小学数学行程问题7大经典题型归纳总结,奥数行程问题解题技巧50例经典例题详解

合集下载

小学奥数行程问题分类总结汇总版(题型全,知识点详细)

小学奥数行程问题分类总结汇总版(题型全,知识点详细)

目录目录 (1)行程专题(1)——简单相遇追及问题 (3)行程专题(2)——多人相遇追及问题 (6)行程专题(3)——多次相遇追及问题 (8)模块一:由简单行程问题拓展出的多次相遇问题 (8)模块二:运用比例关系解多次相遇问题 (8)模块三:多次相遇与全程的关系 (9)行程专题(4)——变速变道问题 (10)模块一:变速问题 (10)模块二:变道问题 (10)模块三:走停问题 (11)行程专题(5)——火车过桥问题 (12)模块一:火车过桥(隧道、树)问题 (12)模块二:火车与人的相遇与追及问题 (12)模块三:火车与火车的相遇与追及 (13)行程专题(6)——流水行船问题 (14)模块一、基本的流水行船问题 (14)模块二、相遇与追及问题 (15)行程专题(7)——发车问题 (17)行程专题(8)——环形跑道问题 (19)模块一、一般环形跑道问题 (19)模块二、环形跑道——变道问题 (19)模块三、环形跑道——变速问题 (20)模块四、时钟问题 (20)行程专题(9)——比例解行程题综合 (22)模块一:比例初步——利用简单倍比关系进行解题 (22)模块二:时间相同速度比等于路程比 (22)模块三:路程相同速度比等于时间的反比 (23)模块四、比例综合题 (23)行程专题强化(1) (24)行程专题强化(2) (26)行程专题强化(3) (27)目录行程专题强化(4) (28)行程专题强化(5) (29)行程专题强化(6) (30)行程专题强化(7) (31)行程专题强化(8) (32)行程专题强化(9) (33)行程专题强化答案(1) (34)行程专题强化答案(2) (36)行程专题强化答案(3) (38)行程专题强化答案(4) (40)行程专题强化答案(5) (42)行程专题强化答案(6) (44)行程专题强化答案(7) (46)行程专题强化答案(8) (48)行程专题强化答案(9) (50)行程专题(1)——简单相遇追及问题行程问题的基本公式:关于路程,速度,时间三者的基本关系:路程=速度×时间可简记为:s = v×t时间=路程÷速度可简记为:t = s÷v速度=路程÷时间可简记为:v = s÷t相同时间内,路程比=速度比平均速度的基本关系式为:平均速度=全部路程÷全部时间全部时间=全部路程÷平均速度全部路程=平均速度×全部时间相遇:甲乙从AB两地同时出发,两人在途中相遇,实际上是甲和乙一起行了A,B之间这段路程,如果两人同时出发,那么:相遇总路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间一般地,相遇问题的关系式为:路程和=速度和×相遇时间追及:如果设甲走得快,乙走得慢,相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例题1】(23中2012)一列慢车和一列快车分别从A、B两站相对开出,快车和慢车速度的比是5:4,慢车先从A站开出27千米,快车才从B站开出。

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小学奥数行程问题50题例题详解

小学奥数行程问题50题例题详解

这篇关于⼩学奥数⾏程问题50题例题详解,是特地为⼤家整理的,希望对⼤家有所帮助!1、甲、⼄⼆⼈以均匀的速度分别从A、B两地同时出发,相向⽽⾏,他们第⼀次相遇地点离A地4千⽶,相遇后⼆⼈继续前进,⾛到对⽅出发点后⽴即返回,在距B地3千⽶处第⼆次相遇,求两次相遇地点之间的距离. 解:第⼆次相遇两⼈总共⾛了3个全程,所以甲⼀个全程⾥⾛了4千⽶,三个全程⾥应该⾛4*3=12千⽶, 通过画图,我们发现甲⾛了⼀个全程多了回来那⼀段,就是距B地的3千⽶,所以全程是12-3=9千⽶, 所以两次相遇点相距9-(3+4)=2千⽶。

2、甲、⼄、丙三⼈⾏路,甲每分钟⾛60⽶,⼄每分钟⾛67.5⽶,丙每分钟⾛75⽶,甲⼄从东镇去西镇,丙从西镇去东镇,三⼈同时出发,丙与⼄相遇后,⼜经过2分钟与甲相遇,求东西两镇间的路程有多少⽶? 解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270⽶,这距离是⼄丙相遇时间⾥甲⼄的路程差 所以⼄丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860⽶。

3、A,B两地相距540千⽶。

甲、⼄两车往返⾏驶于A,B两地之间,都是到达⼀地之后⽴即返回,⼄车较甲车快。

设两辆车同时从A地出发后第⼀次和第⼆次相遇都在途中P地。

那么两车第三次相遇为⽌,⼄车共⾛了多少千⽶? 解:根据总结:第⼀次相遇,甲⼄总共⾛了2个全程,第⼆次相遇,甲⼄总共⾛了4个全程,⼄⽐甲快,相遇⼜在P点,所以可以根据总结和画图推出:从第⼀次相遇到第⼆次相遇,⼄从第⼀个P点到第⼆个P点,路程正好是第⼀次的路程。

所以假设⼀个全程为3份,第⼀次相遇甲⾛了2份⼄⾛了4份。

第⼆次相遇,⼄正好⾛了1份到B地,⼜返回⾛了1份。

这样根据总结:2个全程⾥⼄⾛了(540÷3)×4=180×4=720千⽶,⼄总共⾛了720×3=2160千⽶。

(完整版)小学奥数行程问题经典整理

(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

奥数行程问题归纳总结及部分例题及答案

奥数行程问题归纳总结及部分例题及答案

奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

奥数行程问题大全

奥数行程问题大全

奥数行程问题一、多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!二、奥数行程:追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

行程问题7大经典题型总结

行程问题7大经典题型总结

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)(2)火车过人、过桥和错车问题(3)多个对象间的行程问题(4)环形问题与时钟问题(5)流水、行船问题(6)变速问题一些习惯性的解题方法:(1)利用设数法、设份数处理(2)利用速度变化情况进行分段处理(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

数学行程问题解题技巧

数学行程问题解题技巧

数学行程问题解题技巧数学行程问题是中小学数学中常见的一类问题,主要涉及物体在直线或曲线上运动的相关计算。

解决这类问题需要掌握一定的解题技巧。

下面,我将为您详细介绍数学行程问题的解题技巧。

一、理解题意,明确问题解决数学行程问题的第一步是仔细阅读题目,理解题意,明确需要求解的问题。

注意抓住题目中的关键词,如:速度、时间、路程、起点、终点等。

二、建立数学模型根据题目描述,建立相应的数学模型。

对于直线运动,通常使用公式:路程= 速度× 时间;对于曲线运动,需要根据具体情况进行求解。

三、解题技巧1.匀速直线运动在匀速直线运动中,速度保持不变。

解题时,只需使用路程= 速度× 时间这个公式即可。

例题:小明骑自行车以每小时15公里的速度行驶,问3小时后他行驶了多少公里?解答:路程= 速度× 时间= 15公里/小时× 3小时= 45公里2.非匀速直线运动在非匀速直线运动中,速度随时间变化。

此时,需要求出平均速度,然后使用路程= 平均速度× 时间求解。

例题:一辆汽车从静止开始加速,加速度为2米/秒,求5秒后汽车行驶的距离。

解答:首先求出5秒末的速度:v = at = 2米/秒× 5秒= 10米/秒然后求出平均速度:v_avg = (初速度+ 末速度) / 2 = (0 + 10) / 2 = 5米/秒最后求出路程:s = v_avg × t = 5米/秒× 5秒= 25米3.曲线运动曲线运动的问题较为复杂,需要根据具体情况进行分析。

通常,可以采用微元法或图像法求解。

四、检查答案,确保正确完成解题过程后,不要急于提交答案,要检查计算过程和结果是否正确,确保无误。

总结:数学行程问题虽然种类繁多,但只要掌握了解题技巧,就能迎刃而解。

在解题过程中,要注意理解题意、建立数学模型、选择合适的解题方法,并检查答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档