圆周角和圆心角的关系—知识讲解(基础)
弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
圆周角圆心角关系

圆周角圆心角关系
圆周角和圆心角的关系
(一)定义
1. 圆周角:指圆的弧形轨迹沿着单位圆上某点旋转的路径轨迹水平方
向的转角,量度单位是弧度,它与普通角相比拥有更高的精度。
2. 圆心角:指两个线段(线段A和线段B)与其中一个(以下简称A)所共享的端点,A的直角顶点定义的角。
它的量度单位也是弧度。
(二)关系
1. 两种角的关系被称为帕斯卡定理:圆周角和圆心角之和为两线段所
围成的平行四边形的角的三倍。
2. 圆周角的具体值可以通过求线段A、B与圆上的一个点之间的距离,和线段A、B的距离来确定,最终得出:圆周角=(线段A、B的距离-
圆上点到线段A、B的距离)/2。
3. 若圆心角有定值,则可以通过圆周角得知圆上点到线段A、B的距离:圆上点到线段A、B的距离=线段A、B的距离-2*圆周角。
(三)应用
1. 圆周角和圆心角的关系最常见的应用就是用圆周角计算圆周上物体运动的路程。
2. 天文学中圆周角和圆心角的关系也有很多,例如行星运行轨迹和太阳系其他星系的位置等都是以圆周角和圆心角之间的关系来建立的。
3. 圆周角和圆心角在数学中也有很多应用,例如:确定三角形内某点的坐标,以及求山形线、圆锥线和圆柱曲线等的方法等。
3.4第1课时圆周角和圆心角的关系(教案)

(2)运用圆周角和圆心角的关系解决问题:在实际问题中,学生可能不知道如何将所学的圆周角和圆心角关系应用到解题过程中。
举例:针对不同类型的题目,指导学生分析问题,找到运用圆周角和圆心角关系的关键步骤,并给出解题策略。
四、教学流程
3.加强实践活动的引导,让学生在讨论和操作过程中,能够更加深入地思考问题;
4.提高自己的课堂应变能力,针对学生的反馈,及时调整教学方法和策略。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课将紧密围绕核心素养目标,关注学生能力培养,使学生在掌握知识的同时,提高数学学科综合素养。
三、教学难点与重点
1.教学重点
(1)圆周角和圆心角的概念及其关系:圆周角是圆上一段弧所对的角,圆心角是以圆心为顶点的角。圆周角是圆心角的一半,这是本节课的核心知识点。
举例:讲解圆周角和圆心角的定义,通过图示和实际操作,让学生直观感受两者的关系。
3.重点难点解析:在讲授过程中,我会特别强调圆周角和圆心角的关系,以及它们在解题中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角和圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量圆周角和圆心角,验证圆周角是圆心角的一半这一性质。
第08讲 圆心角与圆周角

第08讲圆心角与圆周角(核心考点讲与练)【知识梳理】一.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.二.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.三.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则P A•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=P A•PB(相交弦定理推论).【核心考点精讲】一.圆心角、弧、弦的关系(共4小题)1.(2021•江北区校级开学)在⊙O中,如果=2.那么弦AB与弦CD之间的关系是()A.AB=2CD B.AB>2CD C.AB<2CD D.无法确定2.(2020秋•靖江市期中)已知弦AB的长等于⊙O的半径,弦AB所对的圆周角是度.3.(2021•广州模拟)如图,AB,CD为⊙O内两条相交的弦,交点为E,且AB=CD,求证:AD∥BC.4.(2022春•永嘉县月考)如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB 交OC于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.二.圆周角定理(共5小题)5.(2022•浦江县模拟)已知:如图,OA是⊙O的半径,若∠BAO=27°,则圆周角∠BDA的度数是()A.63°B.60°C.58°D.54°6.(2021秋•嘉兴期末)如图,AB是⊙O的直径,点C在圆上,若∠ABC=70°,则∠BAC的度数为()A.70°B.60°C.40°D.20°7.(2022•柯桥区一模)如图,在⊙O中,AD是直径,∠ABC=35°,则∠CAD等于()A.75°B.65°C.55°D.45°8.(2022•文成县一模)如图,点A,B,C都在⊙O上,∠AOC:∠BOC=2:5,OA∥BC,则∠ABC=°.9.(2021秋•嵊州市期末)已知:如图,在△ABC中,AB=AC,以腰AB为直径作⊙O,分别交BC,AC 于点D,E,连结OD,DE.(1)求证:BD=DC.(2)若∠BAC=50°,求∠ODE的度数.三.相交弦定理(共2小题)10.(2021秋•东阳市月考)已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE=3,EC=1,则BE•DE的值为()A.6B.7C.12D.1611.(2021秋•余姚市期中)如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16B.24C.12D.不能确定【过关检测】一.选择题(共10小题)1.(2021秋•西城区校级期中)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么所对的圆心角的大小是()A.60°B.75°C.80°D.90°2.(2022•富阳区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.则下列结论错误的是()A.∠ADC=∠AGDB.若∠ADC=∠GAD,则=2C.若=,则△ADG是等腰三角形D.若=,则△AGF是等腰三角形3.(2022•舟山二模)如图,BC是⊙O的直径,AD⊥BC,∠ABC=25°,则弧CD的度数()A.50°B.25°C.100°D.65°4.(2022•西湖区一模)如图,已知AB是⊙O的直径,弦CD与AB交于点E,设∠ABC=α,∠ABD=β,∠AEC=γ,则()A.α+β﹣γ=90°B.β+γ﹣α=90°C.α+γ﹣β=90°D.α+β+γ=180°5.(1999•山西)如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是()A.x2﹣8x﹣15=0B.x2﹣8x+15=0C.x2+8x﹣15=0D.x2+8x+15=06.(2022•鹿城区校级二模)如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°7.(2022•黄岩区一模)如图,△ABC是等边三角形,点A,点B在数轴上,点A表示数﹣2,点B表示数2,以AB为直径作圆交边AC于点P,以B为圆心,BP为半径作弧交数轴于点Q,则点Q在数轴上表示的数为()A.B.2C.2﹣2D.2﹣28.(2022•永康市模拟)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是()A.30°B.25°C.10°D.5°9.(2022•东坡区校级模拟)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.1610.(2021秋•杭州期末)如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长为()A.6B.7C.8D.9二.填空题(共4小题)11.(2021秋•亭湖区期末)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.(2014秋•柯城区校级期中)如图,在⊙O中,弦AB,CD相交于点E,AE=2cm,BE=6cm,DE=3cm,则CE=cm;学以致用:点P是直径为10的⊙Q中一点且PQ=2,过点P作弦HK,则线段PH 与线段PK的积等于.13.(2021秋•定海区期末)一块直角三角板的30°角的顶点A落在圆O上,两边分别交圆O于B、C两点,则弧BC的度数为.14.(2021秋•温州期末)如图,点A在半圆O上,BC是直径,.若AB=2,则BC的长为.三.解答题(共6小题)15.(2021秋•淳安县期中)如图,在⊙O中,弦AD=BC,连接AB、CD.求证:AB=CD.16.(2021秋•上城区期中)如图,AD、BC是⊙O的两条弦,且AB=CD,求证:AD=BC.17.(2021秋•长兴县期中)如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.求证:MB=MD.18.(2021秋•诸暨市期末)如图,O为半圆的圆心,C、D为半圆上的两点,连接CD、BD、AD,CD=BD.连接AC并延长,与BD的延长线相交于点E.(1)求证:CD=DE;(2)若AC=6,半径OB=5,求BD的长.19.(2021秋•滨江区期末)如图,在⊙O中,AB=CD,弦AB与CD相交于点M.(1)求证:=.(2)连接AC,AD,若AD是⊙O的直径,求证:∠BAC+2∠BAD=90°.20.(2001•温州)⊙O的两条弦AB,CD交于点P,已知AP=4,BP=6,CP=3,求CD的长.。
3.4圆心角与圆周角的关系(教案)

2.教学难点
-理解圆心角与圆周角之间的数量关系,特别是当圆心角是直角或平角时的情况。
-在复杂的图形中识别圆心角和圆周角,并能正确应用相关定理。
-将圆心角与圆周角的理论知识应用到解决综合性几何问题中。
举例解释:
其次,在教学难点部分,我发现有些学生在处理复杂的图形时,仍然难以准确识别圆心角和圆周角。这说明我在讲解这一部分时,可能需要更多针对性地设计一些练习题,让他们在实际操作中逐步突破难点。
在实践活动环节,学生们的参与度很高,但我也注意到有些小组在讨论时可能会偏离主题。为了提高讨论的效率,我应该在分组讨论前给出更明确的指导,比如设置一些具体的问题或任务,让学生们有针对性地展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调圆心角与所对弧的关系以及圆周角是圆心角的一半这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆心角和圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量不同圆心角和对应的圆周角,验证它们之间的数量关系。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过探究圆心角与圆周角的关系,使学生能够形成对圆上角度的直观感知,提高空间想象能力。
2.提升学生的逻辑推理能力:引导学生运用圆的基本性质和几何定理,推导圆心角与圆周角的关系,培养学生严谨的逻辑思维。
3.增强学生的几何直观:通过实际操作和观察,让学生感受圆心角与圆周角在实际应用中的联系,提高解决几何问题的能力。同时,培养学生运用几何知识解释生活中现象的意识。
圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。
初中数学知识点精讲精析 圆周角和圆心角的关系

3·3圆周角和圆心角的关系1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.1.已知:⊙O 中,所对的圆周角是∠ABC ,圆心角是∠AOC .求证:∠ABC =12AOC . 【解析】证明:∠AOC 是△ABO 的外角,∴∠AOC =∠ABO +∠BAO .∵OA =OB ,∴∠ABO =∠BAO . ∴∠AOC =2∠ABO .即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD =12∠AOD ,∠CBD =12∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD),即∠ABC =12∠AOC .在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.由前面的结果,有 ∠ABD =12∠AOD ,∠CBD =12∠COD .∴∠ABD -∠CBD =12(∠AOD -∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径.(1)若OD ∥AC ,的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论.【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,.BDCABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明你的结论.【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.B【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC . ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
圆圆周角和圆心角的关系、确定圆的条件1 - 【本讲教育信息】

【本讲教育信息】一. 教学内容:圆(二)圆周角和圆心角的关系、确定圆的条件二. 教学要求1、理解圆周角的概念及其相关性质,并能熟练地运用它们进行论证和计算。
2、了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆,三角形的外心等概念。
三. 重点及难点重点:圆周角定理及其推论,不在同一条直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法。
难点:圆周角定理的证明,不在同一直线上的三个点作圆的方法。
四. 课堂教学[知识要点]知识点1、圆周角的概念顶点在圆上,并且两边都和圆相交的角叫做圆周角。
说明:圆周角的两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦,二者缺一不可。
知识点2、圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半。
说明:(1)定理的要求是同一条弧所对的圆周角和圆心角,从数值上来看,圆周角是圆心角的一半。
(2)不能忽略“同一条弧”这个基本前提,不能简单表述成“圆周角等于圆心角的一半”。
知识点3、圆周角定理的推论推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等。
如图所示,AB所对的圆周角有∠ACB,∠ADB,∠AEB,因此∠ACB=∠ADB=∠AEB。
说明:(1)若将“同弧或等弧”改为“同弦或等弦”,结论不成立如图1所示,∠ACB,∠ADB,∠AEB所对的弦是同一条弦AB,∠ADB=∠AEB,但∠ACB与∠ADB,∠AEB与∠ACB却不相等。
(2)此推论的逆命题是一个真命题,可以作为圆周角定理的一个推论,其表述为:在同圆或等圆中,相等的圆周角所对的弧也相等。
如图(2)中所示,如果∠ACB =∠DFE ,那么⋂⋂=DE AB推论2、直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
如图3所示,若AB 为直径,则∠ACB =90°,若∠ACB =90°,则AB 为直径。
知识点4、过三点的圆由圆的定义可知,圆有两个要素,一个是圆心,另一个是半径,圆心确定圆的位置,半径确定圆的大小,作圆的关键是确定圆心的位置和半径的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角和圆心角的关系-- 知识讲解(基础)
【学习目标】
1.理解圆周角的概念,了解圆周角与圆心角之间的关系;
2.理解圆周角定理及推论;
3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.
【要点梳理】
要点一、圆周角
1. 圆周角定义:
像图中∠ AEB、∠ ADB、∠ ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.
3. 圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;
推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:
(1) 圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.
(2) 圆周角定理成立的前提条件是在同圆或等圆中.
( 3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周
要点二、圆内接四边形
1. 圆内接四边形定义:
四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆
2. 圆内接四边形性质:
圆内接四边形的对角互补.如图,四边形ABCD是⊙ O的内接四边形,则∠A+∠C=180°,∠B+∠D=180°
D
要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补
典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用
1.如图,在⊙ O中,,求∠ A的度数.
答案与解析】
【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.
举一反三:
【变式】如图所示,正方形ABCD内接于⊙ O,点E在劣弧AD上,则∠ BEC等于( )
A .45°
B . 60°
C .30°
D . 55 答案】 A.
∵ AB = BC =CD =DA ,
AB BC CD DA 90°, ∠ BEC = 45°.
类型二、圆周角定理及应用
【思路点拨】 根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角 . 【答案与解析】 (a) ∠1顶点在⊙ O 内,两边与圆相交,所以∠ 1 不是圆周角;
(b) ∠2顶点在圆外,两边与圆相交,所以∠ 2 不是圆周角;
(c) 图中∠ 3、∠ 4、∠ BAD 的顶点在圆周上,两边均与圆相交,所以∠ 3、∠ 4、∠ BAD 是圆周角. (d) ∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠ 5 不是圆周角;
(e) ∠ 6 顶点在圆上,两边与圆均不相交,由圆周角的定义知∠ 6 不是圆周角 .
【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.
3. (2015?台州)如图,四边形 ABCD 内接于⊙ O ,点 E 在对角线 AC 上, EC=BC=DC . ( 1)若∠ CBD=39 °,求∠ BAD 的度数;
( 2)求证:∠ 1=∠ 2.
【答案与解析】
( 1)解:∵ BC=DC ,
∴∠ CBD= ∠CDB=39 °,
∵∠ BAC= ∠CDB=39 °,∠ CAD= ∠CBD=39 °,
∴∠ BAD= ∠BAC+ ∠CAD=39 °+39°=78°; (2)证明:∵ EC=BC ,
2. 观察下图中角的顶点与两边有何特征 ? 指出哪些角是圆周角 ?
∴∠ CEB= ∠CBE , 而∠CEB=∠2+∠BAE ,∠ CBE= ∠ 1+∠ CBD ,
∴∠ 2+∠BAE= ∠ 1+∠ CBD ,
∵∠ BAE= ∠CBD ,
∴∠ 1=∠ 2.
总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.
BD 是⊙ O 的弦,延长 BD 到 C ,使AC=AB ,BD 与 CD 的大小有什么关系? 为什么?
思路点拨】 BD=CD ,因为 AB=AC ,所以这个△ ABC 是等腰三角形,要证明 D 是 BC 的中点,只要连结 AD , 证明 AD 是高或是∠ BAC 的平分线即可.
答案与解析】
BD=CD.
理由是:如图,连接 AD
∵AB 是⊙ O 的直径
∴∠ ADB=90°即 AD ⊥ BC 又∵ AC=AB ,∴ BD=CD.
总结升华】 解题的关键是正确作出辅助线 举一反三:
【变式】(2015?安顺)如图,⊙ O 的直径 AB 垂直于弦 CD ,垂足为 E ,∠ A=22.5 °,OC=4, CD 的长为 ()
.如图, AB 是⊙ O 的直径,
得∠ D 的度数 .
答案与解析】 解:∵圆内接四边形的对角互补,
∴ ∠ A :∠ B :∠ C :∠ D=2:3:4 :3
设∠ A=2x ,则∠ B=3x ,∠ C=4x ,∠ D=3x ,
∴ 2x+3x+4x+3x=360 °,
∴x=30°
∴∠ D=90°.
总结升华】 本题考查圆内接四边形的性质和四边形的内角和为
C .4
D .8
提示:∵∠ A=22.5°,
∴∠ BOC=∠2 A=45°, ∵⊙O 的直径
AB 垂直于弦 CD , ∴CE=D ,E △OCE
为等腰直角三角形,
∴ CE= OC=2 ,
∴CD=2CE=4 .
故选: C .
类型三、圆内接四边形及应用
5.圆内接四边形 ABCD 的内角∠ A :∠ B :∠ C=2:3:4 ,求∠ D 的度数 .
思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为
360°的运用 .
B .4 答案】 C.
360°,从而求
举一反三:
【变式】如图,⊙ O中,四边形ABCD是圆内接四边形,∠ BOD=110°,则∠ BCD的度数是()
A.110 °
B.70 °
C.55 °
D.125 °
答案】D.A
C。