专插本考试高等数学配套题库历年真题

合集下载

2002-2015广东专插本高数真题(无答案)

2002-2015广东专插本高数真题(无答案)

2002年广东省普通高等学校本科插班生招生考试《高等数学》试题一、填空题(每小题3分,共24分)1、函数xxy ++=11的定义域是 。

2、若)sin(ln x e y=,则=dxdy。

3、=-→)1ln(142lim e Dx x。

4、已知函数2x y =,在某点处的自变量的增量2.0=∆x ,对应函数的微分8.0-=dy ,则自变量的始值是 。

5、函数xe x xf 2)(=的n 阶麦克劳林展开式是=)(x f 。

6、如果点(1,3)是曲线23bx ax y +=的拐点,则要求a = 。

b = 。

7、若dt t y x x)cos(2cos sin ⎰=π则=dxdy。

8、设→→→→→→→-+=--=k j i b k f t a 2,23,则=⋅-→→b a 3)( 。

二、单项选择题(每小题3分,共24分)9、若11)(+-⋅=x xa a x x f ,则下面说法正确的是( )A 、)(x f 是奇函数B 、)(x f 是偶函数C 、)(x f 是非奇偶函数D 、)(x f 无法判断10、设函数⎪⎩⎪⎨⎧>+≤=11)(2x bax x xx f ,为了使函数)(x f 在1=x 处连续且可导,a和b 的取值应该是( )A 、a=2,b=1B 、a=1,b=2C 、a=2,b=-1D 、a=-1,b=211、若函数)(x f 在[]b a ,上连续,在()b a ,内一阶和二阶导数存在且均小于零,则)(x f 在[]b a ,内( )A 、单调增加,图形是凸的B 、单调增加,图形是凹的C 、单调减少,图形是凸的D 、单调减少,图形是凹的12、由方程0=-+e xy ey所确定的隐函数,y 在0=x 处的导数0=x dxdy是( )A 、eB 、e 1 C 、e - D 、e1-13、广义积分⎰+∞∞-++x x x dx22的值是( )A 、0B 、2πC 、πD 、π214、定积分⎰dx e x 10的值是( )A 、0B 、1C 、2D 、315、幂级数∑=⋅+nn nn x n 1212的收敛区间是( )A 、⎥⎦⎤⎢⎣⎡-21,21 B 、[]1,1- C 、[]2,2- D 、[]+∞∞-,16、微分方程)0(,022≠=+k y k dx dy 满足初始条件0,====x x dxdy A y的特解是( )A 、kx A sin B 、kx A cos C 、Ax k sin D 、Axk cos三、计算题(每小题7分,共28分)17、求极限xt dte xtx cos 21cos 0lim--→⎰18、将函数12)(34+-=x x x f 展开为(x-1)的多项式。

广东专插本高等数学-试卷50_真题-无答案

广东专插本高等数学-试卷50_真题-无答案

广东专插本(高等数学)-试卷50(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. y=+lg(χ+2)的定义域为( )A. (-2,+∞)B. (1,+∞)C. (-2,-1]∪[1,+∞)D. (-2,-1)2. 若f′(χ0)=-3,则=( )A. -3B. -6C. -9D. -123. 设∫f(χ)dχ=χ2+C,则∫χf(1-χ2)dχ=( )A. -2(1-χ2)2+CB. 2(1-χ2)2+CC. -(1-χ2)2+CD. (1-χ2)2+C4. 设f(χ,y)在点(χ0,y0)处偏导数存在,=( )A. f′χ(χ0,y0)B. f′y(2χ0,y0)C. 2f′χ(χ0,y0)D. f′χ(χ0,y0)5. 如果=ρ(un>0,n=1,2,…),则级数un的收敛条件是( )A. ρ>1B. ρ≥1C. ρ<1D. ρ≤12. 填空题1. 函数f(χ)=的极值为_______.2. 已知f(χ)=χ2lnχ,χ=h(t)满足条件h(0)=3,h′(0)=7,则f[h(t)]|t=0=_______.3. 设f(χ)在[a,b]上满足f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(b)+f(a)](b-a),则S1,S2,S3的大小顺序为_______.4. 通解为y=C1cos2χ+C2sin2χ(C1,C2为任意常数)的二阶线性常系数齐次微分方程为_______.5. 设f(χ,y)=2χ+arcsin,则fχ(2,1)=_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 设f(χ)=试确定常数a,b的值,使f(χ)在点χ=处可导.2. 求极限3. 设z=uv+sint,而u=et,v=cost,求.4. 计算不定积分∫χe2χdχ.5. 平面图形D是由曲线y=eχ及直线y=e,χ=0所围成的,求平面图形D绕χ轴旋转一周所生成旋转体的体积.6. 计算dχdy,其中D是由y=1,y=χ,y=2,χ=0所围成的闭区域.7. 求微分方程y〞-2y′-3y=0的通解.8. 判定级数的敛散性.5. 综合题1. 过点P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形,求此图形绕χ轴旋转一周所成的旋转体的体积.2. 设函数y=f(χ)在区间[a,b]上连续,且f(χ)>0,F(χ)=∫aχf(t)dt+∫aχ,χ∈[a,b],证明:(1)F′(χ)≥2;(2)方程F(χ)=0在区间(a,b)内有且仅有一个实根.。

《高等数学》专插本2005-2019年历年试卷

《高等数学》专插本2005-2019年历年试卷

广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

每小题只有一个选项符合题目要求)1.函数22()2x xf x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C=+=+⎰⎰C 为任意常数,则下列等式正确的是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.下列级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题(本大题共5小题,每小题3分,共15分)6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.若二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则2zy x∂=∂∂ 9.设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共8小题,每小题6分,共48分)11.求20sin 1lim x x e x x→-- 12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyz x z e -=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de -=求曲线()y f x =的凹凸区间 四、综合题(大题共2小题,第19小题12分,第20小题10分,共22分) 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰(1)求()x ϕ;(2)求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+(1)证明:()f x 在区间(0,) 内单调减少;(2)比较数值20192018与20182019的大小,并说明理由;2019年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共5小题,每小题3分,共15分) 1.B 2.A 3.D 4.C 5.B二、填空题(本大题共5小题,每个空3分,共15分) 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题(本大题共8小题,每小题6分,共48分)11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++Q13.解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰14.,t =则211,22x t dx tdt =-=20121214215311,,2211()221()2111()253115t x t dx tdtt t tdt t t dtt t-==-==-=-=-=-⎰⎰⎰g15.解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyzxxyzyxyzzxyz xyzxyz xyzf x y z yzef x y z xzef x y z xyez yze z xzex xye y xye∴=-=-=--∂-∂∴==-∂+∂+16.解:由题意得12,0rθπ≤≤≤≤2222ln()3(4ln2)23(4ln2)|2(8ln23)Dx y ddππσθθπ∴+==-=-=-⎰⎰⎰17.解:由题意得414(1),321nnb nb n n++=+-414(1)1lim lim1,3213nx xnb nb n n+→∞→∞+∴==<+-由比值判别法可知1nnb∞=∑收敛0,n n a b ≤≤Q 由比较判别法可知1n n a ∞=∑也收敛18.解()()()()(1)xx x x df x x dedf x xde f x xe f x e x ----=∴='∴=-''∴=-Q()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.(1)由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+Q(2)由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰20.证明(1)()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++Q 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =Q 在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+Q 11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x ∴+--+<+()f x ∴在(0,)+∞单调递减(2)设2019,2018a b ==则201820192019,2018ba ab ==比较,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x Q 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省2018年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

广东专插本高数必刷2000题

广东专插本高数必刷2000题

广东专插本高数必刷2000题摘要:I.引言A.介绍广东专插本考试B.强调高数在专插本考试中的重要性II.广东专插本高数考试的考试大纲和题型A.考试大纲1.函数与极限2.导数与微分3.积分4.向量代数与空间解析几何5.多元函数微分学6.多元函数积分学7.无穷级数8.常微分方程B.题型介绍1.选择题2.填空题3.解答题III.广东专插本高数必刷2000 题的作用A.加深对考试大纲的理解B.提高解题速度和准确率C.巩固知识点IV.如何使用广东专插本高数必刷2000 题A.制定学习计划B.按照题型和知识点进行分类练习C.及时总结和归纳V.结论A.总结广东专插本高数必刷2000 题的重要性B.鼓励考生积极备考正文:广东专插本考试是广东省内各大高校选拔优秀专科毕业生的重要方式,其中高数作为必考科目之一,其重要性不言而喻。

要想在广东专插本高数考试中取得好成绩,必须对考试大纲有深入的理解,熟悉各种题型,并掌握解题技巧。

广东专插本高数考试大纲覆盖了函数与极限、导数与微分、积分、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程等多个知识点。

这些知识点在考试中以选择题、填空题和解答题等形式出现,考察考生对知识点的掌握和解题能力。

为了帮助考生更好地备考广东专插本高数考试,广东专插本高数必刷2000 题应运而生。

这本书精选了2000 道高数题目,涵盖了考试大纲中的所有知识点,按照题型和知识点进行分类,方便考生有针对性地进行练习。

通过刷题,考生可以加深对考试大纲的理解,提高解题速度和准确率,从而更好地巩固知识点。

在使用广东专插本高数必刷2000 题进行备考时,考生需要制定合理的学习计划,按照题型和知识点进行分类练习。

同时,要及时总结和归纳解题方法和技巧,形成自己的解题思路。

当然,只靠刷题是远远不够的,考生还需要结合课堂学习、课外辅导等多种方式,全面提高自己的高数水平。

总之,广东专插本高数必刷2000 题是考生备考广东专插本高数考试的重要资料。

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44(总分:44.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题在每小题给出的四个选项中,只有一项是符合要求的。

(分数:2.00)__________________________________________________________________________________________ 解析:2.已知函数f(2χ-1)的定义域为[0,1],则函数f(χ)的定义域为 ( )(分数:2.00)1]B.[-1,1] √C.[0,1]D.[-1,2]解析:解析:由f(2χ-1)的定义域为[0,1],可知-1≤2χ-1≤1,所以f(χ)的定义域为[-1,1],故选B.3.若函数f(χ)χ=0处连续,则a= ( ).(分数:2.00)A.0B.1C.-1√解析:解析:由f(χ)在χ=0处连续可知f(χ)=f(0),于是有a=f(0)D.4.f(χ)=(χ-χ0 ).φ(χ),其中φ(χ)可导,则f′(χ0 )= ( )(分数:2.00)A.0B.φ(χ0 ) √C.φ′(χ0 )D.∞解析:解析:f′(χ)=φ(χ)+(χ-χ0 )φ′(χ),则f′(χ0 )=φ(χ0 ),故选B.5.已知d[e -χ f(χ)]=e χ dχ,且f(0)=0,则f(χ)= ( )(分数:2.00)A.e 2χ+e χB.e 2χ-e χ√C.e 2χ+e -χD.e 2χ-e -χ解析:解析:由d[e -χf(χ)]=e χdχ可得[e -χf(χ)]′=e χ,两边同时积分刮∫[e -χf(χ)]′dχ=∫e χ dχ,即有e -χ f(χ)=e χ+C,两边同时乘以e χ,即得f(χ)=e 2χ+Ce χ,又f(0)=1+C=0.即得C=-1.于是f(χ)=e 2χ-e χ.故诜B.6. ( )(分数:2.00)√解析:解析:根据级数的性质有收敛级数加括号后所成的级数仍收敛,故选D.二、填空题(总题数:5,分数:10.00)7.曲线y=χarctanχ)的水平渐近线是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=-1)解析:解析:又y=-1.8.设f(χ)在χ=02,则f′(0)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4)f′(0)=4.1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3)=3.10.微分方程y〞-4y′-5y=0的通解为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=C 1 e -χ C 2 e 5χ)解析:解析:微分方程的特征方程为λ2-4λ-5=0,则λ1=-1,λ2=5,则微分方程通解为y =C 1 e -χ+C 2 e 5χ (C 1,C 2为任意常数).11.设函数f(χ)在点χ0处可导,且f′(χ0)≠0, 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])三、解答题(总题数:9,分数:18.00)12.解答题解答时应写出推理、演算步骤。

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。

《高等数学》专插本年历年试卷

《高等数学》专插本年历年试卷

X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

每题只有一个选项符合题目要求〕1.函数22()2x x f x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则以下等式正确的选项是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.以下级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题〔本大题共5小题,每题3分,共15分〕6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.假设二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则 9.设平面地域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题〔本大题共8小题,每题6分,共48分〕11.求20sin 1lim x x e x x →--12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyzx z e-=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面地域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+-判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间 四、综合题〔大题共2小题,第19小题12分,第20小题10分,共22分〕 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰〔1〕求()x ϕ;〔2〕求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+ 〔1〕证明:()f x 在区间(0,)+∞内单调减少; 〔2〕比拟数值20192018与20182019的大小,并说明理由;202X 年X 省一般高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题〔本大题共5小题,每题3分,共15分〕 1.B 2.A 3.D 4.C 5.B二、填空题〔本大题共5小题,每个空3分,共15分〕 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题〔本大题共8小题,每题6分,共48分〕11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解: 13.解:14.,t =则211,22x t dx tdt =-= 15.解:设(,,)xyzf x y z x z e=--16.解:由题意得12,0r θπ≤≤≤≤17.解:由题意得414(1),321n n b n b n n ++=+-由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比拟判别法可知1n n a ∞=∑也收敛18.解()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.〔1〕由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(2)由题意得 20.证明〔1〕 证明11ln(1)ln ()01x x x x+--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 11ln(1)ln ()1x x x x ∴+-<++成立()f x ∴在(0,)+∞单调递减〔2〕设2019,2018a b ==则201820192019,2018ba ab ==比拟,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

高数广东专插本历年真题汇编2005-2019年_unlocked

高数广东专插本历年真题汇编2005-2019年_unlocked

∑∞ 3 n
B. n=1 2
∑ C.
∞2 n=1 3n

1 n3
∑ D.
∞ n=1
2 3
n
+
1 n
5. 已知函数 f (x=) ax + b 在点 x = −1 处取得极大值,则常数 a , b 应满足条件 x
A. a − b= 0,b < 0
B. a − b= 0,b >0
C. a + b= 0,b < 0
(1)证明: f (x) 在区间 (0, +∞) 内单调减少;
(2)比较数值 20182019 与 20192018 的大小,并说明理由.
2
广东省 2018 年普通高等学校本科插班生招生考试
高等数学
一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分.每小题只有一个选项符合题目要
求)
1. lim (3x sin 1 + sin x ) =
∫ A. [ f (x)g= (x)]dx 2x tan x + C
∫ B. = f (x) dx 2−x tan x + C
g(x)
∫ C. f [g= (x)]dx tan(2x ) + C
∫ D. [ f (x) + g(x)]dx= tan x + 2x + C
4. 下列级数收敛的是
∞1
∑ A. en n=1
6.
已知
x
y
= =
log2 3t
t
,则
dy dx
t =1
=
.
2
∫ 7. ( x + sin x)dx = . −2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国专插本考试《高等数学》配套题库【历年真题】益星学习网提供全套资料
目录
历年真题
2019年《高等数学》全国专插本考试预测试题(一)
2019年《高等数学》全国专插本考试预测试题(二)
2019年《高等数学》全国专插本考试预测试题(三)
2016年《高等数学》全国专插本考试试题
2014年《高等数学》全国专插本考试试题
2013年《高等数学》全国专插本考试试题
2012年《高等数学》全国专插本考试试题
2011年《高等数学》全国专插本考试试题
2010年《高等数学》全国专插本考试试题
2009年《高等数学》全国专插本考试试题
2008年《高等数学》全国专插本考试试题
2007年《高等数学》全国专插本考试试题
2006年《高等数学》全国专插本考试试题
2005年《高等数学》全国专插本考试试题
2004年《高等数学》全国专插本考试试题
2003年《高等数学》全国专插本考试试题。

相关文档
最新文档