2021届高三年级国庆假期作业理科数学训练卷(二)含答案
2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。
2021届四川省绵阳市普通高中高三上学期二诊考试数学(理)试卷及答案

2021届四川省绵阳市普通高中高三上学期二诊考试数学(理)试卷★祝考试顺利★(含答案)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x ∈N|-1≤x ≤1},B ={x|log 2x<1},则A ∩B =A.[-1,1)B.(0,1)C.{-1,1}D.{1}2.已知直线l 1:ax +2y +1=0,直线l 2:2x +ay +1=0,若l 1⊥l 2,则a =A.0B.2C.±2D.43.已知平面向量a =(1,3),b =(2,λ),其中λ>0,若|a -b|=2,则a ·b =A.2B.23C.43D.84.二项式(2x -x)6的展开式中,常数项为 A.-60 B.-40 C.60 D.1205.已知函数f(x)=x 3+sinx +2,若f(m)=3,则f(-m)=A.2B.1C.0D.-16.已知曲线y =e x (e 为自然对数的底数)与x 轴、y 轴及直线x =a(a>0)围成的封闭图形的面积为e a -1。
现采用随机模拟的方法向右图中矩形OABC 内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA =1,则由此次模拟实验可以估计出e 的值约为A.2.718B.2.737C.2.759D.2.7857.已知命题p :若数列{a n }和{b n }都是等差数列,则{ra n +sb n }(r,s ∈R)也是等差数列;命题q :∀x ∈(2k π,2k π+2)(k ∈Z),都有sinx<x 。
则下列命题是真命题的是A.¬p ∧qB.p ∧qC.p ∨qD.¬p ∨q8.对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分。
纠正数据后重新计算,得到平均数为x ,方差为s 2,则 A.x =80,s 2<25 B.x =80,s 2=25 C.x =80,s 2>25 D.x <80,s 2>259.已知双曲线E :22221x y a b -=(a>0,b>0)的左、右焦点为F 1,F 2,P 为其渐近线上一点,若△PF 1F 2是顶角为23π的等腰三角形,则E 的离心率为10.若函数f(x)=x 3-(2a +3)x 2+2ax +3在x =2处取得极小值,则实数a 的取值范围是 A.(-0,-6) B.(-∞,6) C.(6,+∞) D.(-6,+∞)11.已知正实数x,y 满足ln x y >lg y x,则 A.lnx>ln(y +1) B.ln(x +1)<lgy C.3x <2y -1 D.2x -y >112.已知点O 为坐标原点,|OP|=,点B,点C 为圆x 2+y 2=12上的动点,且以BC 为直径的圆过点P,则△OBC 面积的最小值为二、填空题:本大题共4小题,每小题5分,共20分。
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.6 抛物线 Word版含答案

§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
2021年全国统一高考真题数学试卷(理科)(含答案及解析)

2021年普通高等学校招生全国统一考试理科数学乙卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设2(z+z̅)+3(z-z̅)=4+6i,则z=( ).A.1-2iB.1+2iC.1+iD.1-i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.∅B.SC.TD.Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧qB.¬p∧qC.p∧¬qD.¬(pVq)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x-π4)的图像,则f(x)=()A.sin(x 2−7π12)B. sin(x 2+π12) C. sin(2x −7π12) D. sin(2x +π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A. 74B. 2332 C. 932 D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
如图,点E,H,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”。
山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科) Word版含解析

山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x ﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出全部正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:由于集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算力量.2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面对量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:由于x∈R ,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算力量.3.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:简易规律.分析:依据正弦定理,利用充分条件和必要条件的定义进行推断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的推断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:依据指数函数和对数函数的单调性推断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数争辩函数的单调性.专题:计算题.分析:依据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数争辩函数的单调性及恒成立等基础学问,考查综合分析和解决问题的力量.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:依据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,依据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x ﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x ﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x ﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了同学分析和运算力量.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排解BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排解BC,当x<﹣1时,y<0,故排解D故选:A.点评:本题主要考查了图象的识别和画法,关键是把握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而依据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:由于f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.由于x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,留意把握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开头,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n >,即数列{a n}从24项开头变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查同学机敏运用等差数列的通项公式化简求值,把握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面对量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f (x)=x2+mx ﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开头,f n(x)的解析式重复消灭,每4次一循环,结合f1(A)+f2(A)+…+f2021(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开头,f n(x)的解析式重复消灭,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2021(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2021(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos (2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出全部正确命题的序号).考点:命题的真假推断与应用.专题:计算题;简易规律.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③依据图象的平移规律可得结论;④依据sinx+cosx=sin(x+)≤<,可以推断.解答:解:①函数y=cos(2x ﹣),x=时,y=﹣1,所以函数y=cos(2x ﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x ﹣)+],即y=sin(2x ﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假推断与应用,考查同学分析解决问题的力量,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系推断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B ,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)由于C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的学问点是集合的包含关系推断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易规律.分析:易得p:k>0,q :或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q 假,则,∴;②若p假q 真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类争辩的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面对量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算力量.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA ,依据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC 的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc ×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查同学的计算力量,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m ﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x )恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x )的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x )等价于…(12分)由,得的最大值为…(13分)∴实数m 的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分别参数法的运用,考查同学分析解决问题的力量,属于中档题.。
2021年高三下学期模拟(二)测试数学文试题(详解) 含答案

2021年高三下学期模拟(二)测试数学文试题(详解) 含答案一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合A .B .C .D . 2. 为虚数单位,则复数的虚部为A .B .C .D .3. 为了了解某学校xx 名高中男生的身体发育 情况,抽查了该校100名高中男生的体重情况. 根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在70~78kg 的人数为 A .240 B .160 C .80 D .604. 在平面直角坐标系中, 落在一个圆内的曲线可以是 A . B . C . D .5.A. B. C. D.6. 若对任意正数,均有,则实数的取值范围是 A. B. C. D.7.曲线在点处的切线方程是 A. B.C. D.8.已知命题:“对任意, 都有”;命题:“空间两条直线为异面直线的充要条件是它们不同在任何一个平面内”.则A. 命题“”为真命题B. 命题“”为假命题kg )第3题图C. 命题“”为真命题D. 命题“”为真命题9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是A .B .C .D .10. 线段是圆的一条直径,离心率为的双曲线以为焦点.若是圆与双曲线的一个公共点,则 A. B. C. D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题:第11、12、13题为必做题.11. 按照右图的工序流程,从零件到成品最少 要经过______道加工和检验程序,导致废 品的产生有_____种不同的情形.12. 已知递增的等比数列中, 则 .13. 无限循环小数可以化为有理数,如,请你归纳出 (表示成最简分数.(二)选做题:第14、15题为选做题,考生只能从中选做一题.14. (坐标系与参数方程选做题)在极坐标系中,直线(常数)与曲线相切,则 . 15.(几何证明选讲选做题)如图,是半圆的直径,弦和弦相交于点,且,则 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在中,角为锐角,记角所对的边分别为设向量 且与的夹角为 (1)求的值及角的大小; (2)若,求的面积.第11题图PDC 第15题图第9题图1 cm1 cm2 cm2 cm17.(本小题满分12分)设函数,其中是某范围内的随机数,分别在下列条件下,求事件A “且”发生的概率. (1) 若随机数;(2) 已知随机函数产生的随机数的范围为, 是算法语句和的执行结果.(注: 符号“”表示“乘号”)18.(本小题满分14分)如图,四棱柱的底面是平行四边形,分别在棱上,且. (1)求证:;(2)若平面,四边形是边长为的正方形,且,,求线段的长, 并证明:19.(本小题满分14分)已知二次函数的最小值为且关于的不等式的解集为 ,(1)求函数的解析式; (2)求函数的零点个数.A 1BCDC 1B 1D 1FE20.(本小题满分14分)如图,是抛物线上的两动点(异于原点),且的角平分线垂直于轴,直线与轴,轴分别相交于.(1) 求实数的值,使得;(2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.21.(本小题满分14分)定义数列: ,且对任意正整数,有 .(1)求数列的通项公式与前项和;(2)问是否存在正整数,使得?若存在,则求出所有的正整数对 ;若不存在,则加以证明.数学(文科)参考答案及评分标准说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.第20题图2. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题考查基本知识和基本运算。
2021年高等学校招生全国统一考试仿真卷理科数学试卷含答案 (2)

绝密★启用前普通高等学校招生全国统一考试仿真卷理科数学本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =()A .{}0B .{}1C .{}0,1D .{}1,0,1-2.设i 1i 1z +=-,()21f x x x =-+,则()f z =() A .B .i -C .1i -+D .1i --3.已知()()22log 111sin 13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则31322f f ⎛⎫⎛⎫+=⎪ ⎪ ⎪⎝⎭⎝⎭() A .52B .52-C .32-D .12-4.已知等差数列{}n a 的前项和为n S ,且96=πS ,则5tan a =()A .33B .3C .3-D .33-5.执行如图所示的程序框图,如果输入的100t =,则输出的n =()开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.已知函数()()sin ωϕ=+f x A x (0,0,)2ωϕπ>><A 在一个周期内的图象如图所示,则4π⎛⎫= ⎪⎝⎭f ()A .22-B .22C .2D .2-班级 姓名 准考证号 考场号 座位号此卷只装订不密封7.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为()A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.若P 是圆()()22:331C x y ++-=上任一点,则点P 到直线1y kx =-距离的最大值() A .4B .6C .32+1D .1+109.已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的的取值范围是() A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞-D .()()1,01,3-10.已知,x y ∈R ,在平面直角坐标系xOy 中,点,)x y (为平面区域2040⎧⎪⎨⎪⎩≤≤≥≥y x y x 内任一点,则坐标原点与点,)x y (连线倾斜角小于3π的概率为()A .116B .3 C .33D .3311.某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为,CQ 的长度为关于的函数()f x ,则()y f x =的图像大致为()A .B .C .D .12.设双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,122F F c =,过2F 作轴的垂线与双曲线在第一象限的交点为A ,已知3,2a Q c ⎛⎫⎪⎝⎭,22F Q F A >,点P 是双曲线C 右支上的动点,且11232+>PF PQ F F 恒成立,则双曲线的离心率的取值范围是()A .10⎫+∞⎪⎪⎝⎭B .71,6⎛⎫⎪⎝⎭C .7106⎛ ⎝⎭D .10⎛ ⎝⎭第Ⅱ卷本卷包括必考题和选考题两部分。