材料物理性讲义能-力热性能@受压课程7
材料物理性能基础知识点课件.doc

<<材料物理性能>>基础知识点一,基本概念:1. 摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K 所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2. 比热容:质量为1kg 的物质在没有相变和化学反应的条件下,温度升高1K 所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3. 比容:单位质量(即1kg 物质)的体积,即密度的倒数(m3/kg)。
4. 格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5. 声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6. 德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax 分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=?ωmax/k。
7. 示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t 的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8. 示差扫描量热法(Differential Scanning Calorimetry, DSC ): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9. 热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10. 塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11. 玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q 的现象。
材料物理性能(课件)

TIM
Ni(OH)2
19
(二)热容
■ 热分析方法 · 差热分析(Differential thermal analysis, DTA): 测量试样与参比物之 间温差与时间或温度的关系 。分析所采用的参比物应是热惰性物质 , 即在 整个测试温度范围内不发生分解、相变和破坏 ,也不与被测物质发生化学 反应 。参比物的热容、热传导系数等应尽量与试样接近。
5
(一 )热学性能的物理基础
■ 晶格热振动
· 晶格热振动: 晶体点阵中质点围绕平衡位置的微小振动 。材料 热学性能的物理本质均与其晶格热振动相关。 · 晶格振动是三维的 , 当振动很微弱时 , 可认为原子作简谐振动。 振动频率随弹性模量Em增大而提高。
x=ACOS(ot+p)
· 温度升高时质点动能增大 , 1/2 mv2= 1/2 kT, ∑ (动能)i =热能 · 质点热振动相互影响 ,相邻质点间的振动存在一定的相位差, 晶格振动以波(格波) 的形式在整个材料内传播 。格波在固体中的 传播速度: v = 3 * 103m/s, 晶格常数a为10-10 m数量级 ,格波最高频 率:v / 2a = 1.5 * 1013 Hz · 频率极低的格波: 声频支振动; 频率极高的格波: 光频支振动
■ 亚稳态组织转变为稳定态要释放 热量 ,热容 -温度曲线向下拐折。
H
TC
T
二级相变焓和热容随温度的变化
17
(二)热容
■ 热容的测量
· 量热计法 。低温及中温区: 电加热法 · 高温区:撒克司法
P:搅拌器 ,C: 量热器筒 18
材料物理性能讲义

Ω Ω* = (2π)3
Rl • Kn = 2π(n1l1 + n2l2 + n3l3) = 2πm, m 为整数。
(2.5)
图 2.3 二维六角点阵的魏格纳-赛茨元胞(Wigner-Seitz 原胞)。
4
由于元胞是组成点阵的最小重复单元,根据点阵中每个格点附近环境的自相 似性即平移对称性我们可以推断, 只要在一个元胞内研究材料的物理特性就代表 研究了整个点阵结构的物理特性,为此我们定义一特殊的高对称元胞,它包含了 晶 格 点阵 点群 的 全部对 称 性。 这一 特 殊的高 对 称性 元胞 称 为魏格 纳 - 赛 茨
2π ( a 2 × a3 ) Ω 2π b2 = (a3 × a1 ) Ω 2π b3 = (a1 × a2 ) Ω b1 =
(2.3)
其中Ω = a1 • (a2 × a3)是正点阵元胞的体积。 在倒点阵中任一格点的位置矢可表示 为: Kn = n1b1 + n2b2 + n3b3
(2.4)
其中 n1, n2, n3 是整数,倒点阵元胞的体积为Ω* = b1 • (b2 × b3),且存在以下关系
图 2.4 从分立的原子轨道到固体能带结构的转变。
要理解固体的能带结构首先要从原子的电子轨道讲起,因为固体的能带归根 结底起源于原子的轨道能级。 根据量子力学,原子中带负电的电子绕带正电的原 子核运动,其轨道能量是不连续、分立的,如图 2.4 所示。在一定条件下如原子 间存在相互影响,同一原子中几个能量相近的不同类型的电子轨道(即波函数), 可以进行线性组合, 重新分配能量和确定空间方向, 组成数目相等的新电子轨道,
《材料物理化学性能》 物理性能部分
邓振炎 上海大学物理系 (电话:66134334,邮箱:zydeng@)
材料性能力学热学性能课件

CHAPTER
定义与分类
材料性能是指材料在某种特定条件下的表现,包括力学、热学、光学、电学、磁学 等方面的性能。
材料性能的分类可以根据不同的标准进行划分,如按材料的组成成分、结构特点、 制备工艺等。
不同种类的材料具有不同的性能特点,因此需要根据实际应用场景选择合适的材料。
1. 高分子材料的结晶度、分子量及其分布对物理和化学 性能的影响规律;
详细描述 2. 高分子材料的热稳定性、耐候性及化学稳定性;
3. 高分子材料的可塑性、弹性及耐磨性等物理性能;
4. 高分子材料的制备工艺、改性及复合强化等措施对 性能的影响。
案例三:纳米材料的物理与化学性能研究
• 总结词:纳米材料具有尺寸效应和量子效应等特点,在光电、 催化、生物医药等领域具有广泛的应用前景,研究其物理和化 学性能对于开发新产品、提高应用效果具有重要意义。
结果评估
根据试验数据和分析结果, 对材料的性能进行综合评 估,提出改进意见和建议。
CHAPTER
案例一:新型合金材料的力学与热学性能研究
总结词:合金材料在航空航天、汽车等领域应用广泛,研 究其力学和热学性能对于提高产品质量、降低成本具有重 要意义。
2. 合金材料的强化机制和优化方法;
详细描述
3. 合金材料在高温、低温等极端条件下的性能表现及稳 定性;
透射系数
描述材料对光透射能力的参数, 与玻璃等材料的透光性相关。
吸收系数
描述材料对光吸收能力的参数, 与光的穿透深度有关。
折射系数
描述光在材料中传播方向改变 程度的参数,与光的偏振现象
相关。
CHAPTER
实验室测试
《材料物理性能》PPT课件

●化学性能
材料在一定环境条件下抵抗各种介质化学作用的能力。如耐腐蚀性
能、抗氧化性能等。
★工艺性能
材料在不同制造工艺条件下所表现出来的承受加工的能力,是物理、
化学性能的综合。如铸造性能、塑性加工性能、焊接性能、切削加工
性能等。直接影响材料使用的方式完、整版成课本件p、pt生产效率等。
3
2.为什么要学习和研究材料的性能
只有这样才能在合理选用材料、提高材料性能和开发新材料过程中 具有必须的基本知识、基本技能和明确的思路。
完整版课件ppt
4
3.本课程的学习目的、内容
工程材料按照其用途可分为:结构材料和功能材料
●在以机械工业为主导的时代:主要使用结构材料,主要追求材料高强 度、高韧性、耐高温等,即材料力学性能。
●当今人类进入了信息时代:功能材料越来越重要,发展迅速。如信 息技术、电子计算机、机器人领域,太空、海洋等领域要求材料具有很 高的功能性。材料物理性能是功能材料的基础,如音像技术与材料的磁 学性能有关、超导材料与材料的电性能相关、隔热材料与材料的热学性 能相关、光导纤维与材料的光学性能有关等。
子结构、电子层、晶格运动等内部因素认识材料物理性能的本质和机理。
●影响因素、与化学成分及组织结构之间的关系:
如为什么合金热导率较纯金属低?为什么陶瓷材料较金属材料热膨胀系
数小?石墨与金刚石哪个热膨胀系数大?为什么?等等。
●物理性能指标的工程意义:
物理性能指标在实际工程上有何应用。
●了解物理性能指标的测试方法和原理,相关仪器,试样准备。
材料物理性能
机械工业出版社,陈騑騢
TB303/C417
金属材料物理性能
冶金工业出版社 王润
75.211 W35
材料的性能教学课件

பைடு நூலகம்
(四)硬度
材料抵抗表面局部塑性变形的能力。是表征材料力学性能的综合参数。 一般,硬度↑强度↑耐磨性↑塑性↓
1、布氏硬度HBW
压头 符号
淬火钢球 HBS
硬质合金球 HBW
范围 应用
HB≤450 退火和正火钢、铸铁、有色金属等软材料
多次冲击弯曲实验示意图
指标为冲击韧度值ak(冲击实验测得,即为冲断单位面积所消耗的功)。 ak
Ak S
2、断裂韧度 材料抵抗内部裂纹失稳扩展的能力
Titanic 号钢板和近代船用钢板的冲击试验结果
Titanic
近代船用钢板
(六)疲劳
材料在低于ReL的重复交变应力作用下发生断裂的现象。 材料在规定次数应力循环后仍不发生断裂时的最大应力称为疲劳极限R-1 。
弹性模量大小主要取决于材料的本性,强化材料的手段如热处理、冷热加 工、合金化等对弹性模量影响很小。可通过增加横截面积或改变截面形状 来提高零件的刚度。
(二)强度
强度:材料在外力作用下抵抗变形和破 坏的能力。
弹性极限Re :试样保持纯弹性变形的 最大应力值。
屈服强度ReL:材料发生塑性变形时的最小 应力值。
钢铁材料规定次数为107,有色金属合金为108。 ➢ 疲劳寿命 ——材料发生疲劳破坏时的应力循环次数,或从开始受载到发生断裂所经过
的时间称为该材料的疲劳寿命。(80%的断裂由疲劳造成)
疲劳应力示意图
疲劳曲线示意图
主要性能指标的应用
弹性指标:设计弹性零件时,需考虑弹性极限Re ,如各类
弹簧和弹性元件等。
材料物理性能与力学性能PPT课件

3. 弹性模量的影响因素
弹性模量是构成材料的离子或分子之间键合强度的主 要标志,凡是影响键合强度的因素均能影响弹性模量。 如:键合方式、晶体结构、化学成分、微观组织、温 度、加载方式和速度等。
第22页/共119页
1)键合方式和原子结构 共价键、离子键、金属键----较高 分子键----较弱 原子半径越大,E越小
5)温度----温度升高,E降低 特例:橡胶。其弹性模量随温度升高而增加。
第25页/共119页
6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。 对于高分子聚合物,负荷时间延长,E下降。
第26页/共119页
4、比例极限和弹性极限
p
Fp A0
Fp:比例极限对应的应力 A0 :试棒的原始截面面积
第39页/共119页
第四节 塑性变形及其性能指标
一、塑性变形机理 定义:材料微观组织的相邻部分产生永久性位移,并不 引起材料破裂的现象。 1:金属材料的塑性变形机理:滑移、孪生 滑移系越多,塑性越好
复习: 滑移:晶体的一部分对于另一部分沿一定晶面和晶向发生相对
滑动,滑动后原子处于新的稳定位置。 滑移通常沿晶体中原子密度最大的晶面和晶向发生。
第6页/共119页
五、本课程学习注意问题:
预备知识:材料力学和金属学方面的基本理论知识。 理论联系实际:是实用性很强的一门课程。某些力学性能指
标根据理论考虑定义,而更多指标则按工程实用 要求定义。 重视实验: 通过实验既可掌握力学性能的测试原理,又可 掌握测试技术,了解测试设备,进一步理解所 测的力学性能指标的物理意义与实用意义。 做些练习: 加深理解――巩固所学的知识。
消除方法:进行较大塑性变形;再结晶退火
材料的性能教学课件

热膨胀系数和热传导系数衡量材料在热环境下的膨 胀和传导特性。
透明性和光学性能
磁性和超导性
透明性和光学性能决定材料的透光能力和光学行为, 广泛应用于光学器件和视觉应用。
磁性和超导性是材料对磁场和电流的响应能力,对 电子学和能源领域具有重要影响。
化学性能
1 耐腐蚀性和耐氧化性
耐腐蚀性和耐氧化性衡量材料对化学侵蚀和 氧气的抵抗能力。
硬度和耐磨性
硬度和耐磨性是材料抵御表面破坏和磨损的关 键属性。
抗拉强度、屈服强度、断裂强度
这些参数衡量了材料在受力时的抗拉能力和破 坏行为。
可塑性和韧性
可塑性和韧性决定了材料在受力时的变形能力 和抗断裂能力。
物理性能
导电性和导热性
热膨胀系数和热传导系数
导电性和导热性描述了材料传导电流和热量的能力, 对电子和热传输应用至关重要。
力学测试方法用于测量材料的强度、硬
物理测试方法
2
度和韧性等力学性能。
物理测试方法用于测量材料的导电性、
导热性、透明性等物理性能。
3
化学测试方法
化学测试方法用于测量材料的耐腐蚀性、
测试数据分析和应用
4
化学稳定性、溶解性等化学性能。
测试数据分析和应用帮助我们理解材料 性能,做出正确的设计和决策。
材料性能分析和设计
材料性能教学的意义和未来发展 趋势
材料性能教学有助于学生理解和应用材料技术,促 进材料科学的创新和发展。
材料性能的确定和分 析方法
通过实验和模拟等方法确定和 分析材料的性能特征和潜力。
不同性能指标之间的 关系和平衡
不同性能指标之间存在着平衡 和权衡பைடு நூலகம்系,在设计中需要综 合考虑。