直流电动机和异步电动机的调速原理及特性分析
直流电动机的原理及特性

直流电机
定子
机座 换向极 主磁极 电刷装置 电枢铁心 换向器
转子
电枢绕组 轴承
风扇 转轴
2.1.2 直流电动机的励磁方式 定义:直流电机产生磁场的励磁绕组的接线方式称为励磁方式。 实质上就是励磁绕组和电枢绕组如何联接,就决定了它是什么 样的励磁方式。
1.他励式
若励磁绕组不与电枢 绕组联接,励磁绕组单独 由其他电源供电的直流电 机称为他励式直流电机。
2.1.2 直流电动机的励磁方式
并励式
励磁绕组与电枢绕组并联,称为并励式直流电机。 并励式直流电机的电枢电流Ia。励磁绕组流过的 电流为If ,经过负载或电源供给电机的总电流 为 I,三者须满足以下关系: 直流发电机:Ia =I+If 直流电动机:Ia =I-If
2.1.2 直流电动机的励磁方式
第2章 直流电动机的原理及特性
直流电机的用途
测速
伺服
励磁机
电源
直流电机的特点
• 直流发电机的电势波形较好,对电磁干扰的影响小。 • 直流电动机的调速范围宽广,调速特性平滑。 直流电动机过载能力较强,起动和制动性能良好。
• 由于存在换向器,其制造复杂,价格较高
2.1直流电动机的基本结构和工作原理
端盖 —— 端盖装在机座两端并通过端盖中的轴承支 撑转子,将定转子连为一体。同时端盖对电机内部还 起防护作用。
定子部分
电刷装置——电刷装置是电枢电路的引出(或引入) 装置,它由电刷,刷握,刷杆和连线等部分组成,右 图所示,电刷是石墨或金属石墨组成的导电块,放在 刷握内用弹簧以一定的压力按放在换向器的表面,旋 转时与换向器表面形成滑动接触。刷握用螺钉夹紧在 刷杆上。每一刷杆上的一排电刷组成一个电刷组,同 极性的各刷杆用连线连在一起,再引到出线盒。刷杆 装在可移动的刷杆座上,以便调整电刷的位置。
5.3 异步电动机的变压变频调速解析

5.3.2 变压变频调速时的机械特性 式(5-5)已给出异步电机在恒压恒频正弦 波供电时的机械特性方程式 Te= f (s)。 当采 用恒压频比控制时,可以改写成如下形式:
Us s1 Rr' Te 3np ( sR R ' ) 2 s 2 2 ( L L' ) 2 (5-28) s r 1 ls lr 1
对于直流电机,励磁系统是独立的,只要 对电枢反应有恰当的补偿, m 保持不变 是很容易做到的。 在交流异步电机中,磁通 m 由定子和转 子磁势合成产生,要保持磁通恒定就需要 费一些周折了。
• 定子每相电动势
Eg 4.44 f1Ns kNS Φm
(5-11)
式中:Eg —气隙磁通在定子每相中感应电动势的有 效值,单位为V; f1 —定子频率,单位为Hz;
2
• 特性分析 当s很小时,可忽略上式分母中含s各项,则
U s s1 Te 3np R' s r 1
2
(5-29)
s1
Rr'Te Us 3n p 1
2
10 R T 60 n sn1 s1 2 n p n
阻抗压降所占的份量就比较显著,不再能
忽略。这时,需要人为地把电压 Us 抬高一
些,以便近似地补偿定子压降。
带定子压降补偿的恒压频比控制特性示
于下图中的 b 线,无补偿的控制特性则为a 线。
• 带压降补偿的恒压频比控制特性
Us
UsN
b —带定子压降补偿
a —无补偿
O
f 1N
图5-9 恒压频比控制特性
2
Eg R s1 Rr' 3np R '2 s 2 2 L'2 s 1 lr 1 r
5.2 异步电动机的调压调速解析

1TL
np
Pmech mTL (1 s ) Ps sPm s
1TL
np
1TL
np
转差功率随着转差率的增大而增大,转速越 低,转差功率越大。
带恒转矩负载的降压调速就是靠增大转差功率、减小输出 功率来换取转速的降低。所增加的转差功率全部消耗在转 子电阻上,这就是转差功率消耗型的由来。
• 变压调速系统的特点 异步电机闭环变压调速系统不同于直流 电机闭环变压调速系统的地方是:静特性 左右两边都有极限,不能无限延长,它们 是额定电压 UsN 下的机械特性和最小输出 电压Usmin下的机械特性。 当负载变化时,如果电压调节到极限值, 闭环系统便失去控制能力,系统的工作点 只能沿着极限开环特性变化。
0.7UsN
O
TL
Te
返回目录
图5-6 高转子电阻电动机(交流力矩电动机) 在不同电压下的机械特性
5.2.3 闭环控制的变压调速系统
采用普通异步电机的变电压调速时,调速 范围很窄,采用高转子电阻的力矩电机可 以增大调速范围,但机械特性又变软,因 而当负载变化时静差率很大(见图5-6), 开环控制很难解决这个矛盾。 为此,对于恒转矩性质的负载,要求调速 范围大于 D=2 时,往往采用带转速反馈的 闭环控制系统(见图5-7)。
按照反馈控制规律,将A’’、A、A’ 连接 起来便是闭环系统的静特性。尽管异步电 机的开环机械特性和直流电机的开环特性 差别很大,但是在不同电压的开环机械特 性上各取一个相应的工作点,连接起来便 得到闭环系统静特性,这样的分析方法对 两种电机是完全一致的。
尽管异步力矩电机的机械特性很软, 但由系统放大系数决定的闭环系统静特 性却可以很硬。 如果采用PI调节器,照样可以做到无 静差。改变给定信号,则静特性平行地 上下移动,达到调速的目的。
电动机调速原理

电动机调速原理
电动机调速原理是指通过改变电机的运行参数来实现电机转速的调节。
常见的调速原理有电压调速、电流调速、频率调速和转子电阻调速等。
电压调速是通过改变电机输入端的电压来实现调速的原理。
当电机负载变化时,通过调节电压的大小来改变电机的转矩,从而实现电机的调速。
电流调速是通过改变电机输入端的电流来实现调速的原理。
电机的转矩正比于电机的输入电流,因此通过控制电机的输入电流大小来实现调速。
频率调速是通过改变电机输入端的频率来实现调速的原理。
电机的转速和输入频率成正比,因此通过改变输入频率来实现电机的调速。
转子电阻调速是通过改变电机转子电阻来实现调速的原理。
通过调节转子电阻的大小,可以改变电机的转矩,从而实现电机的调速。
以上是常见的电动机调速原理,不同的调速原理适用于不同的场合,根据实际需求选择合适的调速方法可以实现电机的稳定运行和所需转速的调节。
电动机的调速实训报告

一、实训目的电动机的调速是电气工程中的重要内容,它涉及到电动机的运行效率、控制性能以及系统的稳定性等多个方面。
本次实训旨在通过实际操作,使学生了解和掌握电动机调速的基本原理、方法及其在实际应用中的重要性。
通过本次实训,学生应达到以下目标:1. 理解电动机调速的基本原理和常用方法。
2. 掌握电动机调速系统的安装、调试和运行维护。
3. 培养学生实际操作能力和解决实际问题的能力。
4. 提高学生对电气工程实际应用的兴趣。
二、实训内容1. 电动机调速基本原理(1)直流电动机调速原理:通过改变直流电动机的电压、电枢电流或磁通来实现调速。
(2)异步电动机调速原理:通过改变异步电动机的供电频率、转差率或极数来实现调速。
(3)同步电动机调速原理:通过改变同步电动机的励磁电流或负载来实现调速。
2. 电动机调速方法(1)直流电动机调速:串励调速、并励调速、复励调速。
(2)异步电动机调速:变极调速、变频调速、串级调速。
(3)同步电动机调速:变频调速、变极调速。
3. 电动机调速系统(1)直流电动机调速系统:包括直流电动机、调速器、控制器等。
(2)异步电动机调速系统:包括异步电动机、变频器、控制器等。
(3)同步电动机调速系统:包括同步电动机、变频器、控制器等。
4. 电动机调速系统的安装、调试和运行维护(1)电动机调速系统的安装:按照设计图纸进行安装,确保各部件连接牢固。
(2)电动机调速系统的调试:调整系统参数,使系统达到最佳工作状态。
(3)电动机调速系统的运行维护:定期检查系统运行情况,及时处理故障。
三、实训过程1. 准备阶段(1)收集相关资料,了解电动机调速的基本原理和方法。
(2)熟悉实训设备,包括电动机、调速器、控制器等。
(3)制定实训计划,明确实训步骤和注意事项。
2. 实训实施(1)按照实训计划,进行电动机调速系统的安装。
(2)根据设计要求,进行系统参数的调试。
(3)观察系统运行情况,记录数据。
(4)分析数据,找出问题,并进行改进。
他励直流电动机和三相异步电动机调速方法的对比实验报告

他励直流电动机和三相异步电动机调速方法的对比实验报告
这是一个涉及电机实验的话题,不涉及敏感内容,可以作答。
简述:
直流电动机和三相异步电动机均为重要的电动机种类。
在工业生产和生活中,这两种电机广泛应用。
在调速方面,直流电动机拥有广泛的应用基础和技术积累,调速精度高,速度调节范围宽,但成本高,维护复杂,使用寿命短。
三相异步电动机调速技术相对较新,但具有结构简单,效率高,维护成本低等优点,但调速精度相对较低。
实验目的:
本实验主要旨在比较直流电动机和三相异步电动机的调速方法。
实验器材:
1. 直流电动机
2. 三相异步电动机
3. 变频器
4. 电流表
5. 电压表
6. 转速表
实验步骤:
1. 将直流电动机和三相异步电动机分别与变频器相连。
2. 分别采用调速手段(即:区别控制)和调速模式(即:闭环控制)对两种电机进行调速。
3. 测量电机转速、电流、电压等参数,并记录数据。
实验结论:
1. 调速手段:直流电动机采用区别控制调速,三相异步电动机采用闭环控制调速。
2. 调速精度:直流电动机调速精度高,可以通过调整电极电压来实现精确的调速;三相异步电动机调速精度相对较低,但可以通过改变频率和脉宽等参数来实现调速。
3. 调节性能:直流电动机的调速范围广,可以实现快速调速和反向调速;三相异步电动机因
调速精度限制,调速范围相对较窄,但可以通过结构优化和技术升级等方式来提高调节性能。
综上所述,直流电动机和三相异步电动机各有优缺点,在不同场景下可灵活应用。
5.5 异步电动机调速特性

采用恒磁通调压调速(也称恒转矩调速)。
即:
U1 f1
4.44N1kw1m
常数
分析:
当 f1↑时,再继续保持U1/f1=常数比较困难,因为 f1>50Hz时,UΦ↑> U1N不允许,这样只能保持UΦ不变。
f1↑→ Xm↑→ Im↓→ Φm↓→T↓ ,而 f1↑→n↑, P =TΩ属恒功率调速。所以工频以上采用恒压调速。
已知:n0=60f/p,当 f 改变,n0和n都将改变。 1.变频变压调速:
UΦ EΦ 4.44 f N1kw1Φ
当 f↓而UΦ不变时,Xm↓→ Im↑→ Φm↑→I0→I1↑ 引起电动机过热。
而Im↑→cosφ1↓Φm↑→pFe↑造成电动机带载能力 下降。
为了克服上述缺点,在工频(50Hz)以下调速时,
5.5 三相异步电动机的调速方法与特性
依据:
n
n0 (1 s)
60 f p
(1 s)
三相异步电动机的调速大致可以分成以下几种类型:
(1)改变转差率s调速,包括降低电源电压、绕线式异步 电动机转子回路串电阻等方法; (2)改变旋转磁场同步转速调速,包括改变定子绕组极 对数、改变供电电源频率等方法; (3)双馈调速,包括串级调速,属改变理想空载转速的 一种调速方法; (4)利用滑差离合器调速。
R M 3~
Rf
K2
+ -
(3)能耗制动时的机械特性:
2
3n 1 ns
Tmax2 Tmax1
0
Tz
T
(4)特点: 机械特性过原点,即n=0时T=0。能迅速、准确停车。
反馈制动、反接制动和能耗制动。
5.6.1 反馈制动 由于某种原因异步电动机的运行速度高于它的同步速
毕设论文--异步电动机SPWM变频调速原理与仿真分析

异步电动机SPWM变频调速原理与仿真分析摘要在分析SPWM原理的基础上,利用MATLAB/SIMULINK软件构造了SPWM调速系统的仿真模型并说明了规则采样法的可行性。
该模型主要利用S-函数模拟自然采样法和规则采样法的控制规则并应用电力系统工具箱构建逆变桥和电机,能够比较好的模拟真实的系统并实现变频调速的功能。
通过对仿真结果的分析,对比自然采样法和规则采样法控制性能的差异,得出了规则采样法在工程实际中应用的可行性。
关键词:SPWM,异步电机,MATLAB,仿真,规则采样法,自然采样法The Simulation and Analysis of the Fundmental Principle of Asynchronous Motor SPWM Speed AdjustingABSTRACTBase on analizing SPWM principle, the SPWM velocity modulation system's simulation model has been constructed by using the MATLAB/SIMULINK software.After analizing the results of simulation,the feasibility of the regular sample law is given out. This model mainly uses the S- function analogue natural sampling law and the regular sampling method control rule and construct inverter and machine ,this model can simulate the real system and realize the frequency conversion velocity modulation function. The simulation results is given out in this paper, though analizing the simulation results and constrasting the difference of the control performance of natural sampling law and regular sampling,the application feasibility of the regular sampling law in the project has been obtained.KEYWORDS: SPWM ,aynchronous motor,MATLAB,simulation, regular sampling law, ntural sampling law目录摘要 (I)ABSTRACT .................................................................................................................................................... I I 1 绪论 (1)1.1交流调速系统的发展 (1)1.2交流调速系统的基本类型 (2)1.2.1 异步电动机调速系统的基本类型 (2)1.2.2 同步电动机调速的基本类型 (4)2 Siulink 仿真基础 (5)2.1 Simulink简介 (5)2.1.1 Simulink 启动 (5)2.1.2 Simulink 组成 (5)2.1.3 仿真过程 (6)2.2 Simulink 模块库简介 (6)2.3电力系统工具箱简介 (6)2.4 S-函数简介 (6)2.4.1 S-函数的基本概念 (6)2.4.2 S-函数的使用 (7)2.4.3 与S-函数相关的一些术语 (7)2.4.4 S-函数的工作原理 (8)2.4.5 编写M文件S-函数 (9)3 异步电动机变压变频调速系统 (11)3.1概述 (11)3.2变压变频调速的基本控制方式 (11)3.2.1 基频以下调速 (11)3.2.2 基频以上调速 (12)3.3异步电动机电压-频率协调控制时的机械特性 (12)4 PWM控制技术 (15)4.1 正弦脉宽调制原理及其优点 (15)4.1.1 SPWM原理 (15)4.1.2 SPWM的优点 (18)4.1.3关于SPWM的开关频率 (19)4.2 同步调制和异步调制 (19)4.2.1 异步调制 (19)4.2.2 同步调制 (19)4.2.3 分段同步调制 (20)4.3 SPWM波形的生成 (20)4.3.1 自然采样法 (20)4.3.2 规则采样法 (21)5 异步电动机SPWM变频调速仿真系统的设计 (23)5.1自然采样法系统的设计 (23)5.1.1 三角波的生成 (23)5.1.2 自然采样法SPWM 脉冲的生成 (25)5.1.3 直流电源 (25)5.1.4 逆变器的设计 (25)5.1.5 系统总框图的设计 (26)5.2 规则采样法系统的设计 (26)5.2.1 规则采样法脉冲的生成 (26)5.2.2 规则采样法系统总框图的设计 (28)5.3仿真分析 (28)5.3.1 额定转速(50HZ)的波形 (29)5.3.2 性能对比分析 (30)致谢 (36)参考文献 (37)1 绪论1.1 交流调速系统的发展[1]直流电气传动和交流电气传动在19世纪先后诞生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[直流电动机和异步电动机的调速原理及特性分析]姓名:学号:26院系:11级机械系三班通讯:导师:一.直流电动机的调速原理及特性分析直流电动机具有良好的起动制动性能,宜于在较大范围内平滑调速"长期以来,在电动机调速领域中,直流调速方法一直占主要地位"与交流电动机相比,直流电动机有良好的调速性能,它的调速范围较广;调速连续平滑;经济性好,设备投资较少,调速损耗较小,经济指标高;调速方法简便,工作可靠.流伺服电动机是满足伺服系统要求的直流电动机,分为有刷DC伺服和无刷DC伺服。
在传统有刷DC伺服中,整流子和电刷一起起着回转开关的作用,随着功率半导体器件技术的发展,霍尔元件和大功率晶体管代替了整流子和碳刷的作用,就产生了无刷DC伺服。
与普通电动机相比,DC伺服具有工作精度高,调速性能好,带负载能力强,响应速度快,稳定可靠等特点。
虽然其工作原理与普通直流电动机基本相同,但为了减小体积和提高散热,DC伺服电动机通常采用永久磁铁励磁。
直流伺服电动机主要有如下基本特点:U保持不变时,电动机的转速n随电磁转矩M变1、机械特性:在输入的电枢电压α化而线形变化的规律,称直流电动机的机械特性。
机械特性的关系可用下式表示;U——电枢电压式中:αR——电枢电阻αφ——磁通M—电动机输出的电磁转矩机械特性曲线如图1-1所示。
M称为堵转转矩。
斜率K表示电磁转矩变化引起图中,0n为理想空载转速,d转速变化的程度。
K越大,电磁转矩变化引起转速变化越大,电动机的机械特性越软;K越小,电磁转矩变化引起转速变化越小,电动机的机械特性越硬。
图1-1直流伺服电机机械特性曲线 在直流伺服系统中,希望电动机的机械特性硬一些。
当负载发生变化时引起的转速变化小,有利于提高直流电机的速度稳定性和运动精度。
且由式(1.1)可知,K 与电枢电阻αR 成正比,电枢回路中串入的电阻或功率放大器的输出电阻增大,会使直流电机特性变软,功耗增大。
2、调节特性:直流电机在一定的电磁转矩M (或负载转矩)下,电机的稳定转速n 随电枢的控制电压αU 变化而线性变化的规律为直流电机的调节特性。
调节特性的关系可用下式表示:)()(102ααααααφφφφU U K C MR U C M C C R C U n m e m e e -=-=-=(1.2)式中:αU ——电枢电压αR ——电枢电阻e C ——电势系数,α60NPC e =(电枢绕组支路数磁极对数电枢绕组系数⨯⨯=60e C )φ——磁通 m C ——力矩系数,πα2NP C e =M —电动机输出的电磁转矩 调节特性曲线如图1-2所示。
图中,0αU 为启动电压,为电动机处于待转动而没转动的临界状态的控制电压。
0αU 与电磁转矩(负载转矩)成正比。
M 越大,0αU 越大。
电动机启动时,在0~0αU 范围内,电动机不转,该区域称为电动机的死区。
斜率K 表示转速n 随电枢的控制电压αU 变化而变化的快慢程度。
其值与负载无关,仅决定于电动机本身的结构与参数。
图1-2直流伺服电机调节特性曲线 3、动态特性用电枢电压控制方式控制电动机时,控制电压突然变化而引起转速变化,但由于电磁惯性和机械惯性,使电动机转速只能渐渐变化,从原来的稳定状态到新的稳定状态存在一个过渡过程即电动机的动态特性。
电动机的动态特性与系统惯性大小、电枢回路电阻、机械特性的硬度有关。
4、直流伺服电动机控制从直流伺服电动机的原理,可知直流伺服电动机电磁转矩和速度控制方法有两种,—种是改变电枢电压即改变电枢电流的方法。
另一种是改变励磁电流即改变磁通的方法。
在大多数情况下,直流伺服电动机的速度控制采用调节电枢电压的方法,即保持励磁电流不变,则电磁转矩为:ααφKI I C M m ==παφφ2NP C K m ==M 是电枢电流的一元函数,不仅控制方便,而且响应速度快,输出转矩大,线性较好。
目前较好的调速方法是脉宽调制(PWM),通过改变周期性脉冲信号的占空比来改变加在电动机上的平均电压,从而达到调速目的。
PWM 调速的原理如图1-3所示:设将开关周期性的闭合、断开,开和关的周期是T 。
在一个周期内,闭合的时间是τ,断开的周期是T-τ。
如果外加的电源电压U 为常数,则电源加到电动机电枢上的波形为方波列。
其高度为U ,宽度为τ,如图示,其平均值是⎰===TUU Udt TU 0T1αταT τα=称为导通率,当T 不变时,只要连续改变τ(0~T )就可以使电枢电压的平均值αU 连续地从0变到U ,从而连续地改变电动机的转速。
实际的PWM 调速电路用功率晶体管代替开关。
可逆式PWM 用四个功率晶体管组成电桥,实现双向调速。
开关频率达30KHz 。
图中的二极管式续流二极管,当开关断开时由于电枢电感的作用,电动机的电枢电流可以继续形成回路。
(a)电气原理(b)波形图1-3 PWM调速原理二.异步电动机频率调速原理及特性分析变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场当极对数p不变时,电动机转子转速与定子电源频率成正比,因此,连续的改变供电电源的频率,就可以连续平滑的调节电动机的转速。
异步电动机变频调速具有调速范围广、调速平滑性能好、机械特性较硬的优点,可以方便的实现恒转矩或恒功率调速,整个调速特性与直流电动机调压调速和弱磁调速十分相似,并可与直流电动机相媲美。
1.变频器与逆变器、斩波器变频调速是以变频器向交流电动机供电,并构成开环或闭环系统。
变频器是把固定电压、固定频率的交流电变换为可调电压、可调频率的交流电的变换器,是异步电动机变频调速的控制装置。
逆变器是将固定直流电压变换成固定的或可调的交流电压的装置(DC -AC 变换)。
将固定直流电压变换成可调的直流电压的装置称为斩波器(DC -DC 变换)。
2.变压变频调速(VVVF ) 在进行电机调速时,通常要考虑的一个重要因素是,希望保持电机中每极磁通量为额定值,并保持不变。
如果磁通太弱,即电机出现欠励磁,将会影响电机的输出转矩,由 TM =KT M I 2 COS (式中 TM :电磁转矩,M :主磁通,I 2 :转子电流,COS :转子回路功率因素,KT :比例系数),可知,电机磁通的减小,势必造成电机电磁转矩的减小。
由于电机设计时,电机的磁通常处于接近饱和值,如果进一步增大磁通,将使电机铁心出现饱和,从而导致电机中流过很大的励磁电流,增加电机的铜损耗和铁损耗,严重时会因绕组过热而损坏电机。
因此,在改变电机频率时,应对电机的电压进行协调控制,以维持电机磁通的恒定。
为此,用于交流电气传动中的变频器实际上是变压(Variable Voltage ,简称VV )变频(Variable Frequency ,简称VF )器,即VVVF 。
所以,通常也把这种变频器叫作VVVF 装置或VVVF 。
根据异步电动机的控制方式不同,变压变频调速可分为恒定压频比(V/F )控制变频调速、矢量控制(FOC )变频调速、 直接转矩控制变频调速等。
3.变频器分类⑴从变频器主电路的结构形式上可分为交-直-交变频器和交-交变频器。
交-直-交变频器首先通过整流电路将电网的交流电整流成直流电,再由逆变电路将直流电逆变为频率和幅值均可变的交流电。
交-直-交变频器主电路结构如下图。
整流逆变中间直流环节DC恒压恒频变压变频ACAC交-交变频器把一种频率的交流电直接变换为另一种频率的交流电,中间不经过直流环节,又称为周波变换器。
它的基本结构如下图所示。
负载正向组反向组+--+u 0~u i常用的交-交变频器输出的每一相都是一个两组晶闸管整流装置反并联的可逆线路。
正、反向两组按一定周期相互切换,在负载上就获得交变的输出电压u 0。
输出电压u 0的幅值决定于各组整流装置的控制角,输出电压u 0的频率决定于两组整流装置的切换频率。
如果控制角一直不变,则输出平均电压是方波,要的到正弦波输出,就在每一组整流器导通期间不断改变其控制角。
对于三相负载,交-交变频器其他两相也各用一套反并联的可逆线路,输出平均电压相位依次相差。
交-交变频器由其控制方式决定了它的最高输出频率只能达到电源频率的~,不能高速运行,这是它的主要缺点。
但由于没有中间环节,不需换流,提高了变频效率,并能实现四象限运行,因而多用于低速大功率系统中,如回转窑、轧钢机等。
⑵从变频电源的性质上看,可分为电压型变频器和电流型变频器。
对交-直-交变频器,电压型变频器与电流型变频器的主要区别在于中间直流环节采用什么样的滤波器。
电压型变频器的主电路典型形式如下图。
在电路中中间直流环节采用大电容滤波,直流电压波形比较平直,使施加于负载上的电压值基本上不受负载的影响,而基本保持恒定,类似于电压源,因而称之为电压型变频器。
整流逆变ACDCAC中间直流环节C d电压型变频器逆变输出的交流电压为矩形波或阶梯波,而电流的波形经过电动机负载滤波后接近于正弦波,但有较大的谐波分量。
由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以主要优点是运行几乎不受负载的功率因素或换流的影响;缺点是当负载出现短路或在变频器运行状态下投入负载,都易出现过电流,必须在极短的时间内施加保护措施。
电流型变频器与电压型变频器在主电路结构上基本相似,所不同的是电流型变频器的中间直流环节采用大电感滤波,见下图,直流电流波形比较平直,使施加于负载上的电流值稳定不变,基本不受负载的影响,其特性类似于电流源,所以称。