统计学第五章

合集下载

统计学第五章(变异指标)

统计学第五章(变异指标)

峰态及其度量
峰态定义
峰态是指数据分布的尖峭程度或扁平程度。在统计学中,峰态通常通过峰态系数 来度量。
峰态系数
峰态系数是描述数据分布峰态程度的一个统计量,通常表示为K。当K=3时,分 布呈正态分布,峰度适中;当K>3时,分布呈尖峰分布,即比正态分布更尖峭; 当K<3时,分布呈平峰分布,即比正态分布更扁平。
方差
要点一
定义
方差是在概率论和统计方差衡量随机 变量或一组数据时离散程度的度量, 用来度量随机变量和其数学期望(即 均值)之间的偏离程度。
要点二
计算公式
方差s^2=[(x1-x)^2+(x2x)^2+......(xn-x)^2]/n(x为平均数)。
要点三
性质
方差越大,说明随机变量取值越离散; 方差刻画了随机变量的取值对于其数学 期望的离散程度;若X的取值比较集 中,则方差D(X)较小,若X的取值比较 分散,则方差D(X)较大;因此,D (X)是刻画X取值分散程度的一个 量,它是衡量取值分散程度的一个尺 度。
变异系数的计算
01
注意事项
02
当数据集包含极端值时,变异系数可能会受到影响。
03
对于非正态分布的数据,变异系数的解释需谨慎。
变异系数的应用
比较不同数据集的离散程度
通过比较不同数据集的变异系数,可以评估它们 的相对波动程度。
在质量控制中的应用
通过计算产品质量的变异系数,计学第五章变异指

CONTENCT

• 变异指标概述 • 变异系数 • 极差、四分位差与平均差 • 标准差与方差 • 偏态与峰态的度量 • 变异指标在统计分析中的应用
01
变异指标概述

统计学原理第五章

统计学原理第五章

第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。

§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。

将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。

如:2010年年年末为1339724852亿,反映是我国人口的总规模。

总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。

第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。

第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。

第四、总量指标是计算相对指标和平均指标的基础。

一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。

对于一个确定的统计总体,其总体单位总量是唯一确定的。

• 总体标志总量(简称标志总量):指总体中各单位标志值总和。

对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。

• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。

2、按反映时间状况的不同,可分为时期指标和时点指标。

• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。

如产品总量、货物运输量、商品销售量、国内生产总量等。

• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。

如人口数、职工数、设备台数等。

第五章概率与概率分布

第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n

m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社

大量统计的结果,用于破解密码
美国正常人血型分布

统计学 第五章

统计学      第五章

第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。

(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。

全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。

(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。

社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。

样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。

一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。

在样本容量确定之后,样本的可能数目便完全取决于抽样方法。

抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。

抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。

在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。

样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。

统计学教程 第五章

统计学教程 第五章
10 - 12
经济、管理类 基础课程
统计学
样本相关系数的计算公式
r
( x x )( y y ) (x x ) ( y y)
2
2
或化简为 r
10 - 13
n xy x y n x x n y y
2 2 2 2
10 - 4
经济、管理类 基础课程
变量间的关系
统计学 (相关关系correlation relationship)
1. 变量间关系不能用函数关 y 系精确表达 2. 一个变量的取值不能由另 一个变量唯一确定 3. 当变量 x 取某个值时,变 量 y 的取值可能有几个 4. 各观测点分布在直线周围 x
10 - 5
经济、管理类 基础课程
变量间的关系
统计学 (相关关系correlation relationship)
相关关系的例子
居民消费支出(y)与收入(x)之间的关系
商品销售额(y)与广告费支出(x)之间的关系
粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、 温度(x3)之间的关系 子女身高 (y)与父母身高(x)之间的关系 收入水平(y)与受教育程度(x)之间的关系
估计标准误差越小,回归模型拟合的越好。但 是作为判断和评价标准,估计标准完成不如判定 系数。
10 - 32
【例】根据上例中的数据,配合人均消费 金额对人均国民收入的回归方程 统计学
时间
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 10 - 33
b0 和 b1 称为模型的参数
经济、管理类 基础课程

统计学

统计学
2
s n
还可以进一步推断相应总量指标的区间范围。 还可以进一步推断相应总量指标的区间范围。
2、总体比率的区间估计 、
由定理知:在大样本下, 由定理知:在大样本下,样本比率的分 1 布趋近于 N ( P, P(1 − P)) n 给定置信度 1 − α ,查正态表的 Zα , 2 样本比例的抽样极限误差为
2 2 2 2
~ F (n1 − 1, n2 − 1)
得方差比 σ 12 / σ 22 的置信度为1 − α 的置信区间为
1 s12 s12 ( 2 , 2 s2 Fα ( n1 − 1, n2 − 1) s2 F
2 1−
1 ) α ( n1 − 1, n2 − 1)
2
例题:见书 页例11 例题:见书150页例 页例 练习:研究由机器A和机器 生产的钢管的内径, 和机器B生产的钢管的内径 练习:研究由机器 和机器 生产的钢管的内径, 随机抽取A生产的管子 生产的管子18只 测得样本方差0.34 随机抽取 生产的管子 只,测得样本方差 平方毫米,抽取B生产的管子 生产的管子13只 平方毫米,抽取B生产的管子13只,测得样本 方差0.29平方毫米。设两样本相互独立,且设 平方毫米。 方差 平方毫米 设两样本相互独立, 由A、B生产的管子内径分别服从正态分布 、 生产的管子内径分别服从正态分布 2 2 N ( µ1 ,σ 1 ), N ( µ 2 ,σ 2 ) µ i ,σ i 均未知。 均未知。 这里的 试求方差比的置信度为0.90的置信区间。 的置信区间。 试求方差比的置信度为 的置信区间
s 小样本) n (小样本)
综述: 综述:总体均值的置信度为 1 − α 的置信区间 表示为: 表示为:x − ∆ x ≤ µ ≤ x + ∆ x 其中: 其中: σ s ∆ ≈ Zα 大样本下: 大样本下: x = Z α σ ( x) = Z α

统计学基础第五章时间数列

统计学基础第五章时间数列

statistics
统计学——第五章时间数列
解:根据上面计算资料再计算第三季度的月平均库存额为:
an-1 an a1 a2 a2 a3 … 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
700 900 900 1000 2 2 4 1
均衡的期末登记排列。通常将前者称为间隔相等的间断 时点数列,后者称为间断不等的间断时点数列。
statistics
统计学——第五章时间数列
间隔相等的间断时点数列的平均发展水平的计算公式:
an1 an a1 a2 a2 a3 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
statistics
统计学——第五章时间数列
(3)分子、分母由一个时期数列和一个时点数列对比组成 相对数时间数列。
a a 1 a 2 a n 1 a n c b0 bn b1 b n 1 b 2 2
(分子为时期数列,分母为时点数列) a0 an a 1 a 2 a n 1 a 2 或 2 c b1 b n 1 b n
可见,该商场2006年的第三、第四季度的月平均销售 额大于第一、第三季度的月平均销售额。 statistics
统计学——第五章时间数列
2.依据时点数列计算序时平均数
连续时点数列 时点数列 间断时点数列 间隔不等的间断时点数列 间隔相等的间断时点数列
statistics
统计学——第五章时间数列
(1)连续时点数列的序时平均数。
5-4所示,试求第一季度的平均完成率。 表5-4 某厂某年第一季度各月商品销售额 计划完成情况统计表 目 1月 200 210 105 2月 240 260 105 3月 250 280 112 statistics

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学课后练习(第五章 P131 11-13)
试根据表中资料分别计算4月份和5月份工人日产量的算术平均数、中位数和众数,并分析工人平均日产量变化的原因,说明两个月次数分布的特点。

解: 以下累计法: 4月份
=⨯∆+∆∆+=i 2
110L M 众数:20+()()10303520352035⨯-+--=27.5 平均数:5.29100
555104530353525201511
=⨯+⨯+⨯+⨯+⨯=∑∑==n i i
n i i i f
f
x 中位数:502
10021===
∑=n i i m f O
57.281035
20210020211=⨯-+=⨯-+
=-=∑i f S f
L M m m n i i
e 以上累计法: 4月份 平均数=(15*20+25*35+35*30+45*10+55*15)/100=29.5
众数=30-{5/(15+5)}*10=27.5
中位数=30-{(100/2-45)/35}*10=28.6
5月份
平均数=(15*10+25*20+35*25+45*30+55*15)/100=37
众数=50-{15/(15+5)}*10=42.5
中位数=40-{(100/2-45)/25}*10=38
12、某地甲、乙两个农贸市场三种蔬菜价格及销售额资料如下:
试根据表中资料计算,那个市场蔬菜平均价格高?并说明原因。

解:
甲市场的平均价格:13.22000426060
.2
52020.2154000.2220052015402200x 11
H ==++++==∑∑==n i i i n
i i x m m 乙市场的平均价格:36.22000472060.2260020.2132000.280026001320800x 1n 1H ==++++=
=∑∑==n i i i i i x m m 36.213.2〈Θ
∴ 乙市场的蔬菜价格比甲市场的蔬菜价格高。

13、某工厂生产某种零件,要经过三道工序。

各道工序的合格率分别为95.74%、92.22%、96.3%,试求该种零件的平均合格率。

解:
%4.7949474.0963.09222.09574.03或=⨯⨯==∏n i x G。

相关文档
最新文档