大拉力为100N 绳BC 与竖直方向的夹角为30°,能承受的最大拉力为150N.欲使两绳都不断,物体的重力不应超过多少?5. 如图所示,轻绳绕过一光滑的小圆柱B ,上端固定于A 点,下端系一重为200 N 的物体C ,AB 段绳子与竖直方向的夹角为60°,则绳中张力大小为____________ N ,小圆柱B 受到的压力大小为____________ N. 结论:对于结受力问题,首先应明确是结否固定,若不固定,则绳两端受力相等,沿绳子方向,若结固定,则绳两端受力不一定相等,也沿绳子方向,应根据实际情况(如受力平衡等)加以分析。
高一物理上册专题—“活结”和“死结”及“动杆”和“定杆”模型

“活结”和“死结”、“动杆”和“定杆”模型重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m2B.√32mC.mD.2m【答案】C【解析】如图所示,圆弧的圆心为0,悬挂小物块的点为c,由于ab=R,则△aOb为等边三角形,同一条细线上的拉力相等, F T=mg,,合力沿Oc方向,则Oc为角平分线,由几何关系知,∠acb=120°,故线的拉力的合力与物块的重力大小相等,即每条线上的拉力F T= G=mg,,所以小物块质量为m,故C对.【例2】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M₁的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M₂的物体,求:(1)轻绳AC段的张力F TAC与细绳EG的张力F TEG;之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【答案】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)√3M2g方向水平向右【解析】题图甲和乙中的两个物体M₁、M₂都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.(1)图甲中轻绳AD跨过定滑轮拉住质量为M₁的物体,物体处于平衡状态,轻绳AC段的拉力F24c=F TCD=M1g图乙中由.F TEG sin30∘=M2g,得F TEG=2M2g.所以F14CF126=M12M2(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F AC=F DAC=Mg,方向和水平方向成30°,指向右上方.(3)图乙中,根据平衡方程有F TEG sin30∘=Mg,F TBG cos30∘=F XG,所以F NG=M2gcot30∘=√3M2g,方向水平向右.专项训练1.如图所示,当重物静止时,节点O受三段绳的拉力,其中AO沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A.AO承受的拉力最大B.BO承受的拉力最大C.CO承受的拉力最大D.三段绳承受的拉力一样大【答案】B【解析】以结点O为研究对象,分析受力情况,受力分析如图:由平衡条件得:T₁=Gtanθ,T2=Gcosθ,故T1小于T2,G小于T2;所以BO承受的拉力最大;故B正确。
平衡中的死结与活结

平衡中的死结与活结一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
例1.建筑工人要将建筑材料运送到高处,常在楼顶装置一个定滑轮(图-1中未画出),用绳AB通过滑轮将建筑材料提到某一高处,为了防止材料与墙壁相碰,站在地面上的工人还另外用绳CD拉住材料,使它与竖直墙面保持一定的距离L不变。
若不计两根绳的重力,在提起材料的过程中,绳AC和CD的拉力T1和T2的大小变化情况是()A.T1增大、T2增大B.T1增大、T2不变C.T1增大、T2减小D.T1减小、T2减小解析:三根绳子连接于C点不动,所以属于“死结”的问题,三根绳上的张力不相等,画出C点的受力如图-2所示,因材料在上升过程中与墙保持L的距离不变,所以上升过程中α和β均增大,由力的平行四边形定则可知,T1、T2均增大,所以正确答案为A。
例2.如图-3所示,相距4m的两根固定柱子拴上一根长5m的细绳,小滑轮及绳子的质量、摩擦均不计。
当滑轮上吊一重180N的重物时,求绳子中的张力?解析:因滑轮可以在绳上自由滑动,所以滑轮与绳接触的点为“活结”,跨过滑轮的两段绳子上的张力相等,画出其受力如图-4所示。
由几何关系知:,所以α=530,绳中的张力:F=N=150N。
二、“活杆”与“死杆”轻杆是物体间连接的另一种方式,根据轻杆与墙壁连接方式的不同,可以分为“活杆”与“死杆”。
所谓“活杆”,就是用铰链将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向;而“死杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。
例3.如图-5所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“死结活结”问题及共点力的动态平衡“活结”与“死结”模型“死结”模型1. 质量为m 的物体用轻绳AB 悬挂于天花板上。
用水平向左的力F 缓慢拉动绳的中点O ,如图所示。
用T 表示绳OA 段拉力的大小,在O 点向左移动的过程中A. F 逐渐变大,T 逐渐变大B. F 逐渐变大,T 逐渐变小C. F 逐渐变小,T 逐渐变大D. F 逐渐变小,T 逐渐变小2. 如图所示,某健身爱好者手拉着轻绳,在粗糙的水平地面上缓慢地移动,保持绳索始终平行于地面。
为了锻炼自己的臂力和腿部力量,可以在O 点悬挂不同的重物C 则A.若健身者缓慢向右移动,绳OA 拉力变小B. 若健身者缓慢向左移动,绳OB 拉力变大C. 若健身者缓慢向右移动,绳OA 、OB 拉力的合力变大D. 若健身者缓慢向左移动,健身者与地面间的摩擦力变小“活结”模型【例4】 (多选)(2017·天津卷,8)如图14所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态。
如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )A.绳的右端上移到b′,绳子拉力不变 B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小 D.若换挂质量更大的衣服,则衣架悬挂点右移3.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球。
在a和b之间的细线上悬挂一小物块。
平衡时,a、b间的距离恰好等于圆弧的半径。
不计所有摩擦。
小物块的质量为()A. B. C. m D. 2m4.如图所示,A、B两物体的质量分别为和,且,整个系统处于静止状态,滑轮的质量和一切摩擦均不计如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角如何变化A. 物体A的高度升高,角变小B. 物体A的高度降低,角不变C. 物体A的高度升高,角不变D. 物体A的高度不变,角变小动态平衡5(角度变).如图所示,质量分别为M,m的两个物体系在一根通过轻滑轮的轻绳两端,M放在水平地面上,m被悬在空中,若将M沿水平地面向右缓慢移动少许后M仍静止,则( )A. 绳中张力变大B. 滑轮轴所受的压力变大C. M对地面的压力变大D. M所受的静摩擦力变大6.(大小变)一光滑的轻滑轮用细绳悬挂于O点,站在地面上的人用轻绳跨过滑轮拉住沙漏斗,在沙子缓慢漏出的过程中,人握住轻绳保持不动,则在这一过程中()A. 细线OO’与竖直方向夹角逐渐减小B. 细线OO’的张力逐渐增大C. 人对地面的压力将逐渐增大D. 人对地面的摩擦力将逐渐增大7.如图所示,光滑小球置于竖直墙壁和挡板间,挡板绕O点于图示位置缓慢转至水平的过程中,球对墙壁和挡板的压力如何变化( )A. 对墙壁的压力减小,对挡板的压力也减小B. 对墙壁的压力减小,对挡板的压力增大C. 对墙壁的压力减小,对挡板的压力先增大后减小D. 对墙壁的压力先增大后减小,对挡板的压力增大8.如图所示,一个球放在光滑斜面EF和挡板EQ中,挡板通过轴E固定在斜面上,斜面与水平面夹角为,当挡板由竖直位置转到水平位置的过程中,斜面对球的作用力,挡板对球的作用力的变化情况是( )A. 变小,先变小后变大B. 变大,先变小后变大C. 变大,变大D. 不变,变小9.如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则A. 杆对A环的支持力变大B. B环对杆的摩擦力变小C. 杆对A环的力不变D. 与B环相连的细绳对书本的拉力变大10.如图所示,用OA、OB两根轻绳将花盆悬于两竖直墙之间,开始时OB绳水平。
现保持O点位置不变,改变OB绳长使绳右端由B点缓慢上移至点,此时与OA之间的夹角。
设此过程中OA、OB绳的拉力分别为、,则下列说法正确的是A. 一直增大B. 一直减小C. 一直减小D. 先增大后减小11.如图所示,一只松鼠沿着较粗均匀的树枝从右向左缓慢爬行,在松鼠从A运动到B的过程中,下列说法正确的是A. 松鼠对树枝的弹力保持不变B. 松鼠对树枝的弹力先减小后增大C. 松鼠对树枝的摩擦力先减小后增大D. 树枝对松鼠的作用力先减小后增大12.如图,光滑的半球固定在水平面上,一个可视为质点、质量为m的小球在拉力F的作用下静止在球面上的A点。
现通过改变拉力F的大小和方向,将小球m缓慢地拉到球面上的B 点,在此过程中,已知拉力F的方向始终与球面相切,则下列说法正确的是A. 拉力F逐渐增大B. 拉力F先增大后减小C. 球面对小球的支持力逐渐增大D. 球面对小球的支持力先减小后增大13(多).如图所示,一根轻绳上端固定在O点,下端拴一个重量为G的小球,开始时轻绳处于垂直状态,轻绳所能承受的最大拉力为2G,现对小球施加一个方向始终水平向右的力F,使球缓慢地移动,则在小球缓慢地移动过程中,下列说法正确的是( )A.力F逐渐增大B. 力F的最大值为C. 力F的最大值为2GD. 轻绳与竖直方向夹角最大值14.图示水平地面上有一个半球体现在A与竖直墙之间放一完全相同的半球体B,不计一切摩擦,将A缓慢向左移动未与地面接触,则在此过程中A对B的弹力、墙对B的弹力A. 变小、变小B. 变小、变大C. 变大、变大D. 变大、变小1.(2018·全国卷Ⅰ,22)如图5(a),一弹簧上端固定在支架顶端,下端悬挂一托盘;一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针。
现要测量图(a)中弹簧的劲度系数。
当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm ;当托盘内放有质量为0.100 kg 的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)所示,其读数为________ cm 。
当地的重力加速度大小为9.80 m/s 2,此弹簧的劲度系数为________ N/m(保留3位有效数字)。
解析 实验所用的游标卡尺的精确度为0.05 mm ,游标卡尺上游标第15条刻度线与主尺刻度线对齐,根据游标卡尺的读数规则,题图(b)所示的游标卡尺读数为3.7 cm +15×0.05 mm =3.7 cm +0.075 cm =3.775 cm 。
托盘中放有质量为m =0.100 kg 的砝码时,弹簧受到的拉力F =mg =0.100×9.80 N =0.980 N ,弹簧伸长量为x =3.775 cm -1.950 cm =1.825 cm ,根据胡克定律F =kx ,解得此弹簧的劲度系数k =Fx =53.7 N/m 。
答案 3.775 53.73.(2019·宝鸡质检)某物理学习小组用如图6甲所示装置来研究橡皮筋的劲度系数(遵循胡克定律且实验中弹力始终未超过弹性限度),将一张白纸固定在竖直放置的木板上,原长为L 0的橡皮筋的上端固定在O 点,下端挂一重物。
用与白纸平行的水平力(由拉力传感器显示其大小)作用于N 点,静止时记录下N 点的位置a ,请回答:图6(1)若拉力传感器显示的拉力大小为F ,用刻度尺测量橡皮筋ON 的长为L 及N 点与O 点的水平距离为x ,则橡皮筋的劲度系数为__________(用所测物理量表示)。
(2)若换用另一个原长相同的橡皮筋,重复上述过程,记录静止时N 点的位置b ,发现O 、a 、b 三点刚好在同一直线上,其位置如图乙所示,则下列说法中正确的是__________。
A .第二次拉力传感器显示的拉力示数较大B .两次拉力传感器显示的拉力示数相同C .第二次所用的橡皮筋的劲度系数小D .第二次所用的橡皮筋的劲度系数大解析 (1)设橡皮筋与竖直方向夹角为θ,重物重力为G ,结点N 在竖直拉力(重物重力G )、橡皮筋拉力T 和水平拉力F 作用下处于平衡状态,满足图示关系,则sin θ=F T ,而sin θ=xL ,T =k (L -L 0),联立得k =FLx (L -L 0)。
(2)由受力图知F =G tan θ,两次中G 、θ均相同,所以两次拉力传感器显示的拉力示数相同,A 错误,B 正确;同理,两次橡皮筋的拉力也相同,而橡皮筋的原长相同,第二次的伸长量大,由胡克定律知第二次所用的橡皮筋的劲度系数小,C 正确,D 错误。
答案 (1)FLx (L -L 0)(2)BC【例2】 (2017·全国卷Ⅲ,22) 某探究小组做“验证力的平行四边形定则”实验,将画有坐标轴(横轴为x 轴,纵轴为y 轴,最小刻度表示1 mm)的纸贴在水平桌面上,如图2(a)所示。
将橡皮筋的一端Q 固定在y 轴上的B 点(位于图示部分之外),另一端P 位于y 轴上的A 点时,橡皮筋处于原长。
(1)用一只测力计将橡皮筋的P 端沿y 轴从A 点拉至坐标原点O ,此时拉力F 的大小可由测力计读出。
测力计的示数如图(b)所示,F 的大小为________N 。
(2)撤去(1)中的拉力,橡皮筋P 端回到A 点;现使用两个测力计同时拉橡皮筋,再次将P端拉至O点。
此时观察到两个拉力分别沿图(a)中两条虚线所示的方向,由测力计的示数读出两个拉力的大小分别为F1=4.2 N和F2=5.6 N。
(ⅰ)用5 mm长度的线段表示1 N的力,以O为作用点,在图(a)中画出力F1、F2的图示,然后按平行四边形定则画出它们的合力F合;图2(ⅱ)F合的大小为________N,F合与拉力F的夹角的正切值为________。
若F合与拉力F的大小及方向的偏差均在实验所允许的误差范围之内,则该实验验证了力的平行四边形定则。
解析(1)由图(b)可知,F的大小为4.0 N。
(2)(ⅰ)画出力F1、F2的图示,如图所示(ⅱ)用刻度尺量出F合的线段长为20.0 mm,所以F合大小为20.05×1 N=4.0 N,F合与拉力F的夹角的正切值为tan α≈21-2020=0.05。
答案(1)4.0 N(2)(ⅰ)见解析(ⅱ)4.00.052.(2019·山西太原模拟)请完成“验证力的平行四边形定则”实验的相关内容。
(1)如图5甲所示,在铺有白纸的水平木板上,橡皮条一端固定在A点,另一端拴两个细绳套。
图5(2)如图乙所示,用两个弹簧测力计互成角度地拉橡皮条,使绳与橡皮条的结点伸长到某位置并记为O点,记下此时弹簧测力计的示数F1和F2及________________。
(3)如图丙所示,用一个弹簧测力计拉橡皮条,使绳与橡皮条的结点拉到O点,记下此时弹簧测力计的示数F=__________N和细绳的方向。
(4)如图丁所示,已按一定比例作出了F1、F2和F的图示,请用作图法作出F1和F2的合力。