遗传算法解非线性方程组的Matlab程序

合集下载

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序遗传算法是一种模拟自然进化过程的算法,通过遗传代数操作来搜索最优解。

它是一种优化算法,可以用于解决复杂问题,例如函数优化、组合优化、机器学习等。

在Matlab 中,遗传算法可以通过使用内置函数进行实现,也可以编写自己的遗传算法函数。

以下是一个完整的遗传算法函数Matlab程序的示例:function [x_best, f_best] = GA(fit_func, nvars)% fit_func: 适应度函数句柄% nvars: 变量个数% 遗传算法参数设置pop_size = 100; % 种群大小prob_crossover = 0.8; % 交叉概率prob_mutation = 0.02; % 变异概率max_gen = 1000; % 最大迭代次数% 初始化种群pop = rand(pop_size, nvars);for i = 1:max_gen% 计算适应度for j = 1:pop_sizefitness(j) = feval(fit_func, pop(j,:));end% 找到最优个体[f_best, best_idx] = max(fitness);x_best = pop(best_idx,:);% 交叉操作for j = 1:2:pop_sizeif rand < prob_crossover% 随机选择父代idx_parent1 = randi(pop_size);idx_parent2 = randi(pop_size);parent1 = pop(idx_parent1,:);parent2 = pop(idx_parent2,:);% 交叉idx_crossover = randi(nvars-1);child1 = [parent1(1:idx_crossover) parent2(idx_crossover+1:end)];child2 = [parent2(1:idx_crossover) parent1(idx_crossover+1:end)];% 更新种群pop(j,:) = child1;pop(j+1,:) = child2;endend% 变异操作for j = 1:pop_sizeif rand < prob_mutation% 随机选择变异个体idx_mutation = randi(nvars);pop(j,idx_mutation) = rand;endendendend在上述程序中,遗传算法的参数通过设定变量的值进行设置,包括种群大小、交叉概率、变异概率和最大迭代次数等。

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。

遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。

本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。

一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。

这包括确定问题的目标函数和约束条件。

例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。

在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。

具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。

二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。

选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。

交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。

变异操作通过改变个体某些基因的值,引入新的基因信息。

替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。

三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。

常见的编码方式有二进制编码和实数编码等。

当问题的变量是二进制形式时,采用二进制编码。

当问题的变量是实数形式时,采用实数编码。

在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。

四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。

在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。

适应度值越大表示个体越优。

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

用MATLAB实现遗传算法程序

用MATLAB实现遗传算法程序

用MATLAB实现遗传算法程序一、本文概述遗传算法(Genetic Algorithms,GA)是一种模拟自然界生物进化过程的优化搜索算法,它通过模拟自然选择和遗传学机制,如选择、交叉、变异等,来寻找问题的最优解。

由于其全局搜索能力强、鲁棒性好以及易于实现并行化等优点,遗传算法在多个领域得到了广泛的应用,包括函数优化、机器学习、神经网络训练、组合优化等。

本文旨在介绍如何使用MATLAB实现遗传算法程序。

MATLAB作为一种强大的数学计算和编程工具,具有直观易用的图形界面和丰富的函数库,非常适合用于遗传算法的实现。

我们将从基本的遗传算法原理出发,逐步介绍如何在MATLAB中编写遗传算法程序,包括如何定义问题、编码、初始化种群、选择操作、交叉操作和变异操作等。

通过本文的学习,读者将能够掌握遗传算法的基本原理和MATLAB编程技巧,学会如何使用MATLAB实现遗传算法程序,并能够在实际问题中应用遗传算法求解最优解。

二、遗传算法基础遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机制的优化搜索算法。

它借鉴了生物进化中的遗传、交叉、变异等机制,通过模拟这些自然过程来寻找问题的最优解。

遗传算法的核心思想是将问题的解表示为“染色体”,即一组编码,然后通过模拟自然选择、交叉和变异等过程,逐步迭代搜索出最优解。

在遗传算法中,通常将问题的解表示为一个二进制字符串,每个字符串代表一个个体(Individual)。

每个个体都有一定的适应度(Fitness),适应度越高的个体在下一代中生存下来的概率越大。

通过选择(Selection)、交叉(Crossover)和变异(Mutation)等操作,生成新一代的个体,并重复这一过程,直到找到满足条件的最优解或达到预定的迭代次数。

选择操作是根据个体的适应度,选择出适应度较高的个体作为父母,参与下一代的生成。

常见的选择算法有轮盘赌选择(Roulette Wheel Selection)、锦标赛选择(Tournament Selection)等。

基于matlab的非线性方程组求解的方法

基于matlab的非线性方程组求解的方法

于非 线性方 程组
,
可 建 立 如 下 适 值 函 数:
(1)
有了 适 应 度, 就 可 以衡 量 种群 中 N 组 数
值的好 坏, 并从中 选择 n ( n <N) 组作 为迭 代初
值。很 显然, 对 于式( 1 ) 所描 述的 适 值函 数,
其适应度 f i t ne s s 的值越 小, 则该组数值离准
科技资讯 2008 NO. 14 SCI ENCE & TECHNOLOGY I NF ORMATI ON 基 于 ma t l a b 的 非 线 性 方 程 组 求 解 的 方 法
学术论坛
侯建志 1 战 丽娜 2 施毅 3 ( 1. 河 北省老区 建设促进 会 河 北石家 庄 0 5 0 0 0 0 ; 2 . 江麓机电 有限公 司技术中 心 湖南湘潭 4 1 1 1 0 0 )
商业 广告, 它 的推出 不仅为 了推销 产 品, 还 建 立 企 业 的 形象 。 但 是, 从 目 前 电视 上出现 的一些恶 俗广告来看 , 很多 企业已 经在品 牌的路上 迷失了方向 , 这些 企业如 果不是 没有做品牌 的打算的 话, 那就是 还 没 有 意 识 到 低俗 的 广 告 已 经 在 无 形 中 将 产 品的品 牌形象打入 了万丈深 渊, 等到发 现 的那一天已经 悔之晚矣。
并 联 机 构 在 工 作 空间 内 的 位 置 解 。 例 如 给
定一 组杆 长( 1 0 76 . 3 53 5 , 1 06 0. 8 74 6, 1 05 9.
8 01 4, 10 7 5. 46 29 , 1 0 69 . 3 92 0) , 取 种群大 小
为 20 万 , n 值 为 4 0 , 建 立 适 值 函 数

2020年遗传算法matlab程序实例精编版

2020年遗传算法matlab程序实例精编版

%-----------------------------------------------%---------------------------------------------------遗传算法程序(一):说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作!function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)% Finds a maximum of a function of several variables.% fmaxga solves problems of the form:% max F(X) subject to: LB <= X <= UB% BestPop - 最优的群体即为最优的染色体群% Trace - 最佳染色体所对应的目标函数值% FUN - 目标函数% LB - 自变量下限% UB - 自变量上限% eranum - 种群的代数,取100--1000(默认200)% popsize - 每一代种群的规模;此可取50--200(默认100)% pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编%码,option(2)设定求解精度(默认1e-4)%% ------------------------------------------------------------------------T1=clock;if nargin<3, error('FMAXGA requires at least three input arguments'); endif nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==7, pInversion=0.15;options=[0 1e-4];endif find((LB-UB)>0)error('数据输入错误,请重新输入(LB<UB):');ends=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000));disp(s);global m n NewPop children1 children2 VarNumbounds=[LB;UB]';bits=[];VarNum=size(bounds,1);precision=options(2);%由求解精度确定二进制编码长度bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间[Pop]=InitPopGray(popsize,bits);%初始化种群[m,n]=size(Pop);NewPop=zeros(m,n);children1=zeros(1,n);children2=zeros(1,n);pm0=pMutation;BestPop=zeros(eranum,n);%分配初始解空间BestPop,TraceTrace=zeros(eranum,length(bits)+1);i=1;while i<=eranumfor j=1:mvalue(j)=feval(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度end[MaxValue,Index]=max(value);BestPop(i,:)=Pop(Index,:);Trace(i,1)=MaxValue;Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits);[selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择[CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum));%采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率%round(unidrnd(eranum-i)/eranum)[MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位Pop=InversionPop;%更新pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4);%随着种群向前进化,逐步增大变异率至1/2交叉率p(i)=pMutation;i=i+1;endt=1:eranum;plot(t,Trace(:,1)');title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)');[MaxFval,I]=max(Trace(:,1));X=Trace(I,(2:length(bits)+1));hold on; plot(I,MaxFval,'*');text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf ('进化到%d 代,自变量为%s 时,得本次求解的最优值%f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:)));disp(str1);%figure(2);plot(t,p);%绘制变异值增大过程T2=clock;elapsed_time=T2-T1;if elapsed_time(6)<0elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)<0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;end %像这种程序当然不考虑运行上小时啦str2=sprintf('程序运行耗时%d 小时%d 分钟%.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%初始化种群%采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点function [initpop]=InitPopGray(popsize,bits)len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individual%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%解码function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end%选择操作%采用基于轮盘赌法的非线性排名选择%各个体成员按适应值从大到小分配选择概率:%P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)>P(1)>...>P(n), sum(P(i))=1function [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits)global m nselectpop=zeros(m,n);fit=zeros(m,1);for i=1:mfit(i)=feval(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据endselectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=cumsum(newfit);%计算各选择概率之和rNums=sort(rand(m,1));fitIn=1;newIn=1;while newIn<=mif rNums(newIn)<newfit(fitIn)selectpop(newIn,:)=pop(fitIn,:);newIn=newIn+1;elsefitIn=fitIn+1;endend%交叉操作function [NewPop]=CrossOver(OldPop,pCross,opts)%OldPop为父代种群,pcross为交叉概率global m n NewPopr=rand(1,m);y1=find(r<pCross);y2=find(r>=pCross);len=length(y1);if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endif length(y1)>=2for i=0:2:length(y1)-2if opts==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:));else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:));endendendNewPop(y2,:)=OldPop(y2,:);%采用均匀交叉function [children1,children2]=EqualCrossOver(parent1,parent2)global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因%采用多点交叉,交叉点数由变量数决定function [Children1,Children2]=MultiPointCross(Parent1,Parent2)global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end%变异操作function [NewPop]=Mutation(OldPop,pMutation,VarNum)global m n NewPopr=rand(1,m);position=find(r<=pMutation);len=length(position);if len>=1for i=1:lenk=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点for j=1:length(k)if OldPop(position(i),k(j))==1OldPop(position(i),k(j))=0;elseOldPop(position(i),k(j))=1;endendendendNewPop=OldPop;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%倒位操作function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r<=pInversion);len=length(PopIn);if len>=1for i=1:lend=sort(unidrnd(n,1,2));if d(1)~=1&d(2)~=nNewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1);NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1));NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n);endendend遗传算法程序(二):function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]')end% get group property F1 of data, according to F2 valueF4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%遗传算法程序(三):%IAGAfunction best=gaclearMAX_gen=200; %最大迭代步数best.max_f=0; %当前最大的适应度STOP_f=14.5; %停止循环的适应度RANGE=[0 255]; %初始取值范围[0 255]SPEEDUP_INTER=5; %进入加速迭代的间隔advance_k=0; %优化的次数popus=init; %初始化for gen=1:MAX_genfitness=fit(popus,RANGE); %求适应度f=fitness.f;picked=choose(popus,fitness); %选择popus=intercross(popus,picked); %杂交popus=aberrance(popus,picked); %变异if max(f)>best.max_fadvance_k=advance_k+1;x_better(advance_k)=fitness.x;best.max_f=max(f);best.popus=popus;best.x=fitness.x;endif mod(advance_k,SPEEDUP_INTER)==0RANGE=minmax(x_better);RANGEadvance=0;endendreturn;function popus=init%初始化M=50;%种群个体数目N=30;%编码长度popus=round(rand(M,N));return;function fitness=fit(popus,RANGE)%求适应度[M,N]=size(popus);fitness=zeros(M,1);%适应度f=zeros(M,1);%函数值A=RANGE(1);B=RANGE(2);%初始取值范围[0 255]for m=1:Mx=0;for n=1:Nx=x+popus(m,n)*(2^(n-1));endx=x*((B-A)/(2^N))+A;for k=1:5f(m,1)=f(m,1)-(k*sin((k+1)*x+k));endendf_std=(f-min(f))./(max(f)-min(f));%函数值标准化fitness.f=f;fitness.f_std=f_std;fitness.x=x;return;function picked=choose(popus,fitness)%选择f=fitness.f;f_std=fitness.f_std;[M,N]=size(popus);choose_N=3; %选择choose_N对双亲picked=zeros(choose_N,2); %记录选择好的双亲p=zeros(M,1); %选择概率d_order=zeros(M,1);%把父代个体按适应度从大到小排序f_t=sort(f,'descend');%将适应度按降序排列for k=1:Mx=find(f==f_t(k));%降序排列的个体序号d_order(k)=x(1);endfor m=1:Mpopus_t(m,:)=popus(d_order(m),:);endpopus=popus_t;f=f_t;p=f_std./sum(f_std); %选择概率c_p=cumsum(p)'; %累积概率for cn=1:choose_Npicked(cn,1)=roulette(c_p); %轮盘赌picked(cn,2)=roulette(c_p); %轮盘赌popus=intercross(popus,picked(cn,:));%杂交endpopus=aberrance(popus,picked);%变异return;function popus=intercross(popus,picked) %杂交[M_p,N_p]=size(picked);[M,N]=size(popus);for cn=1:M_pp(1)=ceil(rand*N);%生成杂交位置p(2)=ceil(rand*N);p=sort(p);t=popus(picked(cn,1),p(1):p(2));popus(picked(cn,1),p(1):p(2))=popus(picked(cn,2),p(1):p(2));popus(picked(cn,2),p(1):p(2))=t;endreturn;function popus=aberrance(popus,picked) %变异P_a=0.05;%变异概率[M,N]=size(popus);[M_p,N_p]=size(picked);U=rand(1,2);for kp=1:M_pif U(2)>=P_a %如果大于变异概率,就不变异continue;endif U(1)>=0.5a=picked(kp,1);elsea=picked(kp,2);endp(1)=ceil(rand*N);%生成变异位置p(2)=ceil(rand*N);if popus(a,p(1))==1%0 1变换popus(a,p(1))=0;elsepopus(a,p(1))=1;endif popus(a,p(2))==1popus(a,p(2))=0;elsepopus(a,p(2))=1;endendreturn;function picked=roulette(c_p) %轮盘赌[M,N]=size(c_p);M=max([M N]);U=rand;if U<c_p(1)picked=1;return;endfor m=1:(M-1)if U>c_p(m) & U<c_p(m+1)picked=m+1;break;endend全方位的两点杂交、两点变异的改进的加速遗传算法(IAGA)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%。

matlab中的遗传算法

matlab中的遗传算法

matlab中的遗传算法【原创版】目录一、引言二、遗传算法的基本原理1.种群概念2.适应度函数3.选择操作4.交叉操作5.变异操作三、MATLAB 中遗传算法的实现1.准备工作2.遗传算法的实现四、遗传算法的应用案例1.旅行商问题2.装载问题五、遗传算法的优缺点六、结论正文一、引言遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法,其主要思想是将进化过程中的自然选择、交叉和变异等遗传操作应用到问题的求解过程中,从而实现对问题的优化求解。

遗传算法在解决复杂问题、非线性问题以及大规模问题等方面具有较强的优势,因此在各个领域得到了广泛的应用。

本文将介绍遗传算法的基本原理以及在MATLAB 中的实现。

二、遗传算法的基本原理1.种群概念遗传算法以一个种群作为优化过程的载体。

种群中的个体代表问题的解,每个个体由一组参数表示。

在优化过程中,种群会不断进化,最终收敛到问题的最优解。

2.适应度函数适应度函数是遗传算法的核心部分,用于评价种群中个体的优劣。

适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。

在遗传算法的优化过程中,适应度函数用于选择优秀的个体,从而指导种群的进化。

3.选择操作选择操作是基于适应度函数的一种选择策略,用于选择下一代的父代个体。

常见的选择方法有轮盘赌选择、锦标赛选择等。

4.交叉操作交叉操作是遗传算法中产生新个体的主要方式,通过将选中的优秀个体进行交叉操作,产生具有更好适应度的新个体。

常见的交叉方法有单点交叉、多点交叉、均匀交叉等。

5.变异操作变异操作是在遗传算法中引入随机性的一种方式,通过随机改变某些基因的值,使新个体在进化过程中具有一定的多样性。

变异操作的强度由变异概率控制。

三、MATLAB 中遗传算法的实现1.准备工作在 MATLAB 中实现遗传算法,首先需要定义适应度函数、选择操作、交叉操作和变异操作等。

此外,还需要设置遗传算法的参数,如迭代次数、种群大小、交叉概率、变异概率等。

遗传算法的Matlab实现及应用

遗传算法的Matlab实现及应用

2. 遗传算法的Matlab编程实现
Matlab是一个高性能和功能十分强大的计算与仿真软件。利用 Matlab实现遗传算法简单且易操作。 (1) 初始化 初始化的函数是init (N,chromlength),N表示种群大小, chromlength表示染色体的长度,长度取决于变量的二进制编码长度。 (2)根据评价函数计算个体适应度 由评价函数F,计算种群中个体的适应度。F作为求解问题的目标 函数,求解的目标是该函数的最大或最小值。本文是以f(x)=cos(5*x)sin(3*x)为例进行计算。 (3)选择 选择哪些个体可以进入下一代。个体在下一代种群中出现的 可能性由个体的适应度决定,适应度越高,产生后代的概率越高, 反之,被淘汰的概率越高。本文采用赌轮盘法进行选择。根据方程 ,选择步骤如下: 1)在第t代,根据上式计算f sum和 p ; 2)产生{0,1}的随机数 rand( ),求 s=rand( )* fsum; 中最小的 k,则第 k 个个体被选中; 3)求 4)进行 N 次2)、3)操作,得到N个个体,成为第t+1代种群。
图2 最佳个体的适应度变化情况 图1 f(x)函数示意图
103
算法语言
信息与电脑 China Computer&Communication
2012年6月刊
计算机软件基础数据结构之算法
邓建龙 (辽宁省大连市经济开发区大连大学信科091班 辽宁大连116622)
摘要:数据结构的主要内容是讲解信息在计算机内的寄存方式和信息的集合与整理,它经常是和算法相联系的。算法是一种可以被计算机识 别的指令,而这一指令的对象恰好是通过数据结构寄存的信息。两者的相互作用,使得计算机可以处理一些比较困难的问题,而且处理效率非常 迅速。文中,笔者将针对计算机软件基础数据结构之算法,通过其要素、特征、表示、常用算法以及设计要求等方面详细讲述。 关键词:计算机软件;数据结构;算法 中图分类号:TP311 文献标识码:A 文章编号:1003-9767(2012)06-0104-02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法解非线性方程组的Matlab程序程序用MATLAB语言编写。

之所以选择MATLB,是因为它简单,但又功能强大。

写1行MATLAB程序,相当于写10行C++程序。

在编写算法阶段,最好用MATLAB语言,算法验证以后,要进入工程阶段,再把它翻译成C++语言。

本程序的算法很简单,只具有示意性,不能用于实战。

非线性方程组的实例在函数(2)nonLinearSumError1(x)中,你可以用这个实例做样子构造你自己待解的非线性方程组。

%注意:标准遗传算法的一个重要概念是,染色体是可能解的2进制顺序号,由这个序号在可能解的集合(解空间)中找到可能解%程序的流程如下:%程序初始化,随机生成一组可能解(第一批染色体)%1: 由可能解的序号寻找解本身(关键步骤)%2:把解代入非线性方程计算误差,如果误差符合要求,停止计算%3:选择最好解对应的最优染色体%4:保留每次迭代产生的最好的染色体,以防最好染色体丢失%5: 把保留的最好的染色体holdBestChromosome加入到染色体群中%6: 为每一条染色体(即可能解的序号)定义一个概率(关键步骤)%7:按照概率筛选染色体(关键步骤)%8:染色体杂交(关键步骤)%9:变异%10:到1%这是遗传算法的主程序,它需要调用的函数如下。

%由染色体(可能解的2进制)顺序号找到可能解:%(1)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionSum);%把解代入非线性方程组计算误差函数:(2)functionError=nonLinearSumError1(x);%判定程是否得解函数:(3)[solution,isTrue]=isSolution(x,funtionError,solutionSumError);%选择最优染色体函数:%(4)[bestChromosome,leastFunctionError]=best_worstChromosome(fatherChromosomeGroup,functionError);%误差比较函数:从两个染色体中,选出误差较小的染色体%(5)[holdBestChromosome,holdLeastFunctionError]...% =compareBestChromosome(holdBestChromosome,holdLeastFunctionError,...% bestChromosome,leastFuntionError)%为染色体定义概率函数,好的染色体概率高,坏染色体概率低%(6)p=chromosomeProbability(functionError);%按概率选择染色体函数:%(7)slecteChromosomeGroup=selecteChromome(fatherChromosomeGroup,p);%父代染色体杂交产生子代染色体函数%(8)sonChrmosomeGroup=crossChromosome(slecteChromosomeGroup,2);%防止染色体超出解空间的函数%(9)chromosomeGroup=checkSequence(chromosomeGroup,solutionSum)%变异函数%(10)fatherChromosomeGroup=varianceCh(sonChromosomeGroup,0.8,solutionN);%通过实验有如下结果:%1。

染色体应当多一些%2。

通过概率选择染色体,在迭代早期会有效选出优秀的染色体,使解的误差迅速降低,%但随着迭代的进行,概率选择也会导致某种染色体在基因池中迅速增加,使染色体趋同,%这就减少了物种的多样性,反而难以逼近解%3。

不用概率选择,仅采用染色体杂交,采用保留优秀染色体,也可以得到解%%%%%%%%%%%%%%%%%%%%%%%%程序开始运行clear,clc;%清理内存,清屏circleN=200;%迭代次数format long%%%%%%%%%%%%%%%构造可能解的空间,确定染色体的个数、长度solutionSum=4;leftBoundary=-10;rightBoundary=10;distance=1;chromosomeSum=500;solutionSumError=0.1;%solutionSum:非线性方程组的元数(待解变量的个数);leftBoundary:可能解的左边界;%rightBoundary:可能解的右边界;distance:可能解的间隔,也是解的精度%chromosomeSum:染色体的个数;solveSumError:解的误差oneDimensionSet=leftBoundary:distance:rightBoundary;%oneDimensionSet:可能解在一个数轴(维)上的集合oneDimensionSetN=size(oneDimensionSet,2);%返回oneDimensionSet中的元素个数solutionN=oneDimensionSetN^solutionSum;%解空间(解集合)中可能解的总数binSolutionN=dec2bin(solutionN);%把可能解的总数转换成二进制数chromosomeLength=size(binSolutionN,2);%由解空间中可能解的总数(二进制数)计算染色体的长度%%%%%%%%%%%%%%%%程序初始化%随机生成初始可能解的顺序号,+1是为了防止出现0顺序号solutionSequence=fix(rand(chromosomeSum,1)*solutionN)+1;for i=1:chromosomeSum%防止解的顺序号超出解的个数if solutionSequence(i)>solutionN;solutionSequence(i)=solutionN;endend%染色体是解集合中的序号,它对应一个可能解%把解的十进制序号转成二进制序号fatherChromosomeGroup=dec2bin(solutionSequence,chromosomeLength); holdLeastFunctionError=Inf;%可能解的最小误差的初值holdBestChromosome=0;%对应最小误差的染色体的初值%%%%%%%%%%%%%%%%%%开始计算circle=0;while circle<circleN%开始迭代求解circle=circle+1;%记录迭代次数%%%%%%%%%%%%%1:由可能解的序号寻找解本身(关键步骤)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionSum);%%%%%%%%%%%%%2:把解代入非线性方程计算误差functionError=nonLinearSumError1(x);%把解代入方程计算误差[solution,minError,isTrue]=isSolution(x,functionError,solutionSumError);%isSolution函数根据误差functionError判定方程是否已经解开,isTrue=1,方程得解。

solution是方程的解if isTrue==1'方程得解'solutionminErrorcirclereturn%结束程序end%%%%%%%%%%%%%3:选择最好解对应的最优染色体[bestChromosome,leastFunctionError]=best_worstChromosome(fatherChromosomeGroup,functionError); %%%%%%%%%%%%%4:保留每次迭代产生的最好的染色体%本次最好解与上次最好解进行比较,如果上次最好解优于本次最好解,保留上次最好解;%反之,保留本次最好解。

保留的最好染色体放在holdBestChromosome中[holdBestChromosome,holdLeastFunctionError]...=compareBestChromosome(holdBestChromosome,holdLeastFunctionError,...bestChromosome,leastFunctionError);%circle%minError%solution%holdLeastFunctionError%%%%%%%%%%%%%%5:把保留的最好的染色体holdBestChromosome加入到染色体群中order=round(rand(1)*chromosomeSum);if order==0order=1;endfatherChromosomeGroup(order,:)=holdBestChromosome;functionError(order)=holdLeastFunctionError;%%%%%%%%%%%%%%%6:为每一条染色体(即可能解的序号)定义一个概率(关键步骤) %%%%%%%%%%%%%%%好的染色体概率高,坏的概率低。

依据误差functionError计算概率[p,trueP]=chromosomeProbability(functionError);if trueP =='Fail''可能解严重不适应方程,请重新开始'return%结束程序end%%%%%%%%%%%%%%%7:按照概率筛选染色体(关键步骤)%fa=bin2dec(fatherChromosomeGroup)%显示父染色体%从父染体中选择优秀染色体%selecteChromosomeGroup=selecteChromosome(fatherChromosomeGroup,p); %%%%%%%%%%%%%%%8:染色体杂交(关键步骤)%sle=bin2dec(selecteChromosomeGroup)%显示选择出来的解的序号(染色体)%用概率筛选出的染色体selecteChromosomeGroup进行杂交,产生子代染色体%sonChromosomeGroup=crossChromosome(selecteChromosomeGroup,2);%不用概率筛选出的染色体selecteChromosomeGroup进行杂交,而直接用上一代(父代)的sonChromosomeGroup=crossChromosome(fatherChromosomeGroup,2);%cro=bin2dec(sonChromosomeGroup)%显示杂交后的子代染色体sonChromosomeGroup=checkSequence(sonChromosomeGroup,solutionN);%检查杂交后的染色体是否越界%%%%%%%%%%%%%%%9:变异%不杂交直接变异%fatherChromosomeGroup=varianceCh(fatherChromosomeGroup,0.1,solutionN);%杂交后变异fatherChromosomeGroup=varianceCh(sonChromosomeGroup,0.1,solutionN); fatherChromosomeGroup=checkSequence(fatherChromosomeGroup,solutionN);%检查变异后的染色体是否越界end函数(1):由染色体(可能解的2进制)顺序号找到可能解%这个函数找出染色体(可能解的序号)对应的可能解xfunction x=chromosome_x(chromosomeGroup,oneDimensionSet,solutionSum)%chromosomeGroup:染色体,也是可能解的二进制序号%oneDimensionSet:一维数轴上的可能解%solutionSum:非线性方程组的元数,也就是待解方程中未知变量的个数[row oneDimensionSetN]=size(oneDimensionSet);%oneDimensionSetN:一维数轴上可能解的个数chromosomeSum=size(chromosomeGroup);%chromosomeSum:染色体的个数xSequence=bin2dec(chromosomeGroup);%把可能解的二进制序号(染色体)转换成十进制序号for i=1:chromosomeSum%i:染色体的编号remainder=xSequence(i);for j=1:solutionSumdProduct=oneDimensionSetN^(solutionSum-j);%sNproduct:quotient=remainder/dProduct;remainder=mod(remainder,dProduct);%mod:取余函数if remainder==0oneDimensionSetOrder=quotient;%oneDimensionSetOrder:可能解在数轴上的序号elseoneDimensionSetOrder=fix(quotient)+1;%fix:取整函数endif oneDimensionSetOrder==0oneDimensionSetOrder=oneDimensionSetN;endx(i,j)=oneDimensionSet(oneDimensionSetOrder);endend函数(2):把解代入非线性方程组计算绝对误差函数:function funtionError=nonLinearSumError1(X)%方程的解是-7,5,1,-3funtionError=...[abs(X(:,1).^2-sin(X(:,2).^3)+X(:,3).^2-exp(X(:,4))-50.566253390821)+...abs(X(:,1).^3+X(:,2).^2-X(:,4).^2+327)+...abs(cos(X(:,1).^4)+X(:,2).^4-X(:,3).^3-624.679868769613)+...abs(X(:,1).^4-X(:,2).^3+2.^X(:,3)-X(:,4).^4-2197)];函数(3):判定程是否得解函数:%判断方程是否解开function [solution,minError,isTrue]=isSolution(x,functionError,precision)[minError,xi]=min(functionError);%找到最小误差,最小误差所对应的行号solution=x(xi,:);if minError<precisionisTrue=1;elseisTrue=0;end%函数(4):选择最优染色体函数:%找出最小误差所对应的最好染色体,最大误差所对应的最坏染色体function [bestChromosome,leastFunctionError]=best_worstChromosome(chromosomeGroup,functionError) [leastFunctionError minErrorOrder]=min(functionError);%[maxFunctionError maxErrorOrder]=max(functionError);bestChromosome=chromosomeGroup(minErrorOrder,:);%worstChromosome=chromosomeGroup(maxErrorOrder,:);函数(5):误差比较函数:从两个染色体中,选出误差较小的染色体%选择最好的基因保留下来function [newBestChromosome,newLeastFunctionError]...=compareBestChromosome(oldBestChromosome,oldLeastFunctionError,...bestChromosome,leastFunctionError)if oldLeastFunctionError>leastFunctionErrornewLeastFunctionError=leastFunctionError;newBestChromosome=bestChromosome;elsenewLeastFunctionError=oldLeastFunctionError;newBestChromosome=oldBestChromosome;end函数(6):为染色体定义概率函数,好的染色体概率高,坏染色体概率低%根据待解的非线性函数的误差计算染色体的概率function [p,isP]=chromosomeProbability(x_Error)InfN=sum(isinf(x_Error));%估计非线性方程计算的结果NaNN=sum(isnan(x_Error));if InfN>0 || NaNN>0isP='Fail';p=0;returnelseisP='True';errorReciprocal=1./x_Error;sumReciprocal=sum(errorReciprocal);p=errorReciprocal/sumReciprocal;%p:可能解所对应的染色体的概率end函数(7):按概率选择染色体函数:function chromosome=selecteChromosome(chromosomeGroup,p)cumuP=cumsum(p);%累积概率,也就是把每个染色体的概率映射到0~1的区间[chromosomeSum,chromosomeLength]=size(chromosomeGroup);for i=1:chromosomeSum%这个循环产生概率值rN=rand(1);if rN==1chromosome(i,:)=chromosomeGroup(chromosomeSum,:);elseif (0<=rN) && (rN<cumuP(1))chromosome(i,:)=chromosomeGroup(1,:);%第1条染色体被选中elsefor j=2:chromosomeSum%这个循环确定第1条以后的哪一条染色体被选中if (cumuP(j-1)<=rN) && (rN<cumuP(j))chromosome(i,:)=chromosomeGroup(j,:);breakendendendend函数(8):父代染色体杂交产生子代染色体函数function sonChromosome=crossChromosome(fatherChromosome,parameter) [chromosomeSum,chromosomeLength]=size(fatherChromosome);%chromosomeSum:染色体的条数;chromosomeLength:染色体的长度switch parametercase 1%随机选择父染色体进行交叉重组for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位randChromosomeSequence1=round(rand(1)*chromosomeSum);%随机产生第1条染色体的序号randChromosomeSequence2=round(rand(1)*chromosomeSum);%随机产生第2条染色体的序号,这两条染色体要进行杂交if randChromosomeSequence1==0%防止产生0序号randChromosomeSequence1=1;endif randChromosomeSequence2==0%防止产生0序号randChromosomeSequence2=1;endif crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(randChromosomeSequence1,:); sonChromosome(i*2,:)=fatherChromosome(randChromosomeSequence2,:); else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(randChromosomeSequence1,:); %把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)=...fatherChromosome(randChromosomeSequence2,crossDot:chromosomeLength) %下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(randChromosomeSequence2,:); sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(randChromosomeSequence1,crossDot:chromosomeLength) endendcase 2 %父染色体的第i号与第chromosomeSum+1-i号交叉for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位if crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(i,:);sonChromosome(i*2,:)=fatherChromosome(chromosomeSum+1-i,:);else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(i,:);%把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)...=fatherChromosome(chromosomeSum+1-i,crossDot:chromosomeLength);%下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(chromosomeSum+1-i,:); sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(i,crossDot:chromosomeLength);endendcase 3 %父染色体的第i号与第i+chromosomeSum/2号交叉for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位if crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(i,:);sonChromosome(i*2,:)=fatherChromosome(i+chromosomeSum/2,:);else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(i,:);%把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)...=fatherChromosome(i+chromosomeSum/2,crossDot:chromosomeLength);%下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(i+chromosomeSum/2,:); sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(i,crossDot:chromosomeLength);endendend函数(9):防止染色体超出解空间的函数%检测染色体(序号)是否超出解空间的函数function chromosome=checkSequence(chromosomeGroup,solutionSum) [chromosomeSum,chromosomeLength]=size(chromosomeGroup); decimalChromosomeSequence=bin2dec(chromosomeGroup);for i=1:chromosomeSum %检测变异后的染色体是否超出解空间if decimalChromosomeSequence(i)>solutionSumchRs=round(rand(1)*solutionSum);if chRs==0chRs=1;enddecimalChromosomeSequence(i)=chRs;endendchromosome=dec2bin(decimalChromosomeSequence,chromosomeLength);函数(10):变异函数%基因变异.染色体群中的1/10变异。

相关文档
最新文档