电磁兼容基本知识整理

电磁兼容基本知识整理
电磁兼容基本知识整理

电磁兼容基础知识

1.电磁兼容性基本概念

电磁兼容性:(EMC,即Electromagnetic Compatibility,)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。EMC其实就是包含了干扰性、抗干扰性与电磁环境三部分内容。(1)EMI(电磁干扰)

即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。相对应的测试项目有:

·电源线传导骚扰(CE)

·信号、控制线传导骚扰(CE)

·辐射骚扰(RE)

·谐波电流测量(Harmonic)

·电压波动和闪烁测量(Fluctuation and Flicker)

(2)EMS(电磁抗扰度)

即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规范范围内的电磁能量干扰。相对应的测试项目有:

·静电放电抗扰度(ESD)

·电快速瞬变脉冲群抗扰度(EFT/B)

·浪涌(SURGE)

·辐射抗扰度(RS)

·传导抗扰度(CS)

·电压跌落与中断(DIP)

(3)电磁环境

即系统或设备的工作环境。

2.传导、辐射与瞬态

(1)传导干扰

由一个设备中产生的电压/电流通过电源线、信号线传导并影响其他设备时,

这个电压/电流的变化被称为“传导干扰”。通过给发生源及被干扰设备的电源线等安装滤波器,阻止传导干扰的传输。另外,当信号线上出现噪声时,将信号线改为光纤,也可隔断传输途径。

(2)辐射干扰

通过空间传播,并对其他设备电路产生无用电压/电流,造成危害的干扰称为“辐射干扰”。辐射现象的产生必然存在着天线与源。由于传播途径是空间,因此屏蔽也是解决辐射干扰的有效方法。

注:当设备和导线的长度比波长短时,主要问题是传导干扰;当它们的尺寸比波长长时,主要问题是辐射干扰。

(3)瞬态干扰

环境中存在的一些短暂的高能脉冲干扰,这些干扰对电子设备的危害很大,一般称这种干扰为“瞬态干扰”。瞬态干扰可以通过电缆进入设备,也可以以宽带辐射干扰的形式对设备造成影响。产生瞬态干扰的原因主要有:雷电、静电放电、电力线上的负载通/断(特别是感性负载)和核电磁脉冲。可见,瞬态干扰是指时间很短,但幅度较大的电磁干扰。常见的瞬态干扰有三种:电快速脉冲(EFT)、浪涌(SURGE)和静电放电(ESD)。

(完整word版)电磁兼容知识点总结,推荐文档

填空题 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶4.指形簧片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI 滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB 的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。 10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。 11、谐波电流的抑制方法 1、电流侧设置LC 滤波器 2、采取有源功率因数校正 3、采用PWM 整流器 4、多绕组变压器的多脉整流

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

电磁兼容基本知识问题及答案(原)

电磁兼容课程作业(问答58题) 1.为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2.对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。 3.在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10V是多少dBV? 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10V是20dBV。 4.为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际干扰情况。 5.在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。 6.一台设备,原来的电磁辐射发射强度是300V/m,加上屏蔽箱后,辐射发射降为3V/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7.设计屏蔽机箱时,根据哪些因素选择屏蔽材料?

答:从电磁屏蔽的角度考虑,主要要考虑所屏蔽的电场波的种类。对于电场波、平面波或频率较高的磁场波,一般金属都可以满足要求,对于低频磁场波,要使用导磁率较高的材料。 8.机箱的屏蔽效能除了受屏蔽材料的影响以外,还受什么因素的影响? 答:受两个因素的影响,一是机箱上的导电不连续点,例如孔洞、缝隙等;另一个是穿过屏蔽箱的导线,如信号电缆、电源线等。 9.屏蔽磁场辐射源时要注意什么问题? 答:由于磁场波的波阻抗很低,因此反射损耗很小,而主要靠吸收损耗达到屏蔽的目的。因此要选择导磁率较高的屏蔽材料。另外,在做结构设计时,要使屏蔽层尽量远离辐射源(以增加反射损耗),尽量避免孔洞、缝隙等靠近辐射源。 10.在设计屏蔽结构时,有一个原则是:尽量使机箱内的电缆远离缝隙和孔洞,为什么?答:由于电缆近旁总是存在磁场,而磁场很容易从孔洞泄漏(与磁场的频率无关)。 因此,当电缆距离缝隙和孔洞很近时,就会发生磁场泄漏,降低总体屏蔽效能。 11.测量人体的生物磁信息是一种新的医疗诊断方法,这种生物磁的测量必须在磁场屏蔽室中进行,这个屏蔽室必须能屏蔽从静磁场到1GHz的交变电磁场,请提出这个屏蔽室的设计方案。 1答:首先考虑屏蔽材料的选择问题,由于要屏蔽频率很低的磁场,因此要使用高导磁率的材料,比如坡莫合金。由于坡莫合金经过加工后,导磁率会降低,必须进行热处理。因此,屏蔽室要作成拼装式的,由板材拼装而成。事先将各块板材按照设计加工好,然后进行热处理,运输到现场,十分小心的进行安装。每块板材的结合处要重叠起来,以便形成连续的磁通路。这样构成的屏蔽室能够对低频磁场有较好的屏蔽效能,但缝隙会产生高频泄漏。为了弥补这个不足,在坡莫合金屏蔽室的外层用铝板焊接成第二层屏蔽,对高频电磁场起到屏蔽作用。

电磁兼容实验室简介

电磁兼容实验室简介 本实验室包括电磁场、电磁兼容理论、现代电磁检测基础实验室。 电磁场课程是“电气工程及其自动化专业”“电子信息专业”“通信工程专业”“电子科学技术专业”“生物医学工程专业”的专业基础课,内容含电磁场和电磁波两部分。现代电气装备的发展,一方面与计算机控制技术、电子器件变流技术紧密结合,已经发展为电子电机、电子电器等一体化、智能化电气装备,但同时高速开断的器件形成了严重的电磁干扰;另一方面,电机、电器的设计趋向空间紧凑化、能量高密度化,使部件之间电磁影响严重,无论装置内部以及对外部电力系统及其他设备电磁影响加剧。90年代以来国际上形成了电气装备电磁兼容性研究热点,在国内外电气领域开设电磁兼容性课程。 随着学校办学规模的不断扩大,国家产业政策的调整,专业课程内容、结构调整的需求,为了满足《现代检测技术基础》、《检测与转换》、《电机测试技术基础》、《电器测试技术基础》等课程对实验条件的要求,新建了现代电磁检测基础实验室。其宗旨是:面向本校全体本科生,以满足上述课程的实验要求;兼顾硕士研究生进行课题研究的需求。本实验室主要针对电磁、位移、速度、力及力矩等物理量,特别是快速变化量、微弱信号以及高精度检测而建立的。 本实验室设置以下实验: ●电场模拟 ●无损耗传输线的研究 ●时变电磁场演示实验 ●电磁波的基本性质和简单的测量方法 ●电器放电噪声测试 ●变流装置及开关器件谐波干扰测试 ●屏蔽与接地效应检测 ●辐射EMC测试

●传导性干扰测定 ●力及力矩测量、变速度检测 ●电气设备输入及输出测量 ●多通道磁测量 ●基本电量准确测量 ●弱信号检测 ●震动频谱分析 面向的课程为:电磁场理论、电磁兼容技术基础、现代检测技术基础、工程电磁场基础、电量与非电量测量等。

如何提高电磁兼容性

如何提高电磁兼容性 电磁兼容性设计是老生常谈的话题,但在电磁环境日益复杂的今天,电磁兼容设计依然很重要,不是么?这里分享几点“过来人”总结的电磁兼容设计策略,或许这已经是您电路设计践行的准则,那就让我们一起多多分享这些设计经验,努力提高电磁兼容性,构建“和谐”电磁环境吧! 1、选择合理的导线宽度 由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在 1.5mm 左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。 2、采用正确的布线策略 采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。 3、为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点: (1)尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。 (2)时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。 (3)总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。 (4)数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。

电磁兼容基础知识

电磁兼容基础知识 近年来铁路机车所用技术迅猛发展,对铁道技术的电磁兼容性要求日益提高。采用了微处理器的牵引、制动及列车的控制装置以及分布在全列车上的数据总线系统,都更重视设备的抗干扰性能。随着机车电传动式由交直向交直交的变迁,机车车辆的牵引和辅助驱动采用大功率、高电压和高电流上升率以及极高开关频率的现代变流技术,从而提高了功率部分的干扰电势。此外,机车车辆中设备的安装面积很有限,这一面迫使控制装置和功率部分挨得很近,另一面也使功率部分和通信与信号装置等靠的很近,由此导致了铁路技术对电磁兼容性有着特殊的要求。 目前我司产品涉及到的电磁兼容相关铁标如下: GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T 17626.6-2008 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度试验基于此,特对电磁兼容相关资料进行整合,以期给从事技术及相关工作的同事带来一些帮助,抛砖引玉。 一、名词解释 电磁骚扰:任可能引起设备、装置或系统性能降低或者有生命或者无生命物质产生损害作用的电磁现象。 电磁兼容(EMC):一个设备或系统在其电磁环境中能正常工作,且不会对其工作环境中的任事物产生不可承受的的电磁骚扰的能力。 电磁干扰(EMI) :电磁骚扰引起的设备、传输通道或系统性能的下降。 骚扰抗扰性度:装置、设备或系统面临电磁骚扰不降低运行性能的能力。 瞬态:在两相邻稳定状态之间变化的物理量或物理现象,其变化时间小于所关注的时间尺度。 脉冲:在短时间突变,随后又迅速返回其初始值的物理量。 冲激脉冲:针对某给定用途,近似于一单位脉冲或狄拉克函数的脉冲。 尖峰脉冲:持续时间较短的单向脉冲。 骚扰限值(允值):对应于规定测量法的最大电磁骚扰允电平。 干扰限值(允值):电磁骚扰使装置、设备或系统最大允的性能降低。 差模电压:一组规定的带电导体中任意两根之间的电压。 共模电压:每个导体与规定参考点(通常是地或机壳)之间的相电压的平均值。

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

EMC测试基础知识

EMC的基本概念 电磁兼容EMC(Electromagnetic compatibility), 对于设备或系统的性能指标来说,直译为“电磁兼容性” 但作为一门学科来说,应该译为“电磁兼容”。 国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。” 该标准等同采用IEC60050(161)。 电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。 EMC的测试项目 EMC的测试项目 EMC: Electromagnetic Compatibility 电磁兼容 EMI: Electromagnetic Emission 电磁发射 EMS: Electromagnetic Susceptibility 电磁敏感度 CE: Conducted Emission 传导发射 RE: Radiated Emission 辐射发射 CS: Conducted Susceptibility 传导敏感度 RS: Radiated Susceptibility 辐射敏感度

CE:Conducted emission 任何一个非便携式设备都和其他设备有电缆互连关系,无论是通过电源电缆还是信号电缆,只要有这种互连关系的存在,设备就有一个途径将自身的共模电流传导给与其互连的设备,这种现象就叫传导干扰,又成为传导发射。 CE:测试设备通过自己的电源端口向交流电网或直流配电网络传送的干扰,测试频段为 150kHz~30MHz,(原来直流的测试频段起始频率为20MHz,新版的欧洲386标准将其改为150kHz,此外FCC标准中测试频段也已经和CISPR 22一致了)。 n通信端CE、测试频段同上,此处描述的通信端指得是针对接驳到公网的端口,如网口、ISDN 口等才有CE测试要求,而对于接终端的信号端口如音视频端口则无CE要求。 n LISN:Line impedance stabilization network线路阻抗稳定网络,用来 n进行电源端CE测试时的阻抗稳定,并且该网络上面有一取样端子, n EUT沿电源线向外的干扰就从此端子取出,送至接收机进行检波。 n RE主要是考察设备在正常工作时自身对外界的辐射干扰强度,测试频段根据不同的标准要求不同,在CISPR 14中,测试频段为30~300MHz,值得注意的是设备进行RE测试时标准要求尽可能满配置、满负荷的运行。RE问题是EMC中的难点。主要因为RE设计产品EMC设计的各个环节:屏蔽、滤波、接地。 Harmonics:交流电源谐波 n设备的输入电压为正弦波(50Hz或者60Hz),当该电压的输入负载为非线性电路时,将会使得输入电流发生畸变,即输入电流不为正弦波,根据傅利叶变换,非正弦波信号在频域将会存在谐波,这些谐波电流将会降低设备电源的使用效率,并且会倒灌至电网,对电网产生污染。 n测试标准:IEC 61000-3-2。 n测试上限为基频的40次谐波频率。 Flickers:交流电源闪烁 n考察设备电源模块引起输入电源的频率变化能力,该中频率变化从设备端口反灌入电网,会引起电网频率的波动,导致对人体的伤害。 n测试标准:IEC 61000-3-3。 ESD:Electrostatic discharge n ESD:静电放电,考察设备在接收外界静电源(如带电人体、带电设备等)所产生的直接放电或静电场干扰时的抵抗能力。 n测试标准:IEC 61000-4-2。 n静电波形及参数

电磁兼容基本知识术语定义

电磁兼容基本知识 一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V,50Hz;美国:115V, 60Hz) 2.额定电流 在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式 得出: 3.试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4.泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:I LC=2×π× F×C×V 其中,F为工作频率, C为接地电容的容量, V为线-地电压 5.插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Ω系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB); EO-负载直接接到信号源上的电压; E1-插入滤波器后负载上的电压 6.气候等级 指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度 中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。

电磁兼容性测试报告

泉海科技电磁兼容性(EMC)测试报告(电源电压:24V)机 型QH7101H2图 号 DZ93189781020状 态正常生产 失效模式等级的定义(依据ISO 7637-3附页A): A等级:在干扰照射期间和照射后,器件或系统所有功能符合设计要求。 B等级:在干扰照射期间,器件或系统所有功能符合设计要求,但部分指标超差,在照射移开后,超差的指标能自动恢复正常,记忆功能应保持A级。 C等级:在照射期间,器件或系统有一个功能不符合设计要求,但在照射移开后,能自动恢复正常操作。 D等级:在照射期间,器件或系统有一个功能不符合设计要求,在照射移开后,不能自动恢复正常操作,需通过简单的操作,器件或系统才能复位。 E等级:在照射期间和照射后,器件或系统有多个功能不能符合设计要求,需要修理或替换器件或系统才能恢复正常。 测试项目测试条件等级要求 测试结果备注 脉冲1Ua: 27 V Us: -600 V t1: 5 s t2: 200 ms t3: ≤100 μs td: 2ms tr: ≤(3+0/1.5)μs Ri: 50 Ω 脉冲数量: 5000 。 B级 符合要求B级 本报告由泉海公司实验室提供 脉冲2a Ua:27 V Us: +50 V t1: 5 s t2: 200 ms td: 0.05ms tr: ≤(3+0/1.5)μs Ri: 2 Ω 脉冲数量:5000个 B级 符合要求B级 脉冲2b Ua:27 V Us: +20 V td:0.2~2s tr: 1ms ±0.5ms Ri: 0.05Ω t12: 1ms ±0.5ms t6: 1ms ±0.5ms 脉冲数量:10个 B级符合要求B级 脉冲3a Ua:27 V Us: -200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h。 A级 符合要求A级 脉冲3b Ua: 27 V Us:+200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h A级 符合要求A级 脉冲4Ub: 27 V Us: -16V Ua: -5~12V V t7: 100 ms t8: ≤50 ms t9: 20s t10:10ms t11: 100 ms Ri: 0.02 Ω 脉冲数量:9000个(其中t8=100ms, 3000个t8=1s,3000个,t8=5s,3000个) B级符合要求B级 脉冲5a Ua: 27 V Us: +174 V td: 350 ms tr: 10 ms Ri: 2 Ω 周期:1min 脉冲数量:10个B级符合要求B级 测试员:何秀英 测试日期:2013.1.12 报告编号:qh-js-1201003

电磁兼容基本知识整理

电磁兼容基础知识 1.电磁兼容性基本概念 电磁兼容性:(EMC,即Electromagnetic Compatibility,)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。EMC其实就是包含了干扰性、抗干扰性与电磁环境三部分内容。(1)EMI(电磁干扰) 即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。相对应的测试项目有: ·电源线传导骚扰(CE) ·信号、控制线传导骚扰(CE) ·辐射骚扰(RE) ·谐波电流测量(Harmonic) ·电压波动和闪烁测量(Fluctuation and Flicker) (2)EMS(电磁抗扰度) 即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规范范围内的电磁能量干扰。相对应的测试项目有: ·静电放电抗扰度(ESD) ·电快速瞬变脉冲群抗扰度(EFT/B) ·浪涌(SURGE) ·辐射抗扰度(RS) ·传导抗扰度(CS) ·电压跌落与中断(DIP) (3)电磁环境 即系统或设备的工作环境。 2.传导、辐射与瞬态 (1)传导干扰 由一个设备中产生的电压/电流通过电源线、信号线传导并影响其他设备时,

这个电压/电流的变化被称为“传导干扰”。通过给发生源及被干扰设备的电源线等安装滤波器,阻止传导干扰的传输。另外,当信号线上出现噪声时,将信号线改为光纤,也可隔断传输途径。 (2)辐射干扰 通过空间传播,并对其他设备电路产生无用电压/电流,造成危害的干扰称为“辐射干扰”。辐射现象的产生必然存在着天线与源。由于传播途径是空间,因此屏蔽也是解决辐射干扰的有效方法。 注:当设备和导线的长度比波长短时,主要问题是传导干扰;当它们的尺寸比波长长时,主要问题是辐射干扰。 (3)瞬态干扰 环境中存在的一些短暂的高能脉冲干扰,这些干扰对电子设备的危害很大,一般称这种干扰为“瞬态干扰”。瞬态干扰可以通过电缆进入设备,也可以以宽带辐射干扰的形式对设备造成影响。产生瞬态干扰的原因主要有:雷电、静电放电、电力线上的负载通/断(特别是感性负载)和核电磁脉冲。可见,瞬态干扰是指时间很短,但幅度较大的电磁干扰。常见的瞬态干扰有三种:电快速脉冲(EFT)、浪涌(SURGE)和静电放电(ESD)。

电磁兼容基本知识介绍电磁耦合机理

1、传导耦合 导线经过有干扰的环境,即拾取干扰信号并经导线传导到电路而造成对电路的干扰,称为传导耦合,或者叫直接耦合。 在音频和低频的时候由于电源线、接地导体、电缆的屏蔽层呈现低阻抗,故电流注入这些导体时容易传播,当噪声传导到其他敏感电路的时候,就能产生干扰作用。 在高频的时候:导体的电感和电容将不容忽视,感抗随着频率的增加而增加,容抗随着频率的增加而减小。jwL,1/jwC 解决方法:防止导线的感应噪声,即采用适当的屏蔽和将导线分离,或者在骚扰进入明暗电路之前,用滤波的方法将其从导线中除去; 2、共阻抗耦合 当两个电路的电流经过一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路。 3、感应耦合 a)电感应容性耦合 干扰电路的端口电压会导致干扰回路中的电荷分布,这些电荷产生电场的一部分会被敏感电路拾取,当电场随时间变化,敏感回路中的时变感应电荷就会在回路中形成感应电流,这种叫做电感应容性耦合。 解决方法:减小敏感电路的电阻值,改变导线本身的方向性屏蔽或者分隔来实现。 b)磁感应耦合 干扰回路中的电流产生的磁通密度的一部分会被其他回路拾取,当磁通密度随时间变化时就会在敏感回路中出现感应电压,这种回路之间的耦合叫做磁感应耦合。 主要形式:线圈和变压器耦合、平行双线间的耦合等。铁心损耗常常使得变压器的作用类似于抑制高频干扰的低通滤波器。平行线间的耦合是磁感应耦合的主要形式 要想减少干扰,必须尽量减少两导线之间的互感。 4、辐射耦合 辐射源向自由空间传播电磁波,感应电路的两根导线就像天线一样,接受电磁波,形成干扰耦合。干扰源距离敏感电路比较近的时候,如果辐射源有低电压大电流,则磁场起主要作用;如果干扰源有高电压小电流,则电场起主要作用。 对于辐射形成的干扰,主要采用屏蔽技术来抑制干扰。

电磁兼容实验报告3-4讲解

电磁兼容实验报告 学院:信息科学与工程学院 班级: 姓名: 学号:

实验三电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

电子常识-GB-T17626-电磁兼容试验简介

标准-GB/T 17626 电磁兼容试验全标准 电磁兼容性测试(简称EMC,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电 磁干扰的能力。EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发 现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。 GB/T 17626 电磁兼容试验和测量技术系列标准包括以下部分:GB/T 17626.1-2006 电磁兼容试验和测量技术抗扰度试 验总论 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电 抗干扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁 场辐射抗干扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬 变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验

应的传导骚扰抗扰度 GB/T 17626.7-2008 电磁兼容试验和测量技术供电系统 及所连设备谐波、谐间波的测量和测量仪器导则 GB/T 17626.8-2006 电磁兼容试验和测量技术工频磁场 抗扰度试验 GB/T 17626.9-1998 电磁兼容试验和测量技术脉冲磁场 抗扰度试验 GB/T 17626.10-1998 电磁兼容试验和测量技术阻尼振荡 磁场抗扰度试验 GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验 GB/T 17626.12-1998 电磁兼容试验和测量技术振荡波抗 扰度试验 GB/T 17626.13-2006 电磁兼容试验和测量技术交流电源 端口谐波、谐间波及电网信号的的低频抗扰度试验 GB/T 17626.14-2005 电磁兼容试验和测量技术电压波动 抗扰度试验 GB/T 17626.17-2005 电磁兼容试验和测量技术直流电源 输入端口纹波抗扰度试验 GB/T 17626.27-2006 电磁兼容试验和测量技术三相电压 不平衡抗扰度试验

电磁兼容实验室简介

电磁兼容实验室简介 在我们的生活空间里各种干扰信号无处不在,它们时时刻刻都在产生干扰,影响着电子设备的正常运行。由于安防产品现场工作环境的复杂性,就更容易受到来自线路和来自空间各种形式的干扰。为了验证产品的抗扰度适应性,本实验室依据GB/T17626系列电磁兼容标准建立了电快速瞬变脉冲群、周波跌落、雷击浪涌、静电放电、射频辐射、射频传导等抗扰度试验项目,用以验证电子电气产品的抗干扰能力。 1.电快速瞬变脉冲群试验:本实验目的是验证电气和电子设备对来 自切换瞬态过程(切断感性负载、继电器触点弹跳等)的各种类型瞬态骚扰的抗扰度,是将一种由许多快速瞬变脉冲组成的脉冲群耦合到电气和电子设备的电源端口、信号和控制端口的实验。 实践中,这类脉冲成群出现、重复频率较高、脉冲上升时间短暂,它们使设备产生误动作的,死机等情况经常可见。本试验装置符合GB/T 17626.4-1998《电快速瞬变脉冲群抗扰度试验》 2.周波跌落试验:本试验是模拟由电网、变电设施的故障或负荷突 然出现大的变化所引起的供电电压短时跌落、中断及电压变化。 试验目的是评估电气和电子设备在经受电压暂降、短时中断和电压变化时的抗干扰能力。本试验装置符合GB/T 17626.11-1999《电压暂降、短时中断和电压变化抗扰度试验》 3.雷击浪涌试验:实验目的是评价产品在规定的工作状态下工作时, 对由开关或雷电作用产生的有一定危害电平的浪涌(冲击)电压

的抵抗能力。本试验符合GB/T17626.5-1999《浪涌(冲击)抗扰度试验》。 4.静电放电试验:试验目的是评估电气和电子设备遭受静电放电时 的性能以及人体到靠近关键设备的物体之间可能发生的静电放电。本试验符合GB/T17626.2-2006《静电放电抗扰度试验》。5.射频辐射试验:试验目的是为评价电气和电子设备的抗射频辐射 电子磁场干扰的能力建立一个共同的依据。本测试系统主要由标准信号源、功率放大器、场强监视器、计算机及操控软件和GTEM 室体组成,系统在80MHZ~1GHZ频率范围内产生的试验场强可达30V/m,可满足GB/T17626.3-2006《射频电磁场辐射抗扰度试验》中规定的全部试验等级。 6.射频传导试验:试验目的是评价电气和电子设备对由射频场感应 所引起的传导骚扰的抗扰度。测试系统主要由标准信号源、功率放大器、定向耦合器、功率计、单相电源CDN、电磁钳组成,系统在150KHZ~230MHZ频段产生10Vemf的试验电平,通过CDN 或电磁钳耦合至被试样品,以确定产品的抗干扰能力。本试验符合GB/T17626.6-1998《射频电磁场辐射抗扰度试验》。

如何顺利通过电磁兼容试验

如何顺利通过电磁兼容试验 接地设计:一旦发生了静电放电,应该让其尽快旁路人地,不要直接侵入内部电路。例如内部电路如用金属机箱屏蔽,则机箱应良好接地,接地电阻要尽量小,这样放电电流可以由机箱外层流入大地,同时也可以将对周围物体放电时形成的骚扰导入大地,不会影响内部电路。对金属机箱,通常机箱内的电路会通过I/O电缆、电源线等接地,当机箱上发生静电放电时,机箱的电位上升,而内部电路由于接地,电位保持在地电位附近。这时,机箱与电路之间存在着很大的电位差。这会在机箱与电路之间引起二次电弧。使电路造成损坏。通过增加电路与外壳之间的距离可以避免二次电弧的发生。当电路与外壳之间的距离不能增加时,可以在外壳与电路之间加一层接地的金属挡板,挡住电弧。如果电路与机箱连在一起,则只应通过一点连接。防止电流流过电路。线路板与机箱连接的点应在电缆入口处。对塑料机箱,则不存在机箱接地的问题。 ?电缆设计: ?一个正确设计的电缆保护系统可能是提高系统ESD非易感性的关键。作为大多数系统中的最大的“天线”— I/O电缆特别易于被ESD干扰感应出大的电压或电流。从另一方面,电缆也对ESD干扰提供低阻抗通道,如果电缆屏蔽同机壳地连接的话。通过该通道ESD干扰能量可从系统接地回路中释放,因而可间接地避免传导耦合。为减少ESD干扰辐射耦合到电缆,线长和回路面积要减小,应抑制共模耦合并且使用金属屏蔽。对于输入/输出电缆可采用使用屏蔽电缆、共模扼流圈、过压箝位电路及电缆旁路滤波器措施。在电缆的两端,电缆屏蔽必须与壳体屏蔽连接。在互联电缆上安装一个共模扼流圈可以使静电放电造成的共模电压降在扼流圈上,而不是另一端的电路上。两个

《电磁兼容实验》指导书

《电磁兼容实验》指导书 华北电力大学电磁场与电磁兼容实验室 2006年12月

目录 实验一静电放电抗扰度试验 (3) 实验二射频电磁场辐射抗扰度实验 (5) 实验三电快速瞬变脉冲群抗扰度试验 (9) 实验四浪涌抗扰度试验 (11) 实验五振荡波抗扰度试验 (12) 实验六屏蔽电缆耦合试验任务书 (14) 实验七电磁场屏蔽试验任务书 (15)

实验一静电放电抗扰度试验 概述 引用标准:GB/T17626.2(IEC61000-4-2) 标准的依据:人体放电 试验等级:空气放电、接触放电四级。 一、实验目的 1.掌握静放电试验的步骤和要求。 2.掌握静电放电试验的试验室配置。 3.了解静电放电枪功能及使用方法。 二、实验设备: 静电放电枪、接地系统、试验台、水平和垂直耦合板、绝缘垫、耦合板放电线 三、实验容: 1.介绍试验的标准配置要求。 接地系统、设备要求(位置、接地、线缆)、耦合板?台式设备: ?落地式设备: 2.介绍静电放电枪的功能及使用。 ?结构及附件:接地线、放电头、主机 ?功能及使用联接 3.试验的实施 ?试验应根据试验计划进行。试验计划容包括:

——受试设备的典型工作条件; ——受试设备是按台式还是按落地式设备进行试验; ——确定施加放电点; ——在每个点上,是采用接触放电还是空气放电; ——所使用的试验等级 ——符合性试验中在每个点施加放电的次数(至少施加十次单次放电(以最敏感的极性),连续单次放电的时间间隔至少1秒。 ——是否还进行安装后的试验 ?直接放电试验:空气放电、接触放电 I.选择放电试验点、面 II.选择放电方式及要求: 选择空气放电或接触放电。 空气放电和接触放电的放电要求。 ?间接放电试验:水平耦合、垂直耦合。放电位置及要求。 四、报告要求: 根据以上试验及试验标准归纳、总结出试验程序及要求。

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

目前可解决电磁兼容问题的三种主要方法介绍

目前可解决电磁兼容问题的三种主要方法介绍 伴随着信息技术的应用日益广泛,电磁兼容问题也成为装备和系统面对的焦点话题,经专家验证,EMC问题越早发现,就能够降低成本,会出现更多可行性方案来解决EMC问题。 目前,解决电磁兼容问题的方法主要有三种: (1)问题解决法。问题解决法在系统研制过程中不进行专门的电磁兼容设计,在系统试验期间出现了电磁干扰问题再设法解决。由于系统已经装配好,解决电磁干扰问题可能要进行大量的拆装或者重新设计,该方法具有较大的风险。 (2)规范法。规范法在系统设计过程中要求各设备和子系统符合相关电磁兼容标准,由于设备和子系统采用通用的标准限值要求,缺乏系统的关联模型,规范法容易导致系统电磁兼容性过设计或欠设计。 (3) 预测分析法。预测分析法根据各设备和子系统的关联特征建立系统电磁兼容性预测分析模型,从系统设计阶段开始进行电磁兼容性设计和评估,并在系统设计、制造和试验过程中不断对其电磁兼容性设计进行优化。该方法在系统研制早期就进行科学的电磁兼容性设计和控制,可以最大限度的降低研制成本。 1970 年代,美国麦道公司推出系统内电磁兼容性预测分析软件IEMCAP(Intrasystem ElectroMagnetic CompaTIbility Analysis Program),这是针对航空、航天系统的第一款电磁兼容性设计与评估软件,至今对华禁运。 1990年代,白俄罗斯也开发并推出了相应的仿真软件EMC-Analyzer,该软件在IEMCAP 的基础上创新性地发展了针对复杂电磁环境效应的离散非线性分析(DNA,Discrete Nonlinear Analysis)技术。

相关文档
最新文档