小学奥数9. 数论综合(二).
六年级数论综合奥数题

六年级数论综合奥数题一、数论基础知识回顾1. 整除的概念若整数公式除以非零整数公式,商为整数,且余数为零,我们就说公式能被公式整除(或说公式能整除公式),记作公式。
例如公式,余数为公式,则说公式。
2. 因数与倍数如果公式能被公式整除,公式就叫做公式的倍数,公式就叫做公式的因数。
例如在公式中,公式是公式的倍数,公式是公式的因数。
3. 质数与合数质数是指在大于公式的自然数中,除了公式和它本身以外不再有其他因数的自然数。
例如公式、公式、公式、公式等。
合数是指自然数中除了能被公式和本身整除外,还能被其他数(公式除外)整除的数。
例如公式,公式,所以公式、公式是合数。
4. 分解质因数把一个合数写成几个质数相乘的形式叫做分解质因数。
例如公式。
二、典型数论综合奥数题及解析求公式的因数有多少个?解析:1. 先将公式分解质因数:公式。
2. 根据因数个数定理:对于一个数公式(公式为质数,公式为正整数),它的因数个数为公式。
3. 对于公式,其因数个数为公式个。
题目2:已知两个数的最大公因数是公式,最小公倍数是公式,其中一个数是公式,求另一个数。
解析:1. 根据两个数的积等于这两个数的最大公因数和最小公倍数的积。
设另一个数为公式。
2. 则公式。
3. 先计算公式,那么公式。
题目3:有一个三位数,它是公式的倍数,且它各位数字之和是公式的倍数,百位数字与个位数字之和等于十位数字,这个三位数是多少?1. 设这个三位数为公式(公式为百位数字,公式为十位数字,公式为个位数字)。
2. 已知公式,且公式是公式的倍数。
将公式代入公式可得公式是公式的倍数,因为公式是一位数,所以公式。
3. 又因为这个数是公式的倍数,根据公式的倍数特征:各个数位上的数字之和是公式的倍数,这个数就是公式的倍数。
已知公式。
4. 满足公式的组合有公式、公式、公式、公式等,所以这个三位数可以是公式、公式、公式、公式等。
小学奥数 数论 数字谜综合 算式谜(二).题库版

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数;知识点拨教学目标5-1-1-2.算式谜(二)偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空 【关键词】2007年,迎春杯,高年级,初赛,3试题【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。
第20讲 数论综合二完整版

第20讲数论综合二兴趣篇1.有4个不同的正整数,它们中任意2个数的和都是2的倍数,任意3个数的和都是3的倍数,要使这4个数的和尽可能小,请问:这4个数应该分别是多少?答案:1、7、13、19解析:“任意2个数的和都是2的倍数”说明四个数奇偶性相同,“任意3个数的和都是3的倍数”说明四个数除以3的余数相同.若这四个数为奇数,第一个数为1,依次加6可得四个数为1、7、13、19.若这四个数为偶数,第一个数为2,依次加6可得四个数为2、8、14、20.显然第一组更小.2.已知算式(1+2+3+…+n)+ 2007的结果可表示为n(n>l)个连续自然数的和.请问:共有多少个满足要求的自然数n?答案:5个解析:1+2+3+…+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007。
其中1舍去,有5个满足要求的自然数。
3.有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有4种,请问:所有满足上述条件的自然数中最小的一个是多少?答案:11解析:因为有四种表示方法,至少涉及四个质数,最小的四个质数是2、3、5、7,最小的四个合数是4、6、8、9,恰好有11=7+4=5+6=3+8= 2+9.因此满足条件最小的数是11.4.甲、乙两个自然数的乘积比甲数的平方小2008.请问:满足上述条件的自然数有几组?答案:4组解析:由题目条件得,甲×甲-甲×乙=甲×(甲-乙)2008,将2008写成两个数乘积的形式,有如下几种:2008=2008×1=1004×2=502×4=251×8.因此满足条件的甲、乙数为(2008,2007)、(1004,1102)、(502,498)、(251,243),共有4组.5.两个不同两位数的乘积为完全平方数,请问:它们的和最大可能是多少?答案:170解析(1)两个数均为平方数,则它们的乘积仍为平方数,这种情况和最大为81+64=145.(2)两个数均不是平方数,则这两个数为a×m2,a×n2(其中m不等于n).对可能的情况进行讨论:当a=2时,这两个数最大是2×72、2×62,和为98+72=170.当a=3时,这两个数最大是3×25、3×16,和为75+48=123.当a=5时,这两个数最大是5×16、5×9,和为80+45=125.当a=6时,这两个数最大是6×16、6×9,和为96+54=150.……经讨论,和最大为170.6.n个自然数,它们的和乘以它们的平均数后得到2008.请问:n最小是多少?答案:502解析:由于2008=2008×1=1004×2=502×4=251×8,如果这挖个数的和为2008,平均数为1,那么n为2008.如果这n个数的和为1004,平均数为2,那么n为502.知果这n个数的和为502,平均数为4,那么这不可能,如果这n 个数的和为251,平均数为8,那么这不可能,因此n最小是502.7.一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=52-32,16就是一个“智慧数”,请问:从1开始的自然数列中,第2008个“智慧数”是多少?答案:2680解析:通过尝试可以发现如下规律:相邻两个平方数的差为3,5,7,9,11…即除1外,所有的奇数均为“智慧数’’.相邻两个奇数的平方差与相邻两个偶数的平方差为8,12,16,20,24,28…即除4之外,所有4的倍数的数是“智慧数”,所以1~2000的“智慧数”有2000÷2 +2000÷4-2=1498个.1~2500的“智慧数”有2500÷2+2500÷4-2=1873个.1~2700的“智慧数”有2700÷2+2700÷4-2=2023个.因此第2008个“智慧数”为2680.8.将1001-5分别除以2,3,4,…,100,可以得到99个余数(余数有可能为0).请问:这99个余数的和是多少?答案:4565解析:100!能够被2,3,4,…,100整除,100!-5除以100的余数为100-5=95,100!-5除以99的余数为99 -5=94,100! -5除以98的余数为98- 5=93,…,100!-5除以6的余数为6-5 =1,除以5余0,除以4余3,除以3余1,除以2余1(判断除以2、3、4的余数,只需用2、3、4的倍数减5即可).所以余数和为1+1+3+0+1+2+…+94+95=5+(1+95)×95÷2 = 4565.9.卡莉娅、小高和墨莫三人经常去电影院,卡莉娅每隔2天去一次,小高每隔4天去一次,墨莫每隔6天去一次.今天他们三人都去电影院,将来会有连续三天都有人去电影院.如果今天是第1天,那么最早出现的具有上述性质的连续三天是哪三天?答案:第6天、第7天和第8天解析:由题意知,卡莉娅将在第4天、第7天、第10天……去电影院.小高将在第6天、第11天、第16天……去电影院.墨莫将在第8天、第15天、第22天……去电影院.则最早出现的连续三天是第6天、第7天和第8天.10.有三个连续的自然数,它们的平方从小到大依次是10、9、8的倍数.请问:这三个数中最小的一个是多少?答案:50解析:三个连续自然数的平方从小到大依次是10、9、8的倍数,则三个连续自然数从小到大依次是10、3、4的倍数.由龀可推断出三个数中最小的数是10的倍数,并且除以3余2,除以4余2.满足上述条件最小的数是50.拓展篇1.有一个正整数,它加上100后是一个完全平方数,加上168后也是一个完全平方数.请问:这个正整数是多少?答案:156解析:设这个正整数为n ,则n+100=b 2,n+168=a 2,两式相减得a 2-b 2=68,而a 2-b 2=(a+b)×(a-b ),68=1×68 =2×34=4×17,由此可得⎩⎨⎧==+,,2b -a 34b a 解得⎩⎨⎧==,16b ,18a 所以n 为156.2.如果三个正整数a 、b 、c 满足a 2 +b 2=c 2,则称这三个数构成一个勾股数组(a ,b ,c).与5有关的勾股数组有两组:(3,4,5)和(5,12,13),请问:与13有关的勾股数组有哪些?答案:(5,12.13)、(13, 84, 85)解析:当c= 13时,则很显然(5,12,13)是一组勾股数.当a=13时,则132 +b 2=169+b 2=C 2,即c 2-b 2=(c+b)×(c-b)=169×1,由此可得⎩⎨⎧==+,1b -c ,169b c 解得⎩⎨⎧==84,b ,85c 因此(13, 84, 85)也是一组勾股数.3.小高往一个水池里扔石子.第一次扔1颗石子,第二次扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔到水池的石子总数是106的倍数,请问:小高最少需要扔多少次?答案:52次解析:小高扔的石子数为n ×(n+1)÷2,而106=2×53,因此,n 或n+1其中有一个应是53或53的倍数,当n=52时,满足石子数是106的倍数,因此小高最少需要扔52次.4.已知两个自然数的最大公约数是6,两数之和为1998.请问:满足上述条件的数一共有多少组?答案:108组解析:设甲、乙两数分别为6a、6b,其中a与b互质,且6a+6b=1998,即a+b=333=32×37,将333分成两数之和,共有166组分法,其中当两数是3或37的倍数时.两数不互质.同时166÷3=55……1,166÷37 =4……18,其中111被算了两次,因此满足条件的组数有166-55-4+1=108组.5.数学老师把一个两位数的约数个数告诉了墨莫,聪明的墨莫仔细思考了一下后算出了这个数,同学们,你们知道这个数可能是多少吗?答案:64或36解析:若约数个数为2个,是质数,这样的两位数有很多.若约数个数为3个,可以用a2来表示,也有很多.约数个数为4个的两位数也有很多.约数个数为5个的数可以表示为a4,有16和81,不唯一,约数个数为6个的两位数也不唯一,约数个数为7个的两位数表示为a6,只有26 =64,是唯一的,同样的,约数个数为9个的两位数也是唯一的,只有36.约数个数更多的两位数,或者不唯一,或者不存在,因此这个数可能为64或36.6.在一个正整数的所有约数中,个位数字为0,1,2,…,9的数都出现过,请问:这样的正整数最小是多少?答案:270解析:若约数的个位数字为0,则这个数应为10的倍数.若约数的个位数字为9,则这个数至少是9的倍数,这样个位数字为0、1、2、3、5、6、8、9都不用再考虑.再考虑个位数字为7,则至少是7的倍数,或者为27的倍数也可以,满足上述条件的数为630或270.两者都含有个位数字为4的约数.因此最小为270.7.甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位数是3456.如果甲的数字和是8,乙的数字和是14,那么甲、乙两数之差是多少?答案:30解析:甲的数字和是8,乙的数字和是14,若没有进位,乘积的数字和应为112,除以9余4,若有进位,每进一位,数字和减少9,最终乘积酌数字和仍然除以9余4,因此这个五位数只能为43 456.分解质因数得43456=26×7×97,容易找到满足条件的数为224和194,差为30.8.A 求最小的正整数n ,使得2006+7n 是完全平方数,答案:29解析:452=2025,2025-2006=19不是7的倍数.462=2116,2116-2006=110不是7的倍数.472 =2209, 2209-2006=203是7的倍数,商为29.因此满足条件的最小的正整数n 为29.9.请写出由不同的两位数组成的最长的等比数列.答案:16、24、36、54、81解析:容易想到的结果为10、20、40、80,即公比为2.但实际上公比还可以更小,比如23,此时要求第一项应为24 =16的倍数,因此等比数列可以为16、24、36. 54.。
六年级奥数专题 数论综合二(学生版)

学科培优数学“数论综合二”学生姓名授课日期教师姓名授课时长知识定位在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
知识梳理涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.例题精讲【试题来源】【题目】一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键“+”尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算.为了显示出222222,最少要按“7”键多少次?【试题来源】【题目】有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【试题来源】【题目】一个五位数恰好等于它各位数字和的2007倍,则这个五位数是 .【试题来源】【题目】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如一次操作后得到4,5,…,98,99,6;而两次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【试题来源】【题目】有两种规格的9箱钢珠,每箱300个,甲种钢珠每个10克,乙种钢珠每个11克,将这9箱钢珠编为1~9号,然后依次从1~9号箱中取出20,21,22,23,24,25,26,27,28,个钢珠,这些钢珠共重5555克。
问:哪几箱是甲种钢珠?【试题来源】【题目】把除1外的所有奇数依次按一项,二项,三项,四项循环的方式进行分组:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,3l,33),(35,37,39,41),(43),…….那么,第1994个括号内的各数之和是多少?【试题来源】【题目】2001个球平均分给若干人,恰好分完。
五年级奥数学练习试卷思维培训资料 数论综合 (2)

【附1】(1)阿呆用一根长为28厘米的铁丝围一个长方形,怎样分配长与宽,使围成的长方形面积最大?最大面积是多少?
(2)已知A、B两个整数的积是36,那么A、B两个数分别是多少时,它们的和最小?最小和是多少?
分析:(1)聪明好学的小朋友们,可能一下子就知道答案是围成正方形时面积最大,那么你知道我们是怎样找到这个结论的么?让我们来一起看看研究的过程吧!这是一道已知周长,让我们求长和宽,再求面积的题。如果长和宽都是整厘米数的话,我们试一试有哪些可能情况:
分析:设组成这个四位数的四个数码为a,b、c,d(9≥a>b>c>d≥1),
【例12】如果把数码5加写在某自然数的右端,则该数增加 ,这里A表示一个看不清的数码,求这个数和A。
分析:设这个数为x,则10x+5-x= ,化简得9x= ,等号右边是9的倍数,试验可得A=1,x=1234。
此部分的拓展可参看附加8、9、10、11、12。
【例7】 (第二届华杯赛复赛)在一个圆圈上有几十个孔(不到100个),如右图.小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步.也只能跳到B孔.最后他每隔6孔跳一步。正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?
设长方形和墙平行的一边长为x,另一边为y,则有x+2y=28,列表分析可得x=14,y=7时,面积最大为98。上题中若在长方形非墙的一边上留出一个1米宽的门,那么我们又该如何解决这个问题呢?其实就相当于用28+1=29米的铁丝,依靠墙做为一边,围长方形,使面积最大的问题。解决方法一样!
【例2】有两个三位数,构成它们的六个数码互不相同。已知这两个三位数之和等于1771,求这两个三位数之积的最大可能值。
(完整版)六年级奥数-第十一讲.数论综合(二).教师版[1]
![(完整版)六年级奥数-第十一讲.数论综合(二).教师版[1]](https://img.taocdn.com/s3/m/19b7b463c950ad02de80d4d8d15abe23482f036e.png)
(完整版)六年级奥数-第十一讲.数论综合(二).教师版[1]第十一讲数论综合(二)教学目标:1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一质数合数【例1】有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例4】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+L L ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?.把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二余数问题【例5】(2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=??,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例8】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例9】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷=L L 22939A K r ÷=L L 33393A K r ÷=L L由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷=L L ()22939222A K r ?÷=L L ()33393424A K r ?÷=L L这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275?-=,3934603969?-=,()1275,96951317==?.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例11】(2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222?+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】 2008222008+除以7的余数是多少?【解析】328=除以7的余数为1,200836691=?+,所以200836691366922(2)2?==?+,其除以7的余数为:669122?=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数.由于200954014÷=L ,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例13】(1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180?= (个),100999~共900个三位数,共有数字:90032700?= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例14】有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=?=?所以两个三位数是143和217,那么两个三位数的和是360【例15】设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222?+==?除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324?=,即72324A ≤;那么A 的各位数字之和9545B 即5D =.板块三完全平方数【例16】从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】完全平方数,其所有质因数必定成对出现.而327223266=?=??,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048??=<【例 17】一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==?,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为.【解析】考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x ,中间三数的和为3x .5x 是平方数,设2255x a =?,则25x a =,2231535x a a ==??是立方数,所以2a 至少含有3和5的质因数各2个,即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四位值原理【例19】(美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ?-+?-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ?++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++?+++?+++=?++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09:中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】由a ,b ,c 组成的六个数的和是222()a b c ?++.因为223422210>?,所以10a b c ++>.若11a b c ++=,则所求数为222112234208?-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430?-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652?-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874?-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥?-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五进制问题【例 21】在几进制中有413100?=?【解析】利用尾数分析来解决这个问题:由于101010(4)(3)(12)?=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)?=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】算式153********?=是几进制数的乘法?【解析】注意到尾数,在足够大的进位制中有乘积的个位数字为4520?=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214?=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】(abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习1.三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=?=?,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习2.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3.将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12345678910111213L 20072008,试求这个多位数除以9的余数.【解析】以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数12345678910111213L 20072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+?=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4.在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】首先还原为十进制:27()77497abc a b c a b c =?+?+=++;29()99819cba c b a c b a =?+?+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==?+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+?.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】先将1016分解质因数:310162127=?,由于1016a ?是一个完全平方数,所以至少为422127?,故a 最小为2127254?=.【备选4】在几进制中有12512516324?=?【解析】注意101010(125)(125)(15625)?=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)?=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。
小学奥数课程体系

酷学堂奥数竞赛体系知识体系二年级三年级四年级五年级六年级1 比谁眼力好数图形找规律(一)平均数(一)分数数列计算2 火眼金睛找规律找规律(二)平均数(二)比例解应用题3 按规律填数加减巧算简单推理长方形、正方形的周长方程解应用题4 比一比分一分添运算符号应用题(一)长方形、正方形的面积浓度问题5 简单一笔画算式谜算式谜(一)分类数图形经济问题6 趣味数学(一)文字算式谜算式谜(二)尾数和余数立体几何7 数数图形填数游戏最优化问题一般应用题(一)逻辑推理(一)8 连一连剪一剪有余除法巧妙求和(一)一般应用题(二)逻辑推理(二)9 间隔趣谈(一)周期问题变化规律(一)一般应用题(三)几何综合(一)10 趣味数学(二)数学趣题变化规律(二)数阵数论综合(一)11 比一比分一分(二)配对求和错中求解周期问题计算综合(二)12 移一移变一变乘法速算简单列举盈亏问题行程问题(六)13 移多补少乘除巧算和倍问题长方体和正方体(一)不定方程14 数字游戏应用题(一)植树问题长方体和正方体(二)进位制与取整符号15 同样多问题应用题(二)图形问题倍数问题(一)应用题综合(一)16 巧填竖式(一)植树问题巧妙求和(二)倍数问题(二)计数综合(三)17 余数的妙用(一)数字趣谈数数图形组合图形的面积(一)几何综合(二)18 间隔趣谈(二)重叠问题应用题(二)组合图形的面积(二)最值问题(二)19 应用题(一)简单枚举速算与巧算(一)数字趣味题应用题综合(二)20 简单推理(一)等量代换速算与巧算(二)假设法解题数论综合(二)21 应用题(二)错中求解平均数问题作图法解题数字迷综合(二)22 巧填竖式(二)用对应法解题定义新运算分解质因数(一)计数综合(四)23 简单推理(二)盈亏问题差倍问题分解质因数(二)构造论证(二)24 余数的妙用(二)简单推理(一)和差问题最大公约数数论综合(三)25 年龄问题和倍问题巧算年龄最小公倍数(一)概率初步26 简便计算(一)差倍问题(一)较复杂的和差倍问题最小公倍数(二)比和比例27 简便计算(二)差倍问题(二)周期问题行程问题(一)分数、百分数应用题(一)28 间隔趣谈(三)和差问题行程问题(一)行程问题(二)分数、百分数应用题(二)29 画画凑凑年龄问题用假设法解题行程问题(三)立体图形的计算30 巧填数用还原法解题还原问题行程问题(四)旋转体的计算31 简单推理(三)用假设法解题逻辑推理算式谜应用同余解题32 简单数的分解平均数问题(一)速算与巧算(三)包含与排除棋盘中的数学(一)33 排队问题平均数问题(二)行程问题(二)置换问题棋盘中的数学(二)34 应用题(三)简单推理(二)容斥问题估值问题棋盘中的数学(三)35 合理安排巧求周长(一)应用题(三)火车行程问题棋盘中的数学(四)36 时钟问题(一)巧求周长(二)应用题(四)简单列举关于取整计算37 时钟问题(二)面积计算盈亏问题最大最小问题最短路线问题38 数的读写最佳安排数学开放题推理问题数学家的故事39 数学游戏抽屉原理鸡兔同笼问题奇妙的方格表40 等差数列一题多解等差数列关于空间想象力的综合训练题。
六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。
请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。
【题目】一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。
【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 数论综合(二)教学目标:1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯.把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】 2008222008+除以7的余数是多少?【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数. 由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。