第11章全等三角形复习

合集下载

第11章《全等三角形》测试卷

第11章《全等三角形》测试卷

第11章《全等三角形》全章测试班级: 姓名:一.选择题(3×10=30分) 1.下列说法正确的是( )A .形状相同的两个三角形是全等三角形B .面积相等的两个三角形是全等三角形C .三个角对应相等的两个三角形是全等三角形D .三条边对应相等的两个三角形是全等三角形2.如图,点C 落在AOB ∠边上,用尺规作OA CN //,其中弧FG 的( ) A .圆心是C ,半径是OD B .圆心是C ,半径是DMC .圆心是E ,半径是ODD .圆心是E ,半径是DM3.如右图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不.恰当..的是( ) A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC长为( )A. cm 1B. cm 2C. cm 3D. cm 45.在第4题的图中,若测得o D A 90=∠=∠,3=AB ,1=DG ,2=AG ,则梯形CFDG 的面积是( )A. 5B. 6C. 7D. 86.如图,ABC ∆中,o C 90=∠,AD 平分BAC ∠,过点D 作AB DE ⊥于E ,测得9=BC ,3=BE ,则BDE ∆的周长是( ) A .15 B .12 C .9 D .67.根据下列各图中所作的“边相等、角相等”标记,其中不.能.使该图中两个三角形全等的是( )AAB C D E A D G α8. 如图,ABC ∆中,AC AB =,AD 平分CAB ∠,则下列结论中:①BC AD ⊥;②BC AD =; ③C B ∠=∠;④CD BD =。

正确的有( ) A .①②③ B .②③④ C .①②④ D .①③④9.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有( )A .四对B .三对C .二对D .一对10.如图,ABC ∆中,BM 、CM 分别平分ABC ∠和ACB ∠, 连接AM,已知o MBC 25=∠,o MCA 30=∠,则MAB ∠ 的度数为( )A. o 25B. o 30C. o 35D. o 40二.填空题(2×12=24分)11.如图,某同学将三角形玻璃打碎,现要到玻璃店 配一块完全相同的玻璃,应带 去。

[初二数学]八年级上第11章及第12章复习题

[初二数学]八年级上第11章及第12章复习题

1A BC D八年级上 第11章 全等三角形 + 第12章 轴对称 复习题 (2011年10月 邓天发整理) 一、选择题:1. 已知点M 的坐标为(-3,2)它关于x 轴的对称点的坐标是( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(-2,-3)2. 和三角形三个顶点的距离相等的点是( ) A .三条角平分线的交点 B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 3. 点M(1,2)关于x 轴对称的点坐标为( ) A. (-1,2) B. (1,-2) B. C. (2,-1) D. (-1,-2)4.下列平面图形中,不是轴对称图形的是( )5. 下列图案是轴对称图形的有 ( )(A )1个 (B )2个 (C )3个 (D )4个6. 如图所示的图案中,是轴对称图形且有两条对称轴的是( )7. 如图,AB=AC ,BD=CD 可根据( )得到ACD ABD ∆≅∆ A 、SAS B 、ASA C 、SSS D 、HL 8. 已知等腰三角形的两边分别为4cm, 3cm, 则其周长为( )A. 10cmB. 11cmC. 10cm 或11cmD. 无法确定9. 如图EFD ABC ∆≅∆且AB=EF , 10. AE=10,CD=3,则AC=( ) A 、3 B 、3.5 C 、5 D 、6.52二、填空题:10.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °11. 点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是 12. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm , BD=7cm ,则点D 到AB 的距离为_____________cm .三、证明解答题:13. 如图, C 是AB 的中点, AD =CE, CD =BE. (1) 求证: ∠A=∠BCE; (2) 求证: AD ∥CE 。

第11章全等三角形复习课教学反思

第11章全等三角形复习课教学反思

教学文档第11章全等三角形复习课教学反思第11章全等三角形复习课教学反思在复习〔全等三角形〕时,我是这样设计学案的,在学案中先梳理知识网络,表达根本知识点〔根本概念,三角形全等的性质和5种判定方法、证明全等的一般思路和方法的归类总结等等〕,这些内容属于不讲内容。

学案中的专题局部精心挑选跟中考相关的、能灵敏应用三角形全等知识的、跟生活紧密相关的。

表达了数学X于生活又效劳于生活。

题型设计有肯定的梯度,让学生感兴趣通过预习商量交流能够轻松掌握,体验成功的愉快,也为以后做比较复杂的题目奠定根底。

总共设计了7道题目,四道填空选择〔历年中考题,应用不同的全等方法,不同的展示形式〕,三道生活中的数学题目〔体会数学与生活的联系〕,一道中考再现〔一题多解,感受数学的灵敏性〕,一道升华题目〔变式训练〕。

预习课主要让学生自己做,然后分组商量交流感到疑惑困难的地方,交流思路。

我上的是展示课,整节课根本由学生展示思路,教师做简单点评。

因为课堂容量大,所以速度特别快,大多数学生都积极参与,气氛还算生动,尽管一些同学的思路有误,正好暴露了学生掌握知识存在的问题。

也锻炼了学生言语表达能力,体验成功的喜悦,让学生在表现过程中享受乐趣。

缺少之处也有很多,因为担忧局面不好掌握,所以只让学生展示方法,做法,在思路的挖掘分析上欠缺;个别学生因为不很自信,讲述有试探性,没有放开胆子大方展示自己的思路;还有一局部旁观者没有参与课堂,教师的点拨〔追问思路、总结归类等〕还不够等等。

总之,上了这么一节课,我的感想也很多:学生的潜力真是好大啊,能自己总结出那么多的思路方法,能言简意赅地表达自己的见解,表现自己的心愿多么强烈…,学生也喜欢这样放开的课堂,“我参与,我愉快,我自信,我成长〞,那就让我们把课堂还给学生吧。

.。

第十一章全等三角形总复习

第十一章全等三角形总复习

第十一章 全等三角形总复习制作人:德州五中 孙吉中一、填空题 1.如图1所示,△ ABC 中,A D ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:___________,使 △AEH ≌△CEB 。

2.三角形内角之比为1:2:3,最短边为2cm ,在最长边为____。

3.在△ABC 中,已知AD 是角平分线,∠B=︒50,∠C=︒70,∠BAD=___________。

4.如图2所示,已知∠MOS=∠NOS ,PA ⊥OM ,垂足是A ,如果AP=5cm ,那么点P 到ON 的距离等于___________cm 。

5.如图3所示,已知线段AB 、CD 相交于点O ,且AO=BO , 观察图形可知图中已具备另一相等的条件是___________, 联想SAS 公理只需补充条件___________,则有△AOC ≌△BOD 。

6.在△ABC 和△C B A '''中,若AB=B A '',BC=C B '',应补充条件 ___________或___________,则C B A ABC '''∆≅∆。

7.到一个角的两边距离相等的点在___________。

8.如图4所示,在△ABC 中,∠C=︒90,BC=40,AD 是∠BAC 的平分 线交BC 于D ,且DC :DB=3:5,则点D 到AB 的距离是___________。

二、选择题9.下列说法错误的是( ) A .全等三角形对应角所对的边是对应边B .全等三角形两对应边所夹的角是对应角C .如果两个三角形都与另一个三角形全等,那么这两个三角形也全等D .等边三角形都全等10.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。

其中能判断两直角三角形全等的是( )A .①B ②C ③D ①②11.如图5所示,已知AB=AC ,PB=PC ,下面的结论:①BE=CE ;②AP ⊥BC ;③AE 平分∠BEC ;④∠PEC=∠PCE ,其中正确结论的个数有( )A .1个B 2个C 3个D 4个12.如图6所示,在Rt △ABC 中,AD 是斜边上的高,∠ABC 的 平分线分别交AD 、AC 于点F 、E ,EG ⊥BC 于G ,下列结论正确的是( )A .∠C=∠ABCB BA=BGC .AE=CED AF=FD13.如图7所示,AD 是△ABC 中BC 边上的中线,若AB=2, AC=4,则AD 的取值范围是( )A .AD 〈 6B AD 〉2C .2〈AD 〈6 D 1〈AD 〈3C 图1 A ON SP M 图2BD 图3 A图4 A B C E P 图5 C图6图714.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是︒100,那么△ABC 中与这个角对应的角是( )A .∠AB ∠BC ∠CD 以上都不对15.如图8所示,∠BOP=∠POA ,PC ⊥OA ,PD ⊥OB ,垂足分别为C 、D ,则下列结论中错误的是( )A .PC=PDB OC=ODC ∠CPO= ∠DPOD OC=PD16.如图9所示,在△ABC 中,∠ABC=︒100,∠ACB=︒20, CE 平分∠ACB ,D 为AC 上一点,若∠CBD=︒20,BD=ED ,则∠CED 等于( ) A .︒5 B ︒10 C ︒15 D ︒20 三、解答题17.如图10所示,点D 是△ABC 的边AB 上一点,E 是AC 的中点,F 是DE 延长线上的一点,且DE=EF ,连结CF 。

人教版八年级上册第十一章三角形知识点归纳

人教版八年级上册第十一章三角形知识点归纳

三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)AB CD几何表达式举例:(1) ∵AD平分∠BAC∴∠BAD=∠CAD(2) ∵∠BAD=∠CAD∴AD是角平分线2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)AB CD几何表达式举例:(1) ∵AD是三角形的中线∴BD = CD(2) ∵BD = CD∴AD是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)AB CD几何表达式举例:(1) ∵AD是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD是ΔABC的高※4.三角形的三边关系定理:几何表达式举例:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C(1) ∵AB+BC>AC∴……………(2) ∵AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形. (如图)AB C几何表达式举例:(1) ∵ΔABC是等腰三角形∴AB = AC(2) ∵AB = AC∴ΔABC是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形. (如图)AB C几何表达式举例:(1)∵ΔABC是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC是等边三角形7.三角形的内角和定理及推论:(1)三角形的内角和180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)(2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴…………………8.直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)ABC几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形 ∴∠C=90°9.等腰直角三角形的定义: 两条直角边相等的直角三角形叫等腰直角三角形.(如图)ABC几何表达式举例: (1) ∵∠C=90° CA=CB∴ΔABC 是等腰直角三角形(2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质: 几何表达式举例:DAB CABCABC(1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图)(1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ……… 11.全等三角形的判定:“SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图)(1)(2)(3)几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F又∵ BC = FG ∴ΔABC ≌ΔEFG (2) ………………(3)在Rt ΔABC 和Rt ΔEFG 中∵ AB=EF 又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角A O BCDE几何表达式举例: (1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CEABCGEFABCGEFA BCEFG平分线上.(如图)(2) ∵CD⊥OA CE⊥OB又∵CD = CE∴OC是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)A BEFO几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)A BCMNP几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”几何表达式举例:(1) ∵AB = AC ∴∠B=∠C三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD (2)ABC(3)(2) ∵AB = AC 又∵∠BAD=∠CAD ∴BD = CDAD ⊥BC ………………(3) ∵ΔABC 是等边三角形 ∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论: (1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图) (4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)ABC(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C ∴ AB = AC (2) ∵∠A=∠B=∠C∴ΔABC 是等边三角形 (3) ∵∠A=60° 又∵AB = AC∴ΔABC 是等边三角形 (4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理几何表达式举例:EFMO ABCNG(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例:(1) ∵ΔABC是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角DABC几何表达式举例:∵ΔABC是直角三角形∵D是AB的中点∴CD = 21AB(2) ∵CD=AD=BD三角形.(如图) ∴ΔABC 是直角三角形几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形. 7.如图,双垂图形中,有两个重要的性质,即:A BCEDA BCD 12(1)AC·CB=CD·AB ;(2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则: ① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图. (2)已知角平分线.(若BD 是角平分线)① 在BA 上截取BE=BC 构造全等,转移线段和角;② 过D 点作DE ∥BC 交AB 于E ,构造等腰三角形 .(3)已知三角形中线(若AD 是BC 的中线)① 过D 点作DE ∥AC 交AB 于E ,构造中位线 ;② 延长AD 到E ,使DE=AD 连结CE 构造全等,转移线段和角;③ ∵AD 是中线 ∴S ΔABD= S ΔADC (等底等高的三角形等面积)(4) 已知等腰三角形ABC 中,AB=AC① 作等腰三角形ABC 底边的中线AD (顶角的平分线或底边的高)构造全 等三角形;② 作等腰三角形ABC 一边的平行线DE ,构造新的等腰三角形.BCD AE BCD AEADECBADECBADCBADCB(5)其它 作等边三角形ABC 一边 的平行线DE ,构造新的等边三角形;② 作CE ∥AB ,转移角;③ 延长BD 与AC 交于E ,不规则图形转化为规则图形;④ 多边形转化为三角形;⑤ 延长BC 到D ,使CD=BC ,连结AD ,直角三角形转化为等腰三角形; ⑥ 若a ∥b,AC,BC 是角平 分线,则∠C=90°.EA DCBE ADCBDA CBECBADECEBDAADOBCEBCDABACab。

人教版八年级上册第十一章三角形知识点总结归纳

人教版八年级上册第十一章三角形知识点总结归纳

三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.AB CED7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.A BCD 12(2)已知角平分线.(若BD是角平分线)BC的中线)(3)已知三角形中线(若AD是(5)其它。

八年级上册数学第十一章知识点

八年级上册数学第十一章知识点

八年级上册数学第十一章知识点1.全等三角形的性质:全等三角形对应边相等、对应角相等.2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).轴对称1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.3.角平分线上的点到角两边距离相等.4.线段垂直平分线上的任意一点到线段两个端点的距离相等.5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.6.轴对称图形上对应线段相等、对应角相等.7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.10.等腰三角形的判定:等角对等边.11.等边三角形的三个内角相等,等于60°,12.等边三角形的判定:三个角都相等的三角形是等腰三角形.有一个角是60°的等腰三角形是等边三角形有两个角是60°的三角形是等边三角形.13.直角三角形中,30°角所对的直角边等于斜边的一半.14.直角三角形斜边上的中线等于斜边的一半一次函数1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b 中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.已知两点坐标求函数解析式(待定系数法求函数解析式):把两点带入函数一般式列出方程组求出待定系数把待定系数值再带入函数一般式,得到函数解析式7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)看了“八年级上册数学知识点”的人还看了:。

数学八年级上人教版第十一章全等三角形复习课件

数学八年级上人教版第十一章全等三角形复习课件
(A)∠DAB (B) ∠ DBA (C) ∠ DBC (D) ∠ CAD
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章全等三角形复习
一、学习目标
1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.
2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。

3、极度热情、高度责任、自动自发、享受成功。

二、重点难点
教学重点:用三角形全等和角平分线的性质进行证明有关问题
教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程
三、合作
1、、本章知识结构梳理
三角形⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪
⎨⎧⎩⎨⎧⎪⎪⎪
⎩⎪⎪⎪
⎨⎧⎩⎨⎧判定:
(性质:
(角的平分线
直角三角形
一般三角形
)判定方法()性质:
()定义:
(全等三角形定义)2)1
321
2、、方法指引
证明两个三角形全等的基本思路:
(1)已知两边__________)
(____________)(__________)
⎧⎪⎨⎪⎩找第三边(找夹角看是否是直角三角形
(2)已知一边一角(_____)
(_____)
(_____)(_____)
(_____)
⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪
⎪⎨
⎪⎪⎪⎩⎩找这边的另一邻角已知一边与邻角找这个角的另一边找这边的对角
找一角已知一边与对角已知是直角,找一边
(3)已知两角______________)
(______________)
⎧⎪⎨⎪⎩找夹边(找夹边外任意一边
三角形全等是证明线段相等、角相等最基本、最常用的方法。

M F
E C
B A
四、精讲精练
1、精讲
例题1、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC
例题2、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD
当题目中有角平分线时,可通过构造等腰三角形或全等三角形来
寻找解题思路,或利用角平分线性质去证线段相等
例题3、已知∠B=∠E=90°,CE=CB ,AB ∥CD.
求证:△ADC 是等腰三角形
例题4、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC ,
求证:EB=FC
证明线段的和、差、倍、分问题时,常采用“割长”、“补短”
等方法
例题5、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,求证AB=AC+BD
提示:要证明两条线段的和与一条线段相等时常用的两种方法:
(1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

(割)
(2)、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。

(补))
你能用尺规进行下面几种作图吗? E
D C A B A C E
B D
E D C B A 4 3
2 1 E D C B A G F E D C B A
1、已知三边作三角形
2、作一个角等于已知角
3、已知两边和它们的夹角作三角形
4、已知两角和它们的夹边作三角形
5、已知斜边和一直角边作直角三角形
6、作角的平分线
2、精练
1、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30,BD :CD=3:2,则DE= 。

2、如图,已知E 在AB 上,∠1=∠2, ∠3=∠4,那么AC 等于AD 吗?为什么?
3、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。

(只写出一种情况)①AB=AC ②DE=DF ③BE=CF
已知:EG ∥AF ,________,__________ 求证:_________
4、如图,在R △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,
求证:BC 垂直且平分DE.
五、课堂小结
学习全等三角形应注意以下几个问题
(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个
三角形不一定全等;
(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”
六、作业
必做:课本26页复习题11第2、5、6、8、9题;选做:27页10-12题。

教学反思:。

相关文档
最新文档