(完整版)全固态锂电池技术的研究进展与展望

合集下载

全固态锂电池的技术研究进展

全固态锂电池的技术研究进展

全固态锂电池的技术研究进展
根据近期流传的技术趋势预测,全固态锂电池,可能在2030年之前实现固态电解质技术突破,单体能量密度超过500Wh/kg的目标,并且达到量产能力。

今天关注一下全固态电解质锂电池。

1锂电池的种类
锂电池的分类方法比较多,可以按照正极材料类型划分,负极材料类型划分,电解液类型划分等等,我们常说的三元材料还是磷酸铁锂或者锰酸锂,就是按照正极材料划分的结果。

在锂电池当前发展阶段上,锂电池性能上的差异主要表现在正极材料的差异上,因此人们习惯于用正极材料的名称给一个技术路线命名。

今后两年,高镍三元将成为量产可能性最高的一种技术路线,而含镍量的不同,又成了技术路线的名字,622、811,这是镍钴锰在三元正极材料中的占比关系。

这仍然是一种针对正极材料差异的提法。

欧阳明高院士最近给出的技术路线预测中,高镍以后,能量密度达到400Wh/kg的希望,很大程度上寄托在全固态电池的身上。

固态电池,相对于传统锂电池的液态电解液而言的,电解质为导电率很高的纯固态物质,这是一种针对电解液形态的命名方式。

与固态电池平行的另外两种技术路线应该可以叫做液态电解液锂电池和半固态电解液锂电池。

液态电解液锂电池,传统称呼中三元、磷酸铁锂、锰酸锂都属于液态电解液锂电池范围。

半固态电解液,电解质是介于固态和液态之间的状态,现在常见的材料是聚合物电解质,在常温下为凝胶态。

2全固态锂电池的优缺点
优点
1)安全性好,电解质无腐蚀,不可燃,也不存在漏液问题;
2)高温稳定性好,可以在60℃-120℃之间工作;
3)有望获得更高的能量密度。

固态电解液,力学性能好,有效抑制锂单质直径生长造成。

全固态锂电池研究报告

全固态锂电池研究报告

全固态锂电池研究报告
随着人们对环保和安全的要求日益提高,全固态锂电池作为新一代锂离子电池已逐渐受到关注。

本报告就全固态锂电池的研究现状、技术特点及应用前景进行分析和探讨。

一、全固态锂电池的研究现状
全固态锂电池是指电解质全部为固态材料的锂离子电池,其优点包括高安全性、高温度稳定性、高能量密度等。

目前,全固态锂电池的研究主要集中在电解质材料、电极材料以及电池构造等方面。

电解质材料包括硫化合物、氧化物、硅酸盐等,电极材料则包括硫化物、氧化物等。

近年来,全固态锂电池的研究进展较快,不断有新材料推出,但仍存在问题,如电阻率大、循环寿命短等。

二、全固态锂电池的技术特点
全固态锂电池相比液态锂电池,具有以下技术特点:
1.较高的安全性:全固态锂电池采用固态电解质,不含有液态电解质,相比液态锂电池更加安全可靠。

2.较高的能量密度:固态电解质的特性使得全固态锂电池具有更高的能量密度,有望超过目前的液态锂电池。

3.较高的温度稳定性:全固态锂电池能够在高温环境下运行,且有较好的稳定性,不会像液态锂电池那样发生“热失控”的问题。

三、全固态锂电池的应用前景
由于全固态锂电池具有高安全性、高能量密度、高温度稳定性等优点,其应用前景广泛。

目前,全固态锂电池已被应用于智能手表、
智能手环、无人机、电动汽车等领域。

随着全固态锂电池技术的不断完善,其应用范围将会越来越广泛。

总之,全固态锂电池是未来电池领域的重要发展方向,其研究和应用具有重要的意义和前景。

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望近年来,飞机、汽车、船舶等交通工具的发展与信息化社会的发展密切相关,传统的锂离子电池的性能和安全性难以满足这种需求。

全固态锂电池(Solid-State Lithium Battery,SSL)是一种有前景的锂离子电池技术,它采用固态电解质和微细催化剂,在保证安全性的条件下实现了电池容量和寿命的显著提高。

目前,全固态锂电池的研究主要集中在四个方面:电解质,催化剂,负极材料和真空热处理技术。

在电解质方面,重要的研究方向是开发新型的全固态电解质和复合电解质,例如离子液体和柱状结构全固态电解质。

在催化剂方面,研究重点在于开发新型的微细催化剂材料和其制备方法,例如氧还原催化剂和氧化物形成催化剂。

在负极材料方面,重点研究是研究全固态锂离子电池的负极电化学反应机制,并开发新型全固态负极材料。

最后,在真空热处理技术方面,重点研究是研究高温下电池凝胶电解质的稳定性和结构,以及电池工艺的优化。

全固态锂电池的发展具有广泛的应用前景,尤其适用于一些具有较高要求的电场应用,如汽车电池、家用电子产品和新能源纯电动汽车等。

然而,由于全固态锂电池技术的实际应用还较少,应用还存在一些问题,如提高全固态锂电池的能量密度、改善其耐久性和安全性等。

为此,未来应继续进行交叉学科的深入研究,探索新的全固态锂电池构效关系,加速全固态锂电池的实际应用。

总之,全固态锂电池的发展已成为当今能源科学发展的热点研究领域之一,它在提高电池性能和安全性方面具有很大的潜力。

然而,要预测全固态锂电池未来发展趋势,必须深入研究各种新型全固态电解质、全固态负极材料、催化剂和真空热处理等技术材料,以及其设计和评估方法。

同时,未来还应探索全固态锂电池在新能源发电系统等领域的潜在应用,为深入推动全固态锂电池技术的发展做出贡献。

本文从全固态锂电池技术的研究现状出发,着眼于明确全固态锂电池的结构及技术性能,以及其实际应用中存在的技术问题,通过综合分析,探讨了全固态锂电池的研究展望。

全固态锂离子电池的研究与应用

全固态锂离子电池的研究与应用

全固态锂离子电池的研究与应用随着环保意识的不断提高和新能源发展的加速推进,电动汽车已经成为了未来的发展方向。

然而,电池作为电动汽车的重要组成部分,其性能和安全性问题一直是制约电动汽车发展的瓶颈之一。

人们普遍认为,全固态锂离子电池有望成为下一代电池的发展方向,因其优异的安全性和高容量的特点,已经在研究和应用方面取得了不小的进展。

一、全固态锂离子电池的定义和特点全固态锂离子电池是一种由固态电解质和固态正负极组成的电池,其电解质和电极均采用固态材料,因此具有很高的安全性和稳定性。

相比于传统锂离子电池,全固态锂离子电池具有以下特点:1. 高能量密度固态电解质具有较高的离子导电性能,可以大大提高电池的能量密度,使得电池能够存储更多的电能,从而提高了电池的使用时间。

2. 高安全性由于全固态锂离子电池采用固态材料,其结构更加稳定,可以有效降低电池的泄漏和起火等安全隐患,使得电池更加安全可靠。

3. 高温性能固态材料具有较高的熔点和热稳定性,可以大大提高电池的耐高温性能,减少了在高温环境下电池的衰减和损伤。

二、全固态锂离子电池的研究进展目前,全固态锂离子电池的研究正在逐步深入,主要集中在以下方面:1. 固态电解质的制备固态电解质是全固态锂离子电池的关键组成部分,其离子导电性能和稳定性直接决定了电池的性能。

因此,固态电解质的制备是全固态锂离子电池研究的重点之一。

目前,研究人员主要利用化学气相沉积(CVD)、物理气相沉积(PVD)和固相反应等方法制备固态电解质。

2. 固态电极的设计与制备固态电极是全固态锂离子电池的另一重要组成部分,其材料选择、结构设计和制备工艺都对电池性能产生了重要影响。

近年来,研究人员对固态电极的材料、结构和性能进行了大量的研究,已经取得了一定的进展。

3. 电池设计和性能测试全固态锂离子电池的研究不仅需要关注电解质和电极的制备,还需要对电池的设计和性能进行全面的测试和研究。

目前,研究人员已经开发了很多种测试方法和设备,用于测试全固态锂离子电池的能量密度、循环寿命、热稳定性等关键性能指标。

(完整版)全固态锂电池技术的研究进展与展望

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。

薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。

作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。

关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。

全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。

全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。

放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。

目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。

通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。

全固态锂离子电池技术的研究与开发

全固态锂离子电池技术的研究与开发

全固态锂离子电池技术的研究与开发随着现代社会的发展,电子产品已经成为人们生活中不可或缺的一部分。

而这些产品所需要的能源更是不可或缺的,电池成为了人们日常生活中经常使用的能源媒介。

目前市场上主流的电池类型有很多,其中最受欢迎的电池类型之一就是锂离子电池。

但是锂离子电池的安全性和寿命一直是令人忧虑的问题,这也引起了人们对于锂离子电池的改进和研究。

全固态锂离子电池正是锂离子电池技术的重要进步,日益受到人们的重视。

一、全固态锂离子电池的定义全固态锂离子电池是指电解液全部被固态电解质所替代,并且正负极电极材料必须与固态电解质有良好的接触。

在固态电解质内离子的移动必须通过固态转移通道完成。

相比于传统锂离子电池,全固态锂离子电池具有更高的安全性、更长的寿命和更高的能量密度。

二、全固态锂离子电池技术的优点1、安全性好全固态锂离子电池由于采用的是固态电解质材料,在电池使用过程中几乎不会发生电解液泄露、燃爆或着火等危险情况。

因此,全固态锂离子电池的使用更加安全可靠。

2、寿命长传统锂离子电池的寿命受到极大的限制,主要原因在于电解液在循环过程中不断的蒸发、漏泄和分解,导致电池生成气体,电极材料的变化等。

而固态电解质几乎不会发生任何变化,因此,全固态锂离子电池的使用寿命很长。

3、能量密度高由于固态电解质的引入,全固态锂离子电池的体积可以大大减小,而能量密度却可以更高,因此可以实现更小体积的电池承载更高的能量。

这对于手机、笔记本电脑等小型便携设备的电池升级来说,是一个非常重要的突破。

三、全固态锂离子电池技术的研究进展目前,全固态锂离子电池的技术研究已经进入了实际应用阶段,但是还存在很多技术瓶颈需要突破。

从目前公开的研究成果来看,全固态锂离子电池的研发方向主要包括以下几个方面:1、固态电解质材料全固态锂离子电池的基础是固态电解质材料。

固态电解质材料的研究是全固态锂离子电池技术的核心。

目前,全固态锂离子电池研究中采用比较多的材料主要包括硫酸锂、磷酸锂等无机离子固态电解质材料以及聚合物、聚合物复合物等有机固态电解质材料。

全固态电池技术的发展现状和前景展望

全固态电池技术的发展现状和前景展望随着能源环保问题越来越严重,全固态电池技术的研究备受关注。

相比于传统的锂离子电池,全固态电池具有更高的安全性、更长的寿命,并且无需钴等有毒的材料,可以更好地解决新能源行业的环保问题。

本文将分析全固态电池技术的发展现状和前景展望。

1. 全固态电池技术的发展现状全固态电池的研究起源于上世纪六十年代。

近几年,随着新能源产业的兴起,全固态电池技术获得了极大的关注。

目前国内外多家企业和科研机构正在积极开展全固态电池的研究和开发。

在国外,全固态电池技术的研究较为成熟。

在2017年初,日本电子巨头索尼公布了一项迄今为止世界上最先进的全固态电池技术——高能量密度全固态电池。

该技术使用锂离子传输电解质,并融合多层层叠电池设计、金属硼氢化物高能量密度材料等先进技术,实现了比现有锂离子电池更高的能量密度和更长的使用寿命。

在国内,中科院化学所、清华大学等机构也进行了全固态电池的相关研究。

国内外多家企业也纷纷进入全固态电池领域,例如比亚迪、宁德时代、上汽集团等。

2. 全固态电池的前景展望随着科技的不断进步,全固态电池技术的市场前景十分广阔。

首先,全固态电池具有更高的安全性。

传统的锂离子电池容易发生过热、爆炸等安全事故,而全固态电池可以大大减少这些安全隐患,更加可靠安全。

其次,全固态电池具有更长的使用寿命。

传统的锂离子电池容易出现“记忆效应”,使用寿命较短。

而全固态电池不容易出现这种现象,使用寿命更长。

除此之外,全固态电池还具有更高的能量密度、更快的充电速度和更低的自放电率等优点。

这些优点使得全固态电池在车载电池、储能电池、航天电池等领域具有广泛的应用前景。

3. 全固态电池技术面临的挑战全固态电池技术的发展还面临一些挑战。

首先,全固态电池的制作工艺较为复杂,生产成本较高。

其次,全固态电池的材料和设计等需要进一步优化。

最后,全固态电池技术还需要面临市场和政策环境的挑战。

4. 结语总之,全固态电池技术是新能源领域的重要研究方向之一。

2024年固态电解质和全固态锂电池研究报告

2024年是固态电解质和全固态锂电池研究的重要年份。

固态电解质作为一种新型电解质材料,具有高离子导电性、较高的安全性和良好的化学稳定性等特点,被广泛看作是解决锂电池安全性问题的关键技术之一、以下是对2024年固态电解质和全固态锂电池研究的概述。

一、固态电解质材料研究在固态电解质材料的研究方面,硫化锂玻璃(Li2S-P2S5)和氧化物固态电解质是2024年的热门研究方向。

硫化锂玻璃作为一种传统的固态电解质材料,具有较高的离子导电性能。

研究者通过调控硫化锂玻璃的成分和结构,提高了其离子导电性能和电化学稳定性。

此外,还有研究对硫化锂玻璃进行表面涂层或者插入基质,进一步提高了其电化学性能。

氧化物固态电解质由于其较高的化学稳定性和电化学稳定性,被认为是一种很有潜力的固态电解质材料。

氧化物固态电解质主要有氧化锂钇(Li7La3Zr2O12,LLZO)和氧化锂硅(Li10GeP2S12,LGPS)等。

研究者通过掺杂和改性的方法,提高了氧化物固态电解质的离子导电性和稳定性,为全固态锂电池的应用提供了关键材料。

二、全固态锂电池研究全固态锂电池是一种具有高能量密度、长寿命和良好安全性的锂离子电池。

2024年,固态电解质和全固态锂电池的研究取得了很大进展。

固态电解质的高离子导电性和稳定性为全固态锂电池的应用提供了可行性。

研究者通过在电极和电解质之间形成良好接触的界面,进一步提高了全固态锂电池的性能。

此外,为了提高全固态锂电池的电化学性能,还有研究对电极材料进行改性和优化,使其更适合全固态锂电池的工作条件。

全固态锂电池的研究重点还包括制备工艺和尺寸效应的研究。

制备工艺的研究主要关注如何实现高效制备全固态锂电池并提高其可扩展性。

尺寸效应的研究探索了全固态锂电池的微观结构和性能之间的关系,旨在寻找最佳的电池设计和优化策略。

三、全固态锂电池的挑战和展望尽管固态电解质和全固态锂电池在2024年取得了重要进展,但仍然面临一些挑战。

全固态锂电池技术研究现状和发展趋势

Telecom Power Technology研制开发全固态锂电池技术研究现状和发展趋势朱家辰(郑州大学化工学院,河南郑州随着全球经济的快速发展,大量的化石燃料被不断消耗。

我国未来的发展趋势是绿色环保,除了可以用绿色清洁的能源代替原本的化石燃料能源之外,还可以通过改进储能设备来高效地利用能源。

全固态锂电池具有高能量密度、高离子电导率、高安全性以及清洁等特点,逐渐引起人们的重视。

通过分析全固态锂电池技术的研究现状和发展趋势,探讨将其应用于智能穿戴产品的可行性。

全固态锂电池;电解质;研究现状Research Status and Development Trend of All Solid State Lithium Battery TechnologyZHU Jiachen(School of Chemical Engineering, Zhengzhou University, Zhengzhouof the global economy, as future development trend is green and environmental protection. In addition to replacing the original fossil fuel energy with green and clean energy, energy can also be efficiently utilized by improving energyxC6。

全固态锂电池能量传递如图全固态锂电池的优势:)高安全性。

传统液态锂电子电池的电解质中有易燃的液态有机溶剂,在遇到高温或因电池短路而导致局部温度升高时,极易发生电池爆炸。

而全固态锂电池乃无机材质,不易挥发、阻燃性好,在遇到高温时不易发生爆炸,具有很高的安全性能。

)高能量密度。

传统的液态锂电子电池由于放电Ve-e-放电充电充电Li+Li+Li+Li+Li+Li+Li+Li+ 2022年4月25日第39卷第8期· 27 ·Telecom Power TechnologyApr. 25, 2022, Vol.39 No.8 朱家辰:全固态锂电池技术研究现状和发展趋势盐在高温下也会发生一定的分解促进电解液的反应,电解液消耗殆尽便无法储能。

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望
随着新能源汽车的发展,动力电池技术成为了当前汽车行业蓬勃发展的重要领域。

全固态锂电池技术是新能源汽车动力电池领域的重要研究方向,它可以替代传统锂离子电池,是提高新能源汽车动力性能、降低新能源汽车成本的关键技术。

目前,全固态锂电池技术的研究取得了一定的成果,但仍然面临着许多挑战。

首先,全固态电池的能量密度较低,尚不能满足新能源汽车的超长航程要求;其次,全固态电池的制造工艺复杂,生产成本较高;此外,全固态电池的安全性仍需要进一步提高,消除温度升高和电池短路等安全隐患。

尽管如此,全固态锂电池技术仍具有巨大的发展潜力。

在材料研究方面,研究人员正在探索新的全固态电解质材料,以提高电池能量密度;在制造技术方面,研究人员正在探索更高效更成熟的制造工艺;在安全技术方面,研究人员正在探索新的安全措施,以确保电池的安全运行。

总的来说,全固态锂电池技术的研究正在不断推进,未来具有良好的发展前景。

只要不断加大研发力度,全固态锂电池技术将在不久的将来取得重大突破,成为新能源汽车动力电池技术的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。

薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。

作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。

关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。

全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。

全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。

放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。

目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。

通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。

同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。

无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。

采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。

从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。

这体现了无机全固态锂电池在安全性方面的独特优势。

以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。

正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12]2 全固态锂电池储能应用研究进展在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。

目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。

综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。

全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。

在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。

图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电池技术其实可以覆盖到锂硫电池、锂空气电池或锂金属电池相关的一些核心材料与关键技术,包括电池设计、高性能固态隔膜材料等。

全固态锂电池作为下一代高安全性储能技术应用的迫切性已开始被认识。

图4 未来二十年大容量锂电池的发展路径面向新能源储能和智能电网等的需求,未来我国迫切需要支持发展高安全性、长寿命和高比能量的化学储能技术,开展化学储能技术关键材料制备和集成技术。

与国际先进水平相比,我国在这一方面加大研发力度,进一步提升储能电池的安全性、寿命、能量密度及系统集成技术,并提升相关领域的知识产权就具有更加重要的战略意义。

针对新型化学储能技术领域对高安全性、长寿命锂二次电池的发展需求,发展大容量全固态锂电池前沿技术刻不容缓。

通过制备具有与液态电解质性能相当的锂离子固体电解质,并探索影响电池性能最主要因素的电极/电解质界面的修饰和改性技术,降低界面电阻以提高电池高倍率容量;同时,通过优化电池结构设计等关键技术的研究,获得具有自主知识产权的全固态锂电池技术,继续开拓全固态锂电池工程化与产业化的道路,以实现大容量全固态锂电池的商业化和国产化。

总的来说,大容量全固态锂电池的发展前景是非常光明的,影响大容量全固态锂电池性能的科学与技术问题正在逐步解决,大容量全固态锂电池在未来储能甚至动力领域中必将得到广泛应用。

2、聚苯胺全固态锂电池高聚物固态锂电池以其无泄漏、超薄型化等特点,引起人们极大的趣。

‘.但由于高聚物电解质电导率低,影响了固态锂电池的充放电性能.为了提高聚台物电解质室温电导率,人们从高聚物改性方面进行了许多尝试+其中,y 一辐射交联是提高电导率的一条有效途径.文献[ 3 ] 报道了经过y - 辐射交联后的P EO 电解质,其电导率已达到 6 + 8 ×1 0‘S /c m.目前,导电高聚物作为二次锂电池正极活性物质主要有聚乙炔、聚吡咯及聚苯胺等.实验结果证明聚苯胺正极材料较其它两种具有良好的化学稳定性和电化学可逆性.此外,聚苯胺还可制成自支撑薄膜或多孔薄膜.不过,有关聚苯胺固态锂电池的研究仍很少,本文报道固态二次锂电池( L i /P EO( L i CI O。

:P C) /P An ) 及其材料的电化学性能.3、全固态薄膜锂/锂离子电池的研究进展全固态薄膜锂/锂离子电池主要由集流体薄膜、阴极薄膜、电解质薄膜以及阳极薄膜组成,实际使用时,根据需要在薄膜电池上沉积3.0—5.Ottm厚度的封装层对薄膜电池进行保护”’。

全固态薄膜锂电池的发展是与各层薄膜的制备工艺和应用材料的发展紧密联系的,图l对全固态薄膜锂/锂离子电池的发展历程进行了简单概括。

从电解质薄膜的发展角度来说,全固态薄膜锂/锂离子电池的发展可以分为两个阶段:第一阶段从1983年Kanehori等”1开发出第一个全固态薄膜锂电池开始,至LiPON开始应用。

本阶段薄膜电池主要以金属锂薄膜为阳极,TiS:、TiO。

:SL.、MoO,6SL 8等薄膜为阴极,而电解质主要为玻璃态的氧化物或硫化物。

该类电解质电化学窗口小、离子导电率低、电子导电率高的缺点,薄膜电池的电压一般在2V以下,而且循环性能一般较差”1。

第二个阶段是以部分氮化的磷酸锂(LiPON,Lithium phos-phorous oxynitride)薄膜为电解质制备的一系列薄膜锂/锂离子电池。

1993年美国橡树岭国家实验室(OaNL)Bates等人”“”首先开发出一种综合性能非常优越的无机电解质LiPON薄膜。

25℃时LiPON薄膜离子导电率可达3.3×lO~S·cm一,比Ⅱ,PO。

薄膜高近两个数量级,电化学稳定窗口在5.5V以上““。

由于IjPoN的化学性质和电化学性质非常稳定,而且可以同LiCa02、LiMa:O。

等高电位阴极薄膜以及金属锂、氧化锡等阳极薄膜相匹配.因此LiPON的应用,极大地推动了薄膜锂/锂离子电池的研究开发。

根据全固态薄膜锂/锂离子电池采用阳极薄膜及电池结构的不同,我们将全固态薄膜锂/锂离子电池简单分为四类:第一类以金属锂薄膜作为阳极,称为全固态薄膜锂电池;第二类以氧化物或氮化物薄膜作为阳极,被称为全固态薄膜锂离子电池;第三类为全固态薄膜“无锂”电池。

直接以金属集流体作为“阳极”;第四类为其他结构的锂/锂离子微电池。

其中。

前三类主要针对面积大于10ram2的传统薄膜型锂/锂离子电池,而第四类主要针对最近发展的具有特殊结构的锂/锂离子微电池。

如薄膜型微电池、三维(3一D)阵列电池等。

4、全固态薄膜锂电池的研究进展全固态薄膜锂电池由阴极膜、阳极膜和电解质膜组成,在实际应用中,由于锂比较活泼,在锂微电池外层还需要一层保护薄膜。

按电解质组成不同可将其分为两大类:一类是以有机聚合物电解质组成的薄膜锂池,也称为聚合物(或塑料)薄膜锂电池;另一类是以无机固体电解质组成的薄膜锂电池,又称为无机薄膜锂电池。

1973年首次报道聚氧化乙烯(PEo)与碱金属盐复合物具有高的离子导电性。

此后离子导电性聚合物受到人们的重视。

1978年,法国的A瑚and提出PEo/碱金属盐配合物可以作为带有碱金属电极的新型可充电电池的电解质。

1994年,美国的BeUcore公司开发出凝胶态CPE电解质。

30多年来,研究人员在固态聚合物电解质的理论及应用方面都取得很大进展。

Ra瓶eue旧1等开发的全固态薄膜锂电池是由含Ag:wO。

的聚合物为阴极,浸有LiPF6的聚合物为电解质,“片为阳极,这种全固态薄膜锂电池主要由聚合物组成,虽然具有十分吸引人的优越性如能够制备成各种形状、循环次数很长,制备成本相对低,但同时也存在致命的缺点,如电解质和电极的界面不稳定、易结晶、机械性能差、对温度敏感以及适用温度范围窄。

相比之下,无机固体电解质材料具有机械强度高,不含易燃、易挥发成份,不存在漏液问题;同时,无机固体材料可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜锂电池具有超长的储存寿命,适合做各类电子产品的支撑电源。

全固态无机薄膜锂电池的研究已经有20多年的历史,第一个薄膜电池是由Kanehori等1983年开发L∥Tis2电池”j。

相关文档
最新文档