ansys疲劳分析报告

合集下载

ansys疲劳分析报告基本方法

ansys疲劳分析报告基本方法

疲劳是指结构在低于静态极限强度载荷的重复载荷作用下,出现断裂破坏的现象。

例如一根能够承受 300 KN 拉力作用的钢杆,在 200 KN 循环载荷作用下,经历1,000,000 次循环后亦会破坏。

导致疲劳破坏的主要因素如下:载荷的循环次数;每一个循环的应力幅;每一个循环的平均应力;存在局部应力集中现象。

真正的疲劳计算要考虑所有这些因素,因为在预测其生命周期时,它计算“消耗”的某个部件是如何形成的。

3.1.1 ANSYS程序处理疲劳问题的过程ANSYS 疲劳计算以ASME锅炉和压力容器规范(ASME Boiler and Pressure Vessel Code)第三节(和第八节第二部分)作为计算的依据,采用简化了的弹塑性假设和Mimer累积疲劳准则。

除了根据 ASME 规范所建立的规则进行疲劳计算外,用户也可编写自己的宏指令,或选用合适的第三方程序,利用 ANSYS 计算的结果进行疲劳计算。

《ANSYS APDL Programmer‘s Guide》讨论了上述二种功能。

ANSYS程序的疲劳计算能力如下:对现有的应力结果进行后处理,以确定体单元或壳单元模型的疲劳寿命耗用系数(fatigue usage factors)(用于疲劳计算的线单元模型的应力必须人工输入);可以在一系列预先选定的位置上,确定一定数目的事件及组成这些事件的载荷,然后把这些位置上的应力储存起来;可以在每一个位置上定义应力集中系数和给每一个事件定义比例系数。

3.1.2 基本术语位置(Location):在模型上储存疲劳应力的节点。

这些节点是结构上某些容易产生疲劳破坏的位置。

事件(Event):是在特定的应力循环过程中,在不同时刻的一系列应力状态,见本章 §3.2.3.4。

载荷(Loading):是事件的一部分,是其中一个应力状态。

应力幅:两个载荷之间应力状态之差的度量。

程序不考虑应力平均值对结果的影响。

3.2疲劳计算完成了应力计算后,就可以在通用后处理器 POST1 中进行疲劳计算。

基于ANSYS软件的齿轮疲劳有限元分析报告

基于ANSYS软件的齿轮疲劳有限元分析报告

基于ANSYS软件的齿轮疲劳有限元分析报告一、概述本次大作业主要利用ANSYS软件对齿轮的疲劳进行分析,计算出齿轮的最大寿命。

然后与实际情况进行比较,证明分析的正确性,从而为齿轮的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。

二、问题分析如下图所示为某齿轮三维模型,参考图示形状,自定义尺寸,并建立一对啮合齿,施加50N*M扭矩进行齿轮接触分析,随后进行疲劳分析,分析齿轮寿命,材料为40Cr。

图1 齿轮三、有限元建模寿命分析之前需要进行强度分析,在Windows“开始”菜单中执行ANSYS—Workbench 命令。

创建项目A,进行静力学分析,双击左侧的static structure即可图 2 强度分析项目如图 3所示,40Cr材料的杨氏模量为2.1e11Pa,泊松比为0.3,密度7800kg/m3,两对齿轮的材料一致。

图 3 材料定义双击Geometry进入几何模型建立模块,进行几何建模。

只需要建立齿轮的端面然后拉伸即可,另一对齿轮采用该齿轮进行对称偏移获取,首先建立齿轮端面草绘,为保证结构对称,只建立一半截面,如下图所示:拉伸截面,并对称建立整个单齿,如下所示:同理建立另一齿轮,最终模型如下所示进入Workbench进行材料设置,其中齿轮分别设置材料为结构钢。

进行网格划分,设置网格尺寸为2mm,最终有限元网格模型如下图所示:图7 网格设置图8 网格模型模拟实际情况,从动齿内圈固定,主动齿施加扭矩,如下图所示图9 载荷约束四、有限元计算结果(1)位移变化,如图12所示,结果最大变形为0.2mm,图12 位移云图(2)等效应力计算结果,如图3所示,最大等效应力为467.4MPa图13 等效应力云图添加Fatigue tool进行疲劳分析,Fatigue设置如下寿命云图如下所示,应力最大区域,寿命最小,该齿轮最多可以使用14794次,此后便会发生裂纹破坏。

ansys疲劳分析解析

ansys疲劳分析解析

1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。

疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。

因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算。

在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。

接下来,我们将对基于应力疲劳理论的处理方法进行讨论。

1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。

否则,则称为变化振幅或非恒定振幅载荷。

1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。

相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。

1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。

这就是σm=0,R=-1的情况。

当施加载荷后又撤除该载荷,将发生脉动循环载荷。

这就是σm=σmax/2,R=0的情况。

1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析

2013-08-29 17:16 by:有限元来源:广州有道有限元ANSYS Workbench 疲劳分析本章将介绍疲劳模块拓展功能的使用:–使用者要先学习第4章线性静态结构分析.•在这部分中将包括以下内容:–疲劳概述–恒定振幅下的通用疲劳程序,比例载荷情况–变振幅下的疲劳程序,比例载荷情况–恒定振幅下的疲劳程序,非比例载荷情况•上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses.A. 疲劳概述•结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关•疲劳通常分为两类:–高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳.–低周疲劳是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算.•在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论.…恒定振幅载荷•在前面曾提到, 疲劳是由于重复加载引起:–当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论.–否则,则称为变化振幅或非恒定振幅载荷…成比例载荷•载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:•在两个不同载荷工况间的交替变化•交变载荷叠加在静载荷上•非线性边界条件…应力定义•考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:–应力范围Δσ定义为(σmax-σmin)–平均应力σm定义为(σmax+σmin)/2–应力幅或交变应力σa是Δσ/2–应力比R 是σmin/ σmax–当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷. 这就是σm= 0 ,R = -1的情况.–当施加载荷后又撤除该载荷,将发生脉动循环载荷. 这就是σm= σmax/2 , R = 0的情况.…应力-寿命曲线•载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:–若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效–如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少–应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系•S-N曲线是通过对试件做疲劳测试得到的–弯曲或轴向测试反映的是单轴的应力状态–影响S-N 曲线的因素很多, 其中的一些需要的注意,如下:–材料的延展性, 材料的加工工艺–几何形状信息,包括表面光滑度、残余应力以及存在的应力集中–载荷环境, 包括平均应力、温度和化学环境•例如,压缩平均应力比零平均应力的疲劳寿命长,相反,拉伸平均应力比零平均应力的疲劳寿命短.•对压缩和拉伸平均应力,平均应力将分别提高和降低S-N曲线.•因此,记住以下几点:–一个部件通常经受多轴应力状态.如果疲劳数据(S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要注意•设计仿真为用户提供了如何把结果和S-N 曲线相关联的选择,包括多轴应力的选择•双轴应力结果有助于计算在给定位置的情况–平均应力影响疲劳寿命,并且变换在S-N曲线的上方位置与下方位置(反映出在给定应力幅下的寿命长短)•对于不同的平均应力或应力比值,设计仿真允许输入多重S-N曲线(实验数据)•如果没有太多的多重S-N曲线(实验数据),那么设计仿真也允许采用多种不同的平均应力修正理论–早先曾提到影响疲劳寿命的其他因素,也可以在设计仿真中可以用一个修正因子来解释…总结•疲劳模块允许用户采用基于应力理论的处理方法,来解决高周疲劳问题.•以下情况可以用疲劳模块来处理:–恒定振幅,比例载荷(参考B节)–变化振幅,比例载荷(参考C节)–恒定振幅,非比例载荷(参考D节)•需要输入的数据是材料的S-N曲线:–S-N曲线是疲劳实验中获得,而且可能本质上是单轴的,但在实际的分析中,部件可能处于多轴应力状态–S-N曲线的绘制取决于许多因素, 包括平均应力. 在不同平均应力值作用下的S-N曲线的应力值可以直接输入, 或可以执行通过平均应力修正理论实现.B. 疲劳程序(基本情况)•进行疲劳分析是基于线性静力分析, 所以不必对所有的步骤进行详尽的阐述.–疲劳分析是在线性静力分析之后,通过设计仿真自动执行的.•对疲劳工具的添加,无论在求解之前还是之后,都没有关系, 因为疲劳计算不并依赖应力分析计算.•尽管疲劳与循环或重复载荷有关, 但使用的结果却基于线性静力分析,而不是谐分析. 尽管在模型中也可能存在非线性,处理时就要谨慎了,因为疲劳分析是假设线性行为的.–在本节中,将涵盖关于恒定振幅、比例载荷的情况. 而变化振幅、比例载荷的情况和恒定振幅、非比例载荷的情况,将分别在以后的C 和D节中逐一讨论.…疲劳程序•下面用黄色斜体字体所描述的步骤,对于包含疲劳工具的应力分析是很特殊的:–模型–指定材料特性,包括S-N曲线–定义接触区域(若采用的话)–定义网格控制(可选的)–包括载荷和支撑–(设定)需要的结果,包括Fatigue tool–求解模型–查看结果…几何•疲劳计算只支持体和面•线模型目前还不能输出应力结果,所以疲劳计算对于线是忽略的.–线仍然可以包括在模型中以给结构提供刚性, 但在疲劳分析并不计算线模型…材料特性•由于有线性静力分析,所以需要用到杨氏模量和泊松比–如果有惯性载荷,则需要输入质量密度–如果有热载荷,则需要输入热膨胀系数和热传导率–如果使用应力工具结果(Stress Tool result),那么就需要输入应力极限数据,而且这个数据也是用于平均应力修正理论疲劳分析.•疲劳模块也需要使用到在工程数据分支下的材料特性当中S-N曲线数据–数据类型在“疲劳特性”(“Fatigue Properties”)下会说明–S-N曲线数据是在材料特性分支条下的“交变应力与循环”(“Alternating Stress vs. Cycles”)选项中输入的•如果S-N曲线材料数据可用于不同的平均应力或应力比下的情况, 那么多重S-N曲线也可以输入到程序中•添加和修改疲劳材料特性:•在材料特性的工作列表中,可以定义下列类型和输入的S-N曲线–插入的图表可以是线性的(“Linear”)、半对数的(“Semi-Log”即linear for stress, log for cycles)或双对数曲线(“Log-Log”)–记得曾提到的,S-N曲线取决于平均应力。

Ansys nCode疲劳分析

Ansys nCode疲劳分析

通过“疲劳缺口系数” 修正S-N曲线中的S;
缺口附近的Von Mises 应力
© 2015 ANSYS, Inc.
29
3.2 缺口应力集中对疲劳寿命的影响
应用S-N曲线,光滑试样的耐久极限应力幅除以疲劳缺口系 数Kf就得到同样耐久力情况下缺口部分的疲劳强度估计值

© 2015 ANSYS, Inc.
临界平面法计算平面应力和在几个径向平面进行重新求解
− 默认是每10度 (18 个平面)
− 雨流计数法在每个平面上计算疲劳损伤 − 准则平面是最大损伤的平面
© 2015 ANSYS, Inc.
支持的有限元结果: 静态分析(线性/非线 性) 瞬态分析 模态分析 频谱响应
能够读取ANSYS、Abaqus、 Nastran等软件的有限元计算结果
nCode分析-五框图
© 2015 ANSYS, Inc. 18
ANSYS nCode 的功能特色
创建内存模板材料 用户可自定义材料; 丰富的材料数据库; 利用material manager自定义材料
最大剪切应力
最大主应力
标记的 Von-Mises
应力是最常用的
− 用于脆性材料
绝对最大主应力 任一分量的应力 临界平面法
© 2015 ANSYS, Inc.
40
3.4 多轴状态对疲劳寿命的影响
如果加载过程中主应力方向改变,计算应力范围使用一个派生的单轴应力可 能是不正确的
临界平面法可用于计算主应力方向改变的情况
nCode分析-五框图
© 2015 ANSYS, Inc. 19
ANSYS nCode 的功能特色
时间序列 恒幅载荷
时间步载荷

ansys疲劳分析解析

ansys疲劳分析解析

1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。

疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。

因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算。

在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。

接下来,我们将对基于应力疲劳理论的处理方法进行讨论。

1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。

否则,则称为变化振幅或非恒定振幅载荷。

1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。

相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。

1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。

这就是σm=0,R=-1的情况。

当施加载荷后又撤除该载荷,将发生脉动循环载荷。

这就是σm=σmax/2,R=0的情况。

1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

ANSYS疲劳分析

ANSYS疲劳分析

ANSYS疲劳分析疲劳是指结构在低于静态极限强度载荷的重复载荷作用下,出现断裂破坏的现象。

例如一根能够承受300 KN 拉力作用的钢杆,在200 KN 循环载荷作用下,经历1,000,000 次循环后亦会破坏。

导致疲劳破坏的主要因素如下:载荷的循环次数;每一个循环的应力幅;每一个循环的平均应力;存在局部应力集中现象。

真正的疲劳计算要考虑所有这些因素,因为在预测其生命周期时,它计算“消耗”的某个部件是如何形成的。

1.ANSYS程序处理疲劳问题的过程ANSYS 疲劳计算以ASME锅炉和压力容器规范(ASME Boiler and Pressure Vessel Code)作为计算的依据,采用简化了的弹塑性假设和Mimer累积疲劳准则。

除了根据ASME 规范所建立的规则进行疲劳计算外,用户也可编写自己的宏指令,或选用合适的第三方程序,利用ANSYS 计算的结果进行疲劳计算。

《ANSYS APDL Programmer’s Guide》讨论了上述二种功能。

ANSYS程序的疲劳计算能力如下:(1)对现有的应力结果进行后处理,以确定体单元或壳单元模型的疲劳寿命耗用系数(fatigue usage factors)(用于疲劳计算的线单元模型的应力必须人工输入);(2)可以在一系列预先选定的位置上,确定一定数目的事件及组成这些事件的载荷,然后把这些位置上的应力储存起来;(3)可以在每一个位置上定义应力集中系数和给每一个事件定义比例系数。

2.基本术语位置(Location):在模型上储存疲劳应力的节点。

这些节点是结构上某些容易产生疲劳破坏的位置。

事件(Event):是在特定的应力循环过程中,在不同时刻的一系列应力状态。

载荷(Loading):是事件的一部分,是其中一个应力状态。

应力幅:两个载荷之间应力状态之差的度量。

程序不考虑应力平均值对结果的影响。

3.疲劳计算完成了应力计算后,就可以在通用后处理器POST1 中进行疲劳计算。

ANSYSWORKBENCH疲劳分析指南第三章

ANSYSWORKBENCH疲劳分析指南第三章

ANSYSWORKBENCH疲劳分析指南第三章发表时间:2009-2-21 作者: 安世亚太来源: e-works关键字: CAE ansys Workbench疲劳分析第三章不稳定振幅的疲劳在前面一章中,考察了恒定振幅和比例载荷的情况,并涉及到最大和最小振幅在保持恒定的情况下的循环或重复载荷。

在本章将针对不定振幅、比例载荷情况,尽管载荷仍是成比例的,但应力幅和平均应力却是随时间变化的。

3.1 不规律载荷的历程和循环(History and Cycles)对于不规律载荷历程,需要进行特殊处理:计算不规律载荷历程的循环所使用的是“雨流”rainflow循环计算,“雨流”循环计算(Rainflowcycle counting)是用于把不规律应力历程转化为用于疲劳计算的循环的一种技术(如右面例子),先计算不同的“平均”应力和应力幅(“range”)的循环,然后使用这组“雨流”循环完成疲劳计算。

损伤累加是通过Palmgren-Miner 法则完成的,Palmgren-Miner法则的基本思想是:在一个给定的平均应力和应力幅下,每次循环用到有效寿命占总和的百分之几。

对于在一个给定应力幅下的循环次数Ni,随着循环次数达到失效次数Nfi时,寿命用尽,达到失效。

“雨流”循环计算和Palmgren-Miner损伤累加都用于不定振幅情况。

因此,任何任意载荷历程都可以切分成一个不同的平均值和范围值的循环阵列(“多个竖条”),右图是“雨流”阵列,指出了在每个平均值和范围值下所计算的循环次数,较高值表示这些循环的将出现在载荷历程中。

在一个疲劳分析完成以后,每个“竖条”(即“循环”)造成的损伤量将被绘出,对于“雨流”阵列中的每个“竖条”(bin),显示的是对应的所用掉的寿命量的百分比。

在这个例子中,即使大多数循环发生在低范围/平均值,但高范围(range)循环仍会造成主要的损伤。

依据Per Miner法则,如果损伤累加到1(100%),那么将发生失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。

疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。

因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算。

在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。

接下来,我们将对基于应力疲劳理论的处理方法进行讨论。

1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。

否则,则称为变化振幅或非恒定振幅载荷。

1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。

相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。

1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。

这就是σm=0,R=-1的情况。

当施加载荷后又撤除该载荷,将发生脉动循环载荷。

这就是σm=σmax/2,R=0的情况。

1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

S-N曲线是通过对试件做疲劳测试得到的弯曲或轴向测试反映的是单轴的应力状态,影响S-N曲线的因素很多,其中的一些需要的注意,如下:材料的延展性,材料的加工工艺,几何形状信息,包括表面光滑度、残余应力以及存在的应力集中,载荷环境,包括平均应力、温度和化学环境,例如,压缩平均应力比零平均应力的疲劳寿命长,相反,拉伸平均应力比零平均应力的疲劳寿命短,对压缩和拉伸平均应力,平均应力将分别提高和降低S-N曲线。

因此,记住以下几点:一个部件通常经受多轴应力状态。

如果疲劳数据(S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要注意:(1)设计仿真为用户提供了如何把结果和S-N曲线相关联的选择,包括多轴应力的选择;(2)双轴应力结果有助于计算在给定位置的情况。

平均应力影响疲劳寿命,并且变换在S-N曲线的上方位置与下方位置(反映出在给定应力幅下的寿命长短):(1)对于不同的平均应力或应力比值,设计仿真允许输入多重S-N曲线(实验数据);(2)如果没有太多的多重S-N曲线(实验数据),那么设计仿真也允许采用多种不同的平均应力修正理论。

早先曾提到影响疲劳寿命的其他因素,也可以在设计仿真中可以用一个修正因子来解释。

1.6 总结疲劳模块允许用户采用基于应力理论的处理方法,来解决高周疲劳问题。

以下情况可以用疲劳模块来处理:恒定振幅,比例载荷(参考第二章);变化振幅,比例载荷(参考第三章);恒定振幅,非比例载荷(参考第四章)。

需要输入的数据是材料的S-N曲线:S-N曲线是疲劳实验中获得,而且可能本质上是单轴的,但在实际的分析中,部件可能处于多轴应力状态。

S-N曲线的绘制取决于许多因素,包括平均应力,在不同平均应力值作用下的S-N曲线的应力值可以直接输入,或可以执行通过平均应力修正理论实现。

2.1 基本情况进行疲劳分析是基于线性静力分析,所以不必对所有的步骤进行详尽的阐述。

疲劳分析是在线性静力分析之后,通过设计仿真自动执行的。

对疲劳工具的添加,无论在求解之前还是之后,都没有关系,因为疲劳计算不并依赖应力分析计算。

尽管疲劳与循环或重复载荷有关,但使用的结果却基于线性静力分析,而不是谐分析。

尽管在模型中也可能存在非线性,处理时就要谨慎了,因为疲劳分析是假设线性行为的。

在本章中,将涵盖关于恒定振幅、比例载荷的情况。

而变化振幅、比例载荷的情况和恒定振幅、非比例载荷的情况,将分别在以后的第三和四章中逐一讨论。

2.1.1 疲劳程序下面是疲劳分析的步骤,用斜体字体所描述的步骤,对于包含疲劳工具的应力分析是很特殊的:模型指定材料特性,包括S-N曲线;定义接触区域(若采用的话);定义网格控制(可选的);包括载荷和支撑;(设定)需要的结果,包括Fatigue tool;求解模型;查看结果。

在几何方面,疲劳计算只支持体和面,线模型目前还不能输出应力结果,所以疲劳计算对于线是忽略的,线仍然可以包括在模型中以给结构提供刚性,但在疲劳分析并不计算线模型。

2.1.2 材料特性由于有线性静力分析,所以需要用到杨氏模量和泊松比:如果有惯性载荷,则需要输入质量密度;如果有热载荷,则需要输入热膨胀系数和热传导率;如果使用应力工具结果(Stress Tool result),那么就需要输入应力极限数据,而且这个数据也是用于平均应力修正理论疲劳分析。

疲劳模块也需要使用到在工程数据分支下的材料特性当中S-N曲线数据:数据类型在“疲劳特性”(“Fatigue Properties”)下会说明;S-N曲线数据是在材料特性分支条下的“交变应力与循环”(“Alternating Stress vs. Cycles”)选项中输入的。

如果S-N曲线材料数据可用于不同的平均应力或应力比下的情况, 那么多重S-N曲线也可以输入到程序中。

2.1.3 疲劳材料特性添加和修改疲劳材料特性:在材料特性的工作列表中,可以定义下列类型和输入的S-N曲线,插入的图表可以是线性的(“Linear”)、半对数的(“Semi-Log”即linear for stress, log for cycles)或双对数曲线(“Log-Log”)。

记得曾提到的,S-N曲线取决于平均应力。

如果S-N曲线在不同的平均应力下都可适用的,那么也可以输入多重S-N曲线,每个S-N曲线可以在不同平均应力下直接输入,每个S-N曲线也可以在不同应力比下输入。

可以通过在“Mean Value”上点击鼠标右键添加新的平均值来输入多条S-N曲线。

2.1.4 疲劳特征曲线材料特性信息可以保存XML文件或从XML文件提取,保存材料数据文件,在material条上按右键,然后用“Export …”保存成XML外部文件,疲劳材料特性将自动写到XML文件中,就像其他材料数据一样。

一些例举的材料特性在如下安装路径下可以找到:C:\ProgramFiles\AnsysInc\v80\AISOL\CommonFiles\Language\en-us\EngineeringData\Materials,“Aluminum”和“Structural Steel”的XML文件,包含有范例疲劳数据可以作为参考,疲劳数据随着材料和测试方法的不同而有所变化,所以很重要一点就是,用户要选用能代表自己部件疲劳性能的数据2.1.5 接触区域接触区域可以包括在疲劳分析中,注意,对于在恒定振幅、成比例载荷情况下处理疲劳时,只能包含绑定(Bonded)和不分离(No-Separation)的线性接触,尽管无摩擦、有摩擦和粗糙的非线性接触也能够包括在内,但可能不再满足成比例载荷的要求。

例如,改变载荷的方向或大小,如果发生分离,则可能导致主应力轴向发生改变;如果有非线性接触发生,那么用户必须小心使用,并且仔细判断;对于非线性接触,若是在恒定振幅的情况下,则可以采用非比例载荷的方法代替计算疲劳寿命。

2.1.6 载荷与支撑能产生成比例载荷的任何载荷和支撑都可能使用,但有些类型的载荷和支撑不造成比例载荷:螺栓载荷对压缩圆柱表面侧施加均布力,相反,圆柱的相反一侧的载荷将改变;预紧螺栓载荷首先施加预紧载荷,然后是外载荷,所以这种载荷是分为两个载荷步作用的过程;压缩支撑(Compression Only Support)仅阻止压缩法线正方向的移动,但也不会限制反方向的移动,像这些类型的载荷最好不要用于恒定振幅和比例载荷的疲劳计算。

2.1.7 (设定)需要的结果对于应力分析的任何类型结果,都可能需要用到:应力、应变和变形–接触结果(如果版本支持);应力工具(Stress Tool)。

另外,进行疲劳计算时,需要插入疲劳工具条(Fatigue Tool):在Solution子菜单下,从相关的工具条上添加“Tools > Fatigue Tool”,Fatigue Tool的明细窗中将控制疲劳计算的求解选项;疲劳工具条(Fatigue Tool)将出现在相应的位置中,并且也可添加相应的疲劳云图或结果曲线,这些是在分析中会被用到的疲劳结果,如寿命和破坏。

2.1.8 需要的结果在疲劳计算被详细地定义以后,疲劳结果可下在Fatigue Tool下指定;等值线结果(Contour)包括Lifes(寿命),Damage(损伤),Safety Factor(安全系数),BiaxialityIndication(双轴指示),以及Equivalent Alternating Stress(等效交变应力);曲线图结果(graph results))仅包含对于恒定振幅分析的疲劳敏感性(fatigue sensitivity);这些结果的详细分析将只做简短讨论。

2.2 Fatigue Tool2.2.1 载荷类型当Fatigue Tool在求解子菜单下插入以后,就可以在细节栏中输入疲劳说明:载荷类型可以在“Zero-Based”、“Fully Reversed”和给定的“Ratio”之间定义;也可以输入一个比例因子,来按比例缩放所有的应力结果。

2.2.2 平均应力影响在前面曾提及,平均应力会影响S-N曲线的结果. 而“Analysis Type”说明了程序对平均应力的处理方法:“SN-None”:忽略平均应力的影响“SN-Mean Stress Curves”:使用多重S-N曲线(如果定义的话)“SN-Goodman,”“SN-Soderberg,”和“SN-Gerber”:可以使用平均应力修正理论。

如果有可用的试验数据,那么建议使用多重S-N曲线(SN-Mean Stress Curves);但是,如果多重S-N曲线是不可用的,那么可以从三个平均应力修正理论中选择,这里的方法在于将定义的单S-N曲线“转化”到考虑平均应力的影响:1.对于给定的疲劳循环次数,随着平均应力的增加,应力幅将有所降低;2.随着应力幅趋近零,平均应力将趋近于极限(屈服)强度;3.尽管平均压缩应力通常能够提供很多的好处,但保守地讲,也存在着许多不利的因素(scaling=1=constant)。

相关文档
最新文档