高考物理专题“死结”与“活结”及动态平衡问题易错分析
12“死结与活结”的两个问题—【新教材】人教版(2019)高一上学期期末复习易错点精讲精练

12“死结与活结”的两个问题--高一期末复习易错点精讲精练我们知道杆既可以发生拉伸或压缩形变也可以发生弯曲或扭转形变,因此杆的弹力不一定沿杆的方向.对于杆与铰链连接的结构,杆产生的弹力必定沿杆方向时,杆才能平衡;对于杆的一端固定(即杆不能绕杆上一点转动)时,杆平衡时,杆产生的弹力不一定沿杆,现在通过下面两个“形同质异”的问题来了解一下. 例1、如图甲所示,轻绳AD 跨过固定在水平横梁BC 右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB =30°;图乙中轻杆HP 一端用铰链固定在竖直墙上,另一端P 通过细绳EP 拉住,EP 与水平方向也成30°,轻杆的P 点用细绳PQ 拉住一个质量也为10 kg 的物体.g 取10 N/kg ,求:(1)轻绳AC 段的张力F AC 与细绳EP 的张力F EP 之比; (2)横梁BC 对C 端的支持力; (3)轻杆HP 对P 端的支持力.答案 (1)1:2(2)100 N ,方向与水平方向成30°角斜向右上方(3)173 N ,方向水平向右解析 题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡条件可判断,与物体相连的细绳拉力大小等于物体的重力.分别取C 点和P 点为研究对象,进行受力分析如图甲和乙所示.(1)图甲中轻绳AD 跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,绳AC 段的拉力FAC =FCD =M1g图乙中由FEPsin30°=FPQ =M2g得FEP =2M2g ,所以得FAC FEP =M12M2=12. (2)图甲中,根据几何关系得:FC =FAC =M1g =100 N ,方向和水平方向成30°角斜向右上方.(3)图乙中,根据平衡方程有FEPsin30°=M2gFEPcos30°=FP所以FP =M2gcot30°=3M2g≈173 N ,方向水平向右.[错因分析]误认为“死结”分开的两段绳子上的弹力一定相等,而由“活结”分开的两段绳子上弹力的大小不一定相等,所以两段绳子合力的方向一定沿杆的方向。
备战2024年高考物理考试易错点02 相互作用(解析版)

易错点02相互作用目录01易错陷阱(3大陷阱)02举一反三【易错点提醒一】对摩擦力的方向理解不透彻【易错点提醒二】不会分析摩擦力的突变问题【易错点提醒三】混淆“死结”和“活结”【易错点提醒四】混淆“轻杆、轻绳”连接体问题【易错点提醒五】对于平衡问题受力分析时研究对象选取不当【易错点提醒六】不会根据实际情况用不同的方法求解动态平衡问题易错点一:.对摩擦力的方向及突变性认识不足1.在分析摩擦力的方向时,一定要注意摩擦力方向的可变性,尤其是在分析静摩擦力的时候,二者共速(转折点)的时刻往往是摩擦力方向发生突变的关键时刻。
2.摩擦力的的突变问题(1)“静→静”突变:物体受到静摩擦力和其他力的共同作用,当其他力的合力发生变化时,如果仍保持相对静止,则静摩擦力的大小和(或)方向可能发生突变。
(2)“静→动”突变:物体受到静摩擦力和其他力的共同作用,当其他力变化时,如果发生相对滑动,则静摩擦力可能突变为滑动摩擦力。
(3)“动→静”突变:物体受到滑动摩擦力和其他力的共同作用,当相对滑动突然停止时,滑动摩擦力可能突变为静摩擦力。
(4)“动→动”突变:物体受到滑动摩擦力和其他力的共同作用,当两物体间的正压力发生变化时,滑动摩擦力的大小随之而变;或两物体达到共同速度时相对滑动方向发生变化,滑动摩擦力的方向也会随之而变对摩擦力的方向及突变性认识不足易错点二:混淆“死结”和“活结”和“轻杆、轻绳”连接体1.“死结”模型与“活结”模型2.“动杆”模型与“定杆”模型易错点三:不会分析求解共点力的平衡1.平衡状态(1)物体处于静止或匀速直线运动的状态.(2)对“平衡状态”的理解不管是静止还是匀速直线运动,速度保持不变,所以Δv =0,a =Δv Δt,对应加速度为零,速度为零不代表a=0.例如,竖直上抛的物体运动到最高点时,这一瞬间速度为零,但这一状态不可能保持,因而上抛物体在最高点不能称为静止,即速度为零不等同于静止.2.共点力平衡的条件(1)共点力平衡的条件是合力为0.(2)表示为:F合=0;或将各力分解到x轴和y轴上,满足Fx合=0,且Fy合=0.①二力平衡:若物体在两个力作用下处于平衡状态,则这两个力一定等大、反向、共线.②三力平衡:若物体在三个共点力作用下处于平衡状态,则其中任意两个力的合力与第三个力等大、反向、共线.③多力平衡:若物体在多个共点力作用下处于平衡状态,则其中任意一个力与其余所有力的合力等大、反向、共线.(3)当物体受三个力平衡,将表示这三个力的有向线段依次首尾相连,则会构成一个矢量三角形,表示合力为0.2.动态力的平衡(1)解决动态平衡问题的一般思路:化“动”为“静”,“静”中求“动”。
高考物理建模型之活结和死结模型

高考物理建模型之活结和死结模型"活结"和"死结"模型是高考物理建模中经常考查的两种模型,易混淆,涉及高中物理方法较多,包括受力分析、合成法或正交分析法等知识。
考查方式灵活多样性,但共性基本利用的是共点力平衡知识进行处理,以达到解题目的。
下面就这种模型做详细区分及处理原则。
何为"活结"、"死结"1."活结"对象往往是绳子与光滑滑轮、绳子与光滑挂钩、绳子与光滑钉子组合一条绳子跨过(绕过)光滑的滑轮,看似两条绳子,实则是同一条绳子。
绳子可以沿滑轮移动,因"活结"而弯曲,因此这条绳子可以理解为两条绳子。
在受力上,这两条绳子的拉力必定大小相等,两条绳子拉力的合力必定在两条绳子所夹角的角平分线上。
如下图所示:解析:C处即为活结,对C点分析受力分别为:FAC、FCD和FC,其中FAC=FCD=Mg。
FC在∠ACD 的角平分线上,即FC是FAC与FCD的合力。
疑问:为什么FC的方向不沿BC杆方向呢?解析:这里还涉及轻杆模型(BC杆),这种杆的特点还在于末端(B端)是否与墙体固定有关系。
如果B端固定在墙内(如上图),则C端受到轻杆的弹力方向具有不确定性,不一定沿BC杆方向,具体的方向应该是与FAC与FCD的合力等值、反向、共线。
2."死结"对象往往是绳子打"结"后系在某点显然这是两条或多条绳子打"结"后系在一起,这不是同一条绳子,并且是"死结",不可以移动。
因此"死结"绳子的拉力大小不一定相等。
如下图所示:解析:在C点就是一个"死结",同样对C点受力分别为:FAC、FCD和FC,而FAC≠FCD,但FCD=Mg,而FC也不再是∠ACD的角平分线上,但是FC依然与FAC和FCD的合力等值、反向、共线(共点力平衡原理)。
“死结”与“活结”及动态平衡问题易错分析可自主编辑

二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。
典例1如图所示,AO、BO、CO是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO总是先断答案 C 以结点O为研究对象,受力情况如图所示,根据对称性可知,BO绳与CO绳拉力,当钢梁足够重时,AO绳先断,说明F AO>F BO,则有2F BO 大小相等,由平衡条件得,F AO=2F BO cos ??2>F BO,解得θ<120°,故选项C正确。
cos ??2典例2(多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。
外力F向右上方拉b,整个系统处于静止状态。
若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力G a,C 项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N+T1cos θ+F sin α-G b=0f+T1sin θ-F cos α=0F N、f均随F的变化而变化,故B、D项正确。
2024年高考物理易错知识点总结

2024年高考物理易错知识点总结在2024年的高考物理考试中,存在一些易错的知识点,以下是这些知识点的详细总结:1. 动力学中的力的合成和分解:在求解力的合成和分解问题时,学生容易忽略矢量的方向问题。
解题时应注意将力进行合成时考虑方向,将力进行分解时也要考虑方向。
2. 动力学中的质点受力分析:在给定质点受力情况下,学生容易忽略力的平衡条件。
在解题时要注意,合力必须为零,且合力的方向与合力对应的加速度方向相反。
3. 牛顿运动定律:在应用牛顿运动定律解题时,有以下几点易错知识点:- 忽略惯性力:在非惯性系中,学生容易忽略惯性力的存在,应注意加入惯性力的考虑。
- 忽略摩擦力:在存在摩擦力的情况下,学生容易忽略摩擦力对物体的影响,应注意加入摩擦力的考虑。
- 计算加速度时忽略质量:在应用牛顿第二定律计算加速度时,学生容易忽略考虑质量的影响,应注意正确计算。
- 对称质点的加速度计算:对称质点在受到的力对称的情况下,学生容易误认为质点加速度为零,应注意在相应方向上的力对称。
4. 弹性力学:在解弹性力学题目时,学生容易忽略弹性系数的计算或者使用错误。
应当注意根据题目给定的信息计算和使用弹性系数。
5. 牛顿万有引力:在应用牛顿万有引力解题时,有以下几点易错知识点:- 使用错误引力公式:学生容易将其他引力公式错误地应用于万有引力问题中,应注意正确使用引力公式。
- 计算引力的方向:学生容易忽略计算引力的方向,应注意结合受力体系的情况计算引力的方向。
- 计算引力的大小:学生容易在计算引力大小时忽略质量的影响,应注意正确计算引力大小。
6. 动量守恒定律:在应用动量守恒定律解题时,有以下几点易错知识点:- 忽略某个方向的动量:学生容易忽略某个方向上的动量的存在,应注意考虑所有方向上的动量。
- 计算动量的大小:学生容易在计算动量大小时忽略质量的影响,应注意正确计算动量大小。
- 动量定律与能量定律的区别:学生容易在考虑动量守恒问题时,错误地将能量定律应用于动量守恒问题中,应注意区分二者。
2019高考物理三轮冲刺 第二篇 中档题防错 一“死结”与“活结”的比较.docx

一、“死结”与“活结”的比较结点问题是高考考查的热点,主要以平衡状态为主,当然,还可以出现在非平衡状态中,其中受力分析和利用不同结点的特征及规律解答是纠错必备。
例1如图(a),轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为M1的物体。
∠ACB=30°;图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G端用细绳GF拉住一个质量为M2的物体,则下列说法中正确的是()A.图(a)中BC杆对滑轮的作用力为2B.图(b)中HG杆受到的作用力为M2gC.细绳AC段的张力F AC与细绳EG的张力F EG之比为1∶1D.细绳AC段的张力F AC与细绳EG的张力F EG之比为M1∶2M2答案D解析图(a)中物体处于平衡状态,根据平衡条件可判断,与物体相连的细绳的拉力大小等于物体的重力大小,取滑轮为研究对象,进行受力分析,如图所示。
绳AC段的拉力大小为F AC=F CD=M1g由几何关系得BC杆对滑轮的作用力F C=F AC=M1g方向与水平方向成30 °角斜向右上方图(b)中物体处于平衡状态,与物体相连的轻绳的拉力大小等于物体的重力,取G点为研究对象,进行受力分析,如图所示。
由F EG sin 30°=F GF=M2g得F EG=2M2g由F EG cos 30°-F G=0解得F G=2M2g cos 30°=M2g方向水平向右则HG杆受到的作用力为M2g。
F AC∶F EG=M1∶2M2【比较】像滑轮这样的“活结”,轮两侧绳拉力相等。
而像图(b)中的“死结”,结点两侧的力一般不同,各自大小可以采用正交分解法或三角形法求解。
不管哪种,静态平衡问题用平衡规律,动态变速过程用牛顿运动定律,但是有临界状态出现时要积极采用放大法将临界状态暴露出来。
物体的平衡专题(二):活结、活杆问题分析

物体的平衡专题(二)——“活结,死结”、“活杆,死杆”问题一、“活结,死结”问题分析1、如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B 。
绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体。
平衡时,绳中的张力T =_____2、如图所示,将一根不能伸长的柔软轻绳两端分别系于A 、B 两点上,一 物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳 子张力为F 1;将绳子B 端移到C 点,保持整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F 2;将绳子B 端移到D 点,待整个系统达 到平衡时,两段绳子间的夹角为θ3,绳子张力为F 3,不计摩擦,则( ) A .123θθθ== B .123θθθ=<C .123F F F >>D .123F F F =<3、如图所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。
求:①OA 、OB 、OC 三根绳子拉力的大小 。
②A 点向上移动少许,重新平衡后,绳中张力如何变化? 4、如图所示,用绳AC 和BC 吊起一个物体,绳AC 与竖直方向的夹角为60°,能承受的最大拉力为100N 绳BC 与竖直方向的夹角为30°,能承受的最大拉力为150N.欲使两绳都不断,物体的重力不应超过多少?5. 如图所示,轻绳绕过一光滑的小圆柱B ,上端固定于A 点,下端系一重为200 N 的物体C ,AB 段绳子与竖直方向的夹角为60°,则绳中张力大小为____________ N ,小圆柱B 受到的压力大小为____________ N. 结论:对于结受力问题,首先应明确是结否固定,若不固定,则绳两端受力相等,沿绳子方向,若结固定,则绳两端受力不一定相等,也沿绳子方向,应根据实际情况(如受力平衡等)加以分析。
高一物理:平衡中的重难点问题(1)

高一物理:平衡重难点问题(1)班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1.“死结”与“活结”模型(1)活结模型:跨过滑轮、光滑杆、光滑钉子的细绳为同一根细绳,其两端张力大小相等.(2)死结模型:如几个绳端有“结点”,即几段绳子系在一起,谓之“死结”,那么这几段绳子的张力不一定相等.2.“死杆”与“活杆”模型(1)“死杆”:即轻质固定杆,它的弹力方向不一定沿杆的方向,作用力的方向需要结合平衡方程或牛顿第二定律求得.(2)“活杆”:即一端有铰链相连的杆属于活动杆,轻质活动杆中的弹力方向一定沿杆的方向.3.绳杆组合问题4.活结移动问题5.定滑轮和动滑轮组合问题6. 轻环穿杆问题7. 自锁问题二、例题精讲8. (2011·海南)如图所示,墙上有两个钉子a 和b ,它们的连线与水平方向的夹角为45°,两者的高度差为l .一条不可伸长的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量为m 1的重物.在绳子距a 端l /2的c 点有一固定绳圈.若绳圈上悬挂质量为m 2的钩码,平衡后绳的ac 段正好水平,则重物和钩码的质量比m 1/m 2为( ) A. 5 B .2 C.52 D. 29. 如图4为三种形式的吊车的示意图,OA 为可绕O 点转动的杆,重量不计,AB 为缆绳,当它们吊起相同重物时,杆OA 在三图中的受力F a 、F b 、F c 的关系是( ) A .F a >F c =F b B .F a =F b >F cC .F a >F b >F cD .F a =F b =F c 10.(2013•天心区校级模拟)如图,长为5m 的细绳的两端系于竖立在地面上相距为4m 的两杆的顶端A 、B .绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,绳中的拉力为( ) A .10N B .12N C .16N D .20N11.(多选)[2017·天津卷] 如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点, 悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件, 当衣架静止时,下列说法正确的是( )A .绳的右端上移到b ′,绳子拉力不变B .将杆N 向右移一些,绳子拉力变大C .绳的两端高度差越小,绳子拉力越小D .若换挂质量更大的衣服,则衣架悬挂点右移12.如图7所示,A 、B 两物体的质量分别为m A 、m B ,且m A >m B ,整个系统处于静止状态.滑轮的质量和一切摩擦均不计,如果绳一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,物体A 的高度和两滑轮间绳与水平方向的夹角θ变化情况是( ) A .物体A 的高度升高,θ角变大B .物体A 的高度降低,θ角变小C .物体A 的高度升高,θ角不变D .物体A 的高度不变,θ角变小13.如图4,AOB 为水平放置的光滑杆,∠AOB 等于60°,杆上分别套着两个质量都是m 的小环,两环由可伸缩的弹性绳连接,若在绳的中点C 施以沿∠AOB 的角平分线水平向右的拉力F ,缓慢地拉绳,待两环受力达到平衡时,绳对环的拉力T 跟F 的关系是( )A.T=F B.T >F C.T <F D.T=Fsin30°14.在机械设计中常用到下面的力学原理,如图所示,只要使连杆AB 与滑块m 所在平面间的夹角θ大于某个值,那么,无论连杆AB 对滑块施加多大的作用力,都不可能使之滑动,且连杆AB 对滑块施加的作用力越大,滑块就越稳定,工程力学上称为"自锁"现象.设滑块与所在平面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,为使滑块能"自锁"应满足的条件是( ) A.μ≥tanθ B.μ≥cotθ C.μ≥sinθ D.μ≥cosθ三、自我检测15.(2014·海南)如图,一不可伸长的光滑轻绳,其左端固定于O 点,右端跨过位于O ′点的固定光滑轴悬挂一质量为M 的物体;OO ′段水平,长度为L ;绳子上套一可沿绳滑动的轻环.现在轻环上悬挂一钩码,平衡后,物体上升L .则钩码的质量为( ) A.22M B.32M C.2M D.3M16.如图2所示,杆BC 的B 端用铰链固定在竖直墙上,另一端C 为一滑轮.重物G 上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡.若将绳的A 端沿墙缓慢向下移(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A .绳的拉力增大,BC 杆受绳的压力增大B .绳的拉力不变,BC 杆受绳的压力增大 C .绳的拉力不变,BC 杆受绳的压力减小D .绳的拉力不变,BC 杆受绳的压力不变17.如图,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为θ3,绳子张力为F 3;不计摩擦,则( )A .θ1=θ2=θ3B .θ1<θ2<θ3C .F 1>F 2>F 3D .F 1=F 2<F 318.(多选)如图所示,A 物体被绕过小滑轮P 的细线所悬挂,B 物体放在粗糙的水平桌面上;小滑轮P 被一根细线系于天花板上的O 点;O ′是三根线的结点,bO ′水平拉着B 物体,cO ′沿竖直方向拉着弹簧;弹簧、细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态.若悬挂小滑轮的细线OP 上的张力是20 3 N ,取g =10 m/s 2,则下列说法中正确的是( ) A .弹簧的弹力为10 N B .A 物体的质量为2 kgC .桌面对B 物体的摩擦力为10 3 ND .OP 与竖直方向的夹角为60°19.(2016·全国卷Ⅲ) 如图1-所示,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2B.32m C .m D .2m20.如图12所示,粗糙斜面P 固定在水平面上,斜面倾角为θ,在斜面上有一个小滑块Q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、“死结”与“活结”及动态平衡问题易错分析
“死结”与“活结”的比较
(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。
典例1 如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,则( )
A.θ=120°
B.θ>120°
C.θ<120°
D.不论θ为何值,AO 总是先断
答案 C 以结点O 为研究对象,受力情况如图所示,根据对称性可知,BO 绳与CO 绳拉力大小相等,由平衡条件得,F AO =2F BO cos θ
2,当钢梁足够重时,AO 绳先断,说明F AO >F BO ,则有2F BO cos θ
2>F BO ,解得θ<120°,故选项C 正确。
典例2 (多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b 。
外力F 向右上方拉b,整个系统处于静止状态。
若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( )
A.绳OO'的张力也在一定范围内变化
B.物块b所受到的支持力也在一定范围内变化
C.连接a和b的绳的张力也在一定范围内变化
D.物块b与桌面间的摩擦力也在一定范围内变化
答案BD 系统处于静止状态,连接a和b的绳的张力大小T
1等于物块a的重力G
a
,C
项错误;以O'点为研究对象,受力分析如图甲所示,T
1
恒定,夹角θ不变,由平衡条件知,绳
OO'的张力T
2
恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则
F N +T
1
cos θ+F sin α-G
b
=0
f+T
1
sin θ-F cos α=0
F
N
、f均随F的变化而变化,故B、D项正确。
典例3(多选)如图所示,在固定好的水平和竖直的框架上,A、B两点连接着一根绕过光滑的轻小滑轮的不可伸长的细绳,重物悬挂于滑轮下,处于静止状态。
若按照以下的方式缓慢移动细绳的端点,则下列判断正确的是( )
A.只将绳的左端移向A'点,拉力变小
B.只将绳的左端移向A'点,拉力不变
C.只将绳的右端移向B'点,拉力变小
D.只将绳的右端移向B'点,拉力变大
答案BD 设滑轮两侧绳子与竖直方向的夹角为α,绳子的长度为L,B点到墙壁的距
离为s,根据几何知识和对称性,得sin α=s
L
①
以滑轮为研究对象,设绳子拉力大小为F
T
,根据平衡条件得
2F
T
cos α=mg
得F
T =mg
2cosα
②
当只将绳的左端移向A'点,s和L均不变,则由②式知,F
T
不变,故A错误,B正确。
当只
将绳的右端移向B'点,s增加,而L不变,则由①式知,α增大, cos α减小,则由②式知,F
T 增大,故C错误,D正确。
反思总结
(1)对于“死结”“活结”问题是经常出错的地方,我们要明确:“死结”两段绳子分为两段,力的大小往往不同。
“活结”两段绳子拉力相等,合力沿两绳角平分线方向,这是解题的突破点,分析问题时也常常会因忽略而出错。
(2)对于“活结”问题,我们分析时要注意几何关系的分析,如典例3中我们可以看出,当绳子由A移动到A'点时通过几何的分析,得出绳子间夹角不变,因此A移动到A'点时绳子张力不变。