《线性代数(一)》2011年下半年第一次

合集下载

2011考研数学1线性代数教材上要学习的任务和课后题

2011考研数学1线性代数教材上要学习的任务和课后题
《考研数学学习进程监控习题汇编》线性代数部分
第二章
2.5小时
第3章第1节
n维向量及其线性相关性
n维向量的概念,n维实向量空间Rn的定义
向量的加法、数乘运算及其运算规则
向量的线性组合和线性表示的定义
向量组的线性相关、线性无关的定义
向量组线性相关性判定的几个定理
第3章习题
1,3,5,8,9,10,11★
26,27,28,29
25
3小时
第6章
总结归纳本章的基本概念、基本定理、基本公式、基本方法,总结归纳单元测试题中错题的知识点、题型
《考研数学学习进程监控习题汇编》线性代数部分
第五章
4
3(2)(3)
1.了解 维向量空间、子空间、基底、维数、坐标等概念.
2.了解基变换和坐标变换公式,会求过渡矩阵.
3.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
4.了解规范正交基、正交矩阵的概念以及它们的性质.
第4章第2节
Rn中向量的内积、标准正交基和正交矩阵
内积的定义和运算性质
2.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
3.理解非齐次线性方程组解的结构及通解的概念.
4.掌握用初等行变换求解线性方程组的方法.
第3章第5节
非齐次线性方程组有解的条件及解的结构
非齐次线性方程组有解的几个等价命题(定理3.15)和推论
非齐次线性方程组的解的性质
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
第6章第2节
化二次型为标准形

线性代数第一章

线性代数第一章

第一章 行列式(determinant)
一、二阶、三阶行列式的定义
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
由四个数排成二行二列(横排称行、竖排称列) 的数表
a11 a12
a 21 a 22
表 达 式 a11a 22 a12 a 21称 为 数 表 所 确 定 的 二 阶 行列式,并记作 a11 a 21 a12 a 22
该式称为数表所确定的三阶行列式.
a13
三阶行列式的计算:
对角线法则 a11 a12
a21 a31 a22 a32 a13 a23 a33
a11a22a33 a12a23a31 a13a21a32 行标按照从小 a13a22a31 a12a21a33 a11a23a32 . 到大排列 注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
线性代数的第个问题是关于解线性方程组 的问题。 历史上线性方程组理论的发展促成了作为工 具的矩阵论和行列式理论的创立与发展,这些内 容已成为我们线性代数教材的主要部分。 行列式出现于线性方程组的求解,它最早是 一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家 关孝和发明的。
逆序 0 1 0 3 1 于是排列 32514 的逆序数为 讨论其奇偶性
t
t 01 0 31 5 .
t
i 1
n
i
标准排列:无逆序的排列。如:1234是4级 标准排列
对换:在一个排列中,对调了两个数码, 其他数码不变,这种变换称为一个对换。 对23154 施以(1,4)对换得到23451。 两个结论: 1)对一个排列,经过一个对换,奇偶性 改变。

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解线性代数是2024考研数学一科目中的一个重要内容,对于考生来说,掌握线性代数的知识点和解题技巧非常关键。

本文将对2024年考研数学一线性代数部分的历年考题进行详解,帮助考生更好地备考。

一、第一节:向量与矩阵1. 2010年考题考题描述:已知向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性无关,向量\[{\beta}_1, {\beta}_2, {\beta}_3\]可由向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性表示,且\[{\beta}_1 = 2{\alpha}_1 +3{\alpha}_2\],\[{\beta}_2 = 4{\alpha}_1 + 5{\alpha}_2 + {\alpha}_3\],\[{\beta}_3 = 7{\alpha}_1 + 10{\alpha}_2 + 2{\alpha}_3\],则向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为多少?解题思路:根据题意,我们可以建立如下矩阵:\[A =\begin{bmatrix}2 &3 & 0 \\4 &5 & 1 \\7 & 10 & 2 \\\end{bmatrix}\]然后通过对矩阵进行初等行变换,将其化为行最简形。

最后,行最简形的矩阵中非零行的个数即为矩阵的秩。

在本题中,通过计算可知行最简形为:\[\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}\]因此,向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为3。

2. 2014年考题考题描述:设矩阵\[A =\begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\3 & 0 & 1 \\\end{bmatrix}\],若矩阵\[B = (A - 2I)^2 - I\],其中\[I\)为单位矩阵,求矩阵\[B\)的秩。

化学工业出版社《线性代数》第1章习题解答

化学工业出版社《线性代数》第1章习题解答

《线性代数》第一章习题解答1.确定下列排列的逆序数,并指出它们是奇排列还是偶排列.(1) 41253 (2)654321 (3)(1)(2)321n n n --⋅⋅ 解:(1)(41253)4τ=偶排列(2)(654321)15τ=奇排列(3)12((1)321)(1)n n n n τ-⋅⋅=- , 当441n =ℜℜ+或时:偶排列 当4243n =ℜ+ℜ+或时,奇排列.2.设四阶行列式1325127064311916231419--,试求:142232,,A A A .解:14141270(1)4311908162314A +=--=, 2222125(1)4119803161419A +-=--=-,2332125(1)1206660161419A +-=-=-3.设四阶行列式1241111125683152----,试求:41424344.A A A A +++ 解:4142434412411111025681111A A A A -+++==-.4.计算下列行列式:(1)352423124-(2)11121321223100a a a a a a (3)1210032141031263------(3)14232432333441424344000000a a a a a a a a a a (5)100110011001a b c d ---(6)0000a b aa ab b a a a b a (7)1111111111111111x xy y+-+-解:(1)-69 (2)132231a a a -(3)0 (4)14233241a a a a(5)1abcd ab cd ad ++++(6)222(4)b b a -(7)22x y 5.证明:(1)22322()111a ab b aa b b a b +=-(2)33()ax byay bz az bx x y z ay bzaz bx ax by a b y zx az bxax by ay bz zxy++++++=++++ (3)222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++(4)222244441111()()()()()()()a b c da b a c a d b c b d c d a b c d a b c d a b c d =------+++解:证明略. 6.已知:0231111xy z=,求下列各行列式的值. (1)11133323111xyz (2)111134111x y z --- (3)33436111xyzxy z x y z +++++解:(1)13(2)1 (3)2 7.n 阶行列式111213121222323132333123nnn n n n n nna a a a a a a a D a a a a a a a a =中,若: ,1,2,,ij ji a a i j n =-= 那么称n D 为反对称行列式(n 阶).证明:奇数阶反对称行列式等于零.证明:11213111112131122232221222321132********333123123nn n n n n n nnn nnn nnnna a a a aaa a a a a a a a a aD a a a a a aa a a a a a a a a a --------==--------21(1)(1)n n n n D D D ℜ+=-⋅=-=-,0n D ∴=.8. 计算n 阶行列式(1)00010200100000n n-(2)010000200010n n-(3)000000000x y x x y yx(4)121212n nn mx m x x x x m x x x x ---(5)12311100002200011n n n n-----(6)1231111111111111111na a a a ++++(7)01211111001001n a a a a -(120n a a a ⋅≠ ) 解:(1)(3)2(1)!n n n +-⋅(2)1(1)!n n +-⋅ (3)1(1)nn nx y ++-(4)11()()nn i i m x m -=--∑(各列加到第一列)(5)1(1)(1)!2n n -⋅⋅+(各列加到第一列) (6)112211111111111100111n n a a a a D a ++++=+12111210000111n n n n n a a a D a D a a a ---=+=+12122121[]n n n n n a a D a a a a a a ----=++12123122121n n n n n n a a a a a a a a a a a a a a ---==++++111(1)n ni i i ia a ===⋅+∏∑ (7) 1121011()n n n i ia a a a a a --=-∑ (各列乘1i a -加到第一列11i n ≤≤-) 9. 证明: (1)(2)cos 100012cos 100cos()012cos 00012cos n ααααα=(3)123112231111000000(1)00000n n nin i in n na x a a a a x x x x a x x x x x x -=--+--=+-∑,这里 1230n x x x x ⋅⋅⋅⋅≠ .(4)11000100()01000001n n a b ab a b aba b a b a ba ba b++++-=≠+-+证明:(1)左121212110000100001n n nn n xx C xC a a a x a x a x a -----+-+++211211010000010001n n nn in i i C xC C xC x a x x a ---=--++-++∑111(1)()(1)nn nn i n i i x a x +--==-+⋅-∑111n n n x a x a x x --=++++ =右(2)当1n =时成立,设当n k =时成立,则当1n k =+时,行列式按第1k +行展开1cos 1012cos 02cos 2cos 011D D θθθθℜ+ℜ=⋅-12cos 2cos cos cos(1)cos(1)D D k k k θθθθθℜℜ-=⋅-=⋅--=+故命题成立. (3).31121231121110001100(1)()0001000011n n n na a a a a x x x x x n j n x x x χ--+--≤≤-j 各列提出因子左32231121210100)()011001in inna a a a x x x x i n n C C C x x x =++++-∑121()(1)ii na n x i x x x ==+∑ =右 (4) 00001000000001n a a b ab D a b ab a b+==+++左 00010000001b ab a b ab a b ab a b+++=110001000001n a a b ab a D ba b -+⋅++1100001000001n b ab a D ba b-=⋅++ 1n n a D b -=⋅+同理由,a b 的对称性,可得:1n n n D b D a -=⋅+两式联立消去1n D -,得11n n a b n a bD ++--=10.利用范德蒙行列式计算(1)1111437516949256427343125--(2)1111234514916182764解:(1)10368 (2) 12 11.用拉普拉斯定理计算下列行列式(1)560001560015600015600015(2)a a a b x y yb y x y byy xλ解: (1)56016056501560561516015015D =⋅-⋅=665 (2)0000000a a a a bx y y y y x x y D y x x y x yλ--=---(1)(2)00000000000n a a a a b x n yy y y x y x y x yλ-+--=--00000000(1)0000(2)00000x y x y n a x y bx n yx y x yλ----=⋅+---2[(2)(1)]()n x n y n ab x y λλ-=+-⋅---12. 用克莱姆法则解下列线性方程组(1)123412423412342583682254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩(2)123412341234123425323321348256642x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=-⎪⎨-++-=-⎪⎪--+=⎩解:(1)123427,81,108,27,27∆=∆=∆=-∆=-∆=12343,4,1,1x x x x ==-=-=(2)123417,34,0,17,85∆=∆=-∆=∆=∆= 12342,0,1,5x x x x =-===13. 求k 的值,使下列方程组有非零解0020kx y z x ky z x y z ++=⎧⎪+-=⎨⎪-+=⎩解:211113404 1.211kk k k k ∆=-=--=∴==--或k 14.设有方程组33331x y z ax by cz d a x b y c z d ⎧++=⎪++=⎨⎪++=⎩试求它能用克莱姆法则求解的条件,并求出解. 解:333111()()()()0a bc b a c a c b a b c a b c ∆==---++≠,,,0a b a c b c a b c ∴≠≠≠++≠时有解,且解为:123()()()()()()()()()()()()()()()()()()()()()()()()b dcd c b d b c x b a c a c b a b c d a c a c d d b c x b a c a c b a b c b a d a d b a b c x b a c a c b a b c ---++=---++---++=---++---++=---++14. 设121222212111111211111()n n n n n n n xa a a F x xa a a x a a a -------=,其中11,n a a - 互不相同。

《线性代数第1讲》课件

《线性代数第1讲》课件

03
线性代数是数学的一个重要分支,广泛应用于 科学、工程和经济学等领域。
线性代数的基本性质
线性代数的运算具有结合律和交换律,例如矩阵乘法满足结合律和交换律 。
线性代数中的向量和矩阵具有加法、数乘和矩阵乘法的封闭性,即这些运 算的结果仍属于向量空间或矩阵集合。
线性代数中的一些基本概念,如向量空间的基底、向量的维数、矩阵的秩 等,具有明确的数学定义和性质。
04
线性变换在几何、物理和工程等领域有广泛应性方程组的解法
1 2
3
高斯-约当消元法
通过行变换将系数矩阵化为行最简形式,从而求解线性方程 组。
克拉默法则
适用于线性方程组系数行列式不为0的情况,通过求解方程 组得到未知数的值。
矩阵分解法
将系数矩阵分解为几个简单的矩阵,简化计算过程,如LU分 解、QR分解等。
THANKS
特征值与特征向量的应用
判断矩阵的稳定性
通过计算矩阵的特征值,可以判 断矩阵的稳定性,从而了解系统 的动态行为。
信号处理
在信号处理中,可以通过特征值 和特征向量的方法进行信号的滤 波、降噪等处理。
数据压缩
在数据压缩中,可以使用特征值 和特征向量的方法进行数据的压 缩和重构,提高数据的存储和传 输效率。
03
向量与向量空间
向量的定义与性质
01
基础定义
03
向量具有加法、数乘和向量的模等基本性质。
02
向量是有大小和方向的量,通常用实数和字母 表示。
04
向量的模是衡量其大小的标准,计算公式为 $sqrt{a^2 + b^2}$。
向量空间的概念
01
抽象空间
02
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、

线性代数(陶长琪等主编 华南理工大学出版)

线性代数(陶长琪等主编 华南理工大学出版)

2.三阶行列式的引入
当D 0时,方程组( )的解为: 2
a11 令D a21 a31
a12 a22 a32
a13 a23 a33
x
1
D
1
D
,
x
2
D
2
D
,x
3
D3
D
行列 式引 入图
a11 a31
a13 a23 a33 a11
a12 a32
b1 a13 a23 a33
a13 a23 a33
1 2
( 练习1: 13 (2n 1)2n(2n 2) 42) 2n 2) (2n 4) 4 2 ( n(n 1)
2
练习2:求i,j使25i4j1为偶排列。 解:6元排列使i、j只能取3或6;由于 253461 ) 7, 256431 ) 10 ( ( (偶数) 所以,i=6,j=3。 练习3: 若 j1 j2 jn ) s,求 jn jn1 j1 ) ( ( 解:a. 若j1 j2 jn都是顺序,则 jn 对换到j1前的逆序数为n 1; jn 1对换到j1前的逆序数为n 2, , 依此类推,得到逆序数为
Dn a21 an1 a22 a2 n

j1 j2 jn
(1)
an 2 ann
( i1i2 in ) ( j1 j2 jn )
ai1 j1 ai2 j2 ain jn ai11 ai2 2 ain n
2. n阶行列式的特点 (1)一般项:取自不同行列的n个元素之积; (2)各项下标:使行标自然序,则列标为n元 排列,共有n!项,奇偶排列各半; (3)各项符号:列下标奇排为负,偶排为正。 3. n阶行列式的定义

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

Mqfiul2011年考研数学线性代数打印资料

Mqfiul2011年考研数学线性代数打印资料

|||生活|一个人总要走陌生的路,看陌生的风景,听陌生的歌,然后在某个不经意的瞬间,你会发现,原本费尽心机想要忘记的事情真的就这么忘记了..|-----郭敬明线性代数知识点框架(一)线性代数的学习切入点:线性方程组。

换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。

线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。

关于线性方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)、把某个方程的k倍加到另外一个方程上去;(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。

我们把这三种变换统称为线性方程组的初等变换。

任意的线性方程组都可以通过初等变换化为阶梯形方程组。

由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。

对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。

我们把这样一张由若干个数按某种方式构成的表称为矩阵。

可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。

系数矩阵和增广矩阵。

高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。

阶梯形方程组,对应的是阶梯形矩阵。

换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。

对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r<n,则方程组有无穷多解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数(一)》2011年下半年第一次作业
一.填空题(4x6=24分)
1.计算3阶行列式
2
311273
8
2
-=- 。

2.已知排列1r46s97t3为奇排列,则r ,s ,t 的取值分别为 。

3.用行列式的性质计算:=++
+1
11
c
b
a b a
c a c
b 。

4.设A 为3阶方阵,而且
9A =-,

=
A A T

*
A A
= ;
=
*
*
)
(A ;
1
*
4A
A
--=
.
(注:*
A 为A 的伴随矩阵.) 5.设11140012
5A
B ⎛⎫⎛⎫
== ⎪ ⎪⎝⎭⎝⎭
,, 则
=
AB ;
T
B A =
;=
2
A
;n
A
=。

6. 设
2
()53p t t t =-+与矩阵3
162A -⎛⎫=
⎪-⎝⎭
,则2
2()53p A A A I =-+= 。

二.选择题(4x9=36分) 1.
120
2
1
k k -≠-的充分必要条件是( )。

A 、1k ≠-
B 、3k ≠
C 、31k
k ≠≠-且
D 、31k k ≠≠-或
2、如果11
1213
21
222331
32
33
1a a a D
a a a a a a ==,1D =1131
1232
1333
31323321
22
23
441631228652015a a a a a a a a a a a a +--+---,那么
1D =()。

A 、80
B 、-120
C 、120
D 、60
3.如果30
40
50x ky z y z kx y z +-=⎧⎪
+=⎨⎪--=⎩
有非零解,则()
A 、01k k ==或
B 、01k k ==-或
C 、11k k ==-或
D 、31k k =-=-或
4.设c
d
b
a
a c
b d a d b
c
d c b a D =
4
,则=
+++44342414
A A A A ( )。

A 、0;
B 、1;
C 、2()a b c d +++
D 、22
2
2
2
()
a b c d +++.
5.设,(2)A B n n ≥为阶方阵,则必有( ).
A 、A
B A B +=+ B 、A B B A =;
C 、
A
B B A =; D 、
BA
AB =.
6.设,,A B A B +以及1
1
A
B
--+均为n 阶可逆矩阵,则1
1
1
()
A
B ---+等于()
A 、11
A B
--+
B 、A B +
C 、1
()A A B B -+ D 、1
()A B -+
7.设A 是s p ⨯的矩阵,B 是n m ⨯的矩阵,如果B AC T 有意义,则C 是( )矩阵.
A 、n p ⨯
B 、m p ⨯
C 、
s
m ⨯ D 、
m
s ⨯.
8.设A 为n 阶对称可逆矩阵,则以下哪一项错误( )
A 、11
()()
T T
A A
--= B 、1
T
A A
-=;
C 、|
|||T
A A =; D 、T A 可以表示为一些初等矩阵的乘积
9.下列矩阵中与矩阵1111
2123
5A ⎛⎫

= ⎪ ⎪⎝
⎭同秩的矩阵是() A 、 ()3
4
7 B 、2
401
5
1⎛⎫
⎪-⎝⎭
C 、1302
1240
1⎛⎫ ⎪ ⎪ ⎪⎝
⎭ D 、21142213
5⎛⎫

⎪ ⎪⎝

三.(8分)计算行列式:
1211
211211231
2
3
n n n n n n n n
x a a a a a x a a a a a x a a a a a x a a a a a x
---……………………………
四.(8分)若齐次线性方程组
(3)1420
2(8)023(2)0x y z x y z x y z λλλ+++=⎧⎪
-+--=⎨⎪--+-=⎩
有非零解,求λ的值。

五.(8分)设
.,221743
531
X X A ,AX A 求矩阵-=⎪⎪⎪⎭
⎫ ⎝
⎛=
六.(8
分)设.2)(21
321
211
=⎪⎪⎪


⎝⎛--=A R k ,k k A 为何值时问
七. (8分) 设B A ,为n 阶方阵,若B
A AB
+=,证明:E
A -
可逆,且BA AB =.。

相关文档
最新文档