毕业设计 光学设计软件OSLO应用

毕业设计 光学设计软件OSLO应用
毕业设计 光学设计软件OSLO应用

一、光学系统设计概述

1.光学系统设计基本步骤

一、确定设计指标

二、光学系统外形尺寸计算,可行性分析,设计指标修正

三、光学系统初始结构设计

四、像差平衡,必要时修改初始结构

五、像质评价与公差分析

六、绘制光学系统图、零件图

七、完成设计报告

光学系统的种类繁多,由于其结构参数与成像质量之间的复杂关系,即使简单的镜头,也不能从像质要求直接求解得可用的结果。因此,光学系统设计是一个非常复杂的过程,通常是先根据镜头的性能参数和像差要求选择适当的结构形式,再基于初级像差理论求解或从文献中查找最佳的初始结构参数,然后对像差进行逐步平衡,直到满足像质要求。

光学系统初始结构设计方法包括计算法、经验法、计算结合经验法、查资料法(即根据孔径、视场、波长、焦距,进行整体缩放)等。

光学设计软件的应用并没有改变这一过程,只是使这一过程的进程大为加快,使设计质量和效率大为提高。

2.光学自动设计概述

(一)结构参数和像差函数

光学系统的结构参数包括各表面的曲率半径与面形、各透镜中心厚度与间隔、光学材料参数(折射率、阿贝数等)。各种像差可以认为是结构参数的函数,结构参数变化,像差随之发生变化。由于结构参数的变化不全是任意的,各种像差之间存在相关性,应根据需要对像差进行综合平衡。

(二)评价函数

光学设计必须校正系统的像差,但既不可能也无必要把像差校正到完全理想的程度。因此,既需要选择像差的最佳校正方案,也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。这属于光学系统质量评价的问题。

评价函数是综合评价像质好坏的函数,它的一般形式为:

其中f1、f2……f m为各像差函数,如几何像差、波像差、畸变、色差等,f1*、f2*……f m*为各像差目标值,W1、W2……W m为权重因子。

评价函数值越小,光学系统的像质越好,所以评价函数也称为目标函数。

在光学设计中,根据不同的情况修改权重因子的大小是一项主要的工作。要严格控制的像差W大,控制比较松的像差W小,不控制的像差W=0。

3.像质评价

任何物体可以分解为点,也可以分解为各种频率的谱,两种不同的分解方法构成两类评价光学系统的方法。

第一类以物点所发出的光能在像空间的分布状况作为质量评价的依据。

第二类将物体分解为一系列不同频率的谱,它们经光学系统传递到像方时频率不变,但对比度要下降,并截止与某一频率。

1.分辨率

能被光学系统分辨开的两个物点(或像点)之间的最小距离,称为光学系统的分辨率。对大部分光学系统都应有分辨率的要求,它反映了光学系统分辨物体细微结构的能力,是评价光学系统的质量指标之一。它比较容易测量,被广泛应用于光学仪器质量检验中。

2.点列图

由一点发出的许多光线经过光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。点列图忽略了衍射效应。在大像差系统的点列图中,点的分布能近似代表点像的能量分布。因此,用点列图中点的密集程度可以衡量系统成像质量的优劣。

3.点扩散函数和光学传递函数

物面上一个亮点经光学系统后的光强分布函数,即像斑的复振幅分布函数,称为点扩散函数。对于衍射受限的成像系统,这个函数反映了系统的衍射效应。对于有像差的成像系统,这个函数反映系统的衍射和像差的共同效应。

对于非相干成像系统,可以把物的光强分布看作是无数物点的线性组合,那么像的光强分布函数就是这些点扩散函数的线性组合。设物面和像面的分布函数分别为o(x, y)和i(x, y),点扩散函数为h(x, y),则

设o(x, y)、i(x, y)、h(x, y)的傅里叶变换分别为O(s, t)、I(s, t)、H(s, t),它们之间有如下简单关系:

这一结果的意义是:一个任意的非相干的光强分布,可以看作是各种空间频率的光强度分布的组合。光学系统对o(x, y)成像的过程,就是将o(x, y)中每一频谱分量O(s, t)乘上一个相应的因子H(s, t),构成像i(x, y)的谱I(s, t)。H(s, t)反映了光学系统对各频谱分量的传递特性,也就完全反映了光学系统的成像特性,称为光学传递函数(OTF)。它是一个复数,模和相位分别是调制传递函数(MTF)和相位传递函数(PTF)。

这是目前认为较好的一种像质评价方法,它既有明确的物理意义,又和使用性能有密切联系,可以计算和测量,对大像差系统和小像差系统均适用,是一种有效、客观、全面的像质评价方法。

4.光学软件属性

光学软件依照计算方式不同分为Ray Tracing、BPM、FDTD等。其中Ray Tracing分Sequential ray trace(序列描光)和Non-Sequential ray trace(非序列描光)两类。

序列描光的特点是以光学面来建立模型,每个面有编号;使用单一光源,按照光学面的顺序计算光线,每个面仅作一次计算,不考虑分光;计算光线数少,速率快,可做优化计算及公差分析。

非序列描光的特点是以对象来建立模型;有多个光源;不考虑对象或光线顺序,同一个面可做多次计算,同时考虑部分穿透、反射、吸收、散射等情况,最接近真实世界的光线行为;需要计算大量光线,无法做优化设计。

二、OSLO简介

OSLO软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量。所以,在进行光学辅助设计之前,要先学习光学设计的有关知识:首先是几何光学基础。几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程。其次是像差理论知识。对于一个光学系统,一般存在7种几何像差,分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差。另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,镀膜和胶合等。

三、OSLO界面入门

工具栏

Setup Window / Toolbar,选择在工具栏上显示的工具。

命令输入栏

用户可以直接在命令输入栏输入指令。

文本窗口

文本窗口显示的数据在OSLO后台对应一个数据矩阵,用户可以通过一定的指令在自己的程序中调用这些数据;用户可以通过Window菜单开启新的文本窗口。

图形窗口

图形窗口用来显示光路结构、像面光斑(点列图)、像差等图形数用来显示光路结构、像面光斑(点列图)、像差等图形数据;用户可以通过Window菜单开启新的图形窗口。

数据表(Spreadsheets)

OSLO采用表格形式设定系统参数和透镜、光路数据。

按钮表示接受所有设定并关闭数据表;按钮表示取消所有更改并关闭数据表;

按钮用来提示表中文字的具体含义。

面数据表(Surface Spreadsheet)

面数据表是OSLO中最常用的数据表之一,包含系统参数(视场、波长、入射光束口径)设定、光路光路中每个面的参数(折射半径、通光口径、距离、材料和特殊设定等。

球面镜实例

以半径为16mm的凹球面镜为例,输入面形数据,并评价成像质量。

输入面形数据:

1.单击“Draw Off”打开Autodraw窗口。

2.Lens名称设为“Spherical mirror”。

3.设凹面镜的半径为16mm,将surface 1(AST)的RADIUS改为-16(mm)。

4.将surface 1(AST)的材料由AIR改为Reflect(hatch)或者Reflect。

5.将THICKNESS改为-8(mm)。

6.确认。

绘图设置:

1.菜单栏上单击Lens,选择Lens Drawing Conditions…

2.在Image space rays后选择Draw rays to image surface。

3.底部的表格设置显示的光线。在Rays列中将Frac Y Obj = 0.00000的光线数设为11。

4.单击绿色小钩图标关闭设置。

四、风景物镜实例

1.引言

这是一个非常基础的练习,包括如何在OSLO中输入镜头数据和进行简单的优化。本教程的结尾描述了如何使用slider wheels,可以了解如何改变你的系统参数。在非真实优化时,slider wheels可以帮助你理解不同设计条件时的系统变化情况。

本章目的不仅是要学习如何输入数据,而且还学习如何使用OSLO的一些标准工具,以理解简单照相镜头的光学性能。可以从这个练习里面看出OSLO与大多数的其它设计软件不同点。建立系统,然后按Auto键,计算机不可能就自动为你优化好。而是在交互模式下,分步运行,以便知道怎么得到最后的方案。

2.纲要

本练习步聚如下:

1.镜头输入(Lens entry)——输入一个平凸透镜,其后放置一个孔阑。

物距为无穷远,入射光束半径(entrance beam radius)为10mm,视场角(field angle)为±20度

凸面的初始曲率半径为50,玻璃为BK7,厚度为4mm

孔阑到透镜的初始距离为10mm

用marginal ray height solve设置孔阑到像面的距离

2.透镜绘图(Lens Drawing)——设置绘图条件,以显示所要求的光线轨迹。

记得要勾选绘制像面

3.优化(Optimization)——进行优化,消除彗差,焦距为100

建立一个误差函数(error function):控制有效焦距为100,记住可以控制边缘(近轴)光线的斜率来控制;让三级彗差为0。

记住,在优化的时候让一些参数为变量。这里可以是第一个面的半径(改变光焦度)和孔阑的位置(光栏的位置直接影响彗差)。

4.滑动器设计(Slider-wheel design)——将滑块(sliders)和参数结合在一起,所以可以

分析系统的平衡(记住在孔阑面上放一个厚度的求解(thickness solve))

将透镜的第二个面的曲率半径和滑块结合在一起,另一个和像面的曲率半径结合

调整滑块,观察轴上和轴外的点列图(spot diagrams)情况

通过调整像面的曲率半径,观察轴外点列图的水平和垂直位置

3.详细步骤

在开始本节之前,用同一种OSLO配置。如果你在开始本练习之前,通过删除private/bin/文件夹下的oslo.ini文件,就可以把程序配置恢复到原厂状态。一般情况下,不需要这么做。镜头数据输入

详细步聚如下:

1)打开OSLO软件,选择"Start a new lens",或从菜单中选择"File>>New Lens…"

2)在"File new"对话框中输入文件名"Landscape1",选择Custom lens和输入3个面,然后点

OK。

3)用下列数据填写固定的部分:

"Lens:"的右边输入"Landscape 1",将入射光束半径改为5,将视场角改为20,其它的栏目用缺省值。

4)在滚动区域(scrolled area)做以下改变:

4a) 在第一个面的"GLASS"栏目输入"BK7",这样使第一个面和第2个面之间的光学材料为"BK7"。可以参考《OSLO Optics Reference》中的Quick Start一章。

4b) 在第3面"APERTURE RADIUS"单元中点按钮,然后从弹出式菜单中点"Aperture Stop"。

注:第3面的行按钮会显示为"AST",并且在"APERTURE RADIUS"栏中会加一个A。

4c) 点第1面的"RADIUS"单元,输入曲率半径50

4d) 点第1面的"THICKNESS"单元,输入4

4e) 在第2面的"THICKNESS"单元,输入10

5)在第3面中,不直接输入厚度,在厚度单元上点一下,选择"Solves(S)>>Axial ray height…

",会弹出一个对话提示输入solve的值。接受缺省值0,点OK。这会使面3的厚度保持更新,使近轴光线的高度在第4面上为0。

6)点第3面的"SPECIAL"栏,选择"Surface Control(F)>>General",会出现一个新的电子表格

覆盖当前的电子表格。

6a) 在"Surface appearance in lens drawings"中点按键"Automatic",然后选择"Drawn",这使OSLO画surface 3

6b) 然后点绿色的对号,关闭电子表格,并返回到surface data电子表格

6c) 这时可以看到第3面的special按钮上有一个F。

7)在第4面重复步聚6-6c。

完成了以上镜头的数据输入后,电子表格的数据如下:

注:物面是"OBJ",像面是"IMS"。在所有的系统中都有一个物面和像面,因为在这个镜头中。只有1个面,有另外一个标记为"AST",这是因为当前面是孔径光栏面(Aperture Stop surface)。

注:在OSLO中,关闭Surface Data窗口(通过点绿色对号或红色的“X“实现)后,结果如下:

要使Surface Data表格回来,从菜单中选择"Lens>>Surface Data Spreadsheet"。

8)为了确认所有数据正确,只要确认具有相同的Efl (effective focal length),所有按钮上的

标记相同。厚度按钮上的S的意思是指此值是由solve (the axial ray height solve)确定的。

孔径按钮上的S的意思也是此孔径由solve确定的。这是孔径的缺省行为,它是由入射光束半径和视场角决定的。

9)点绿色的对号关闭电子表格,用"File>>Save Lens…"保存镜头文件。

镜头绘图

10)在镜头电子表格的固定区域点"Draw Off",会出现一个标有"Autodraw"的窗口显示所输入

的镜头。如果点第2个面的任何一个单元,可以看到第2个面会变成虚线。如果镜头的数据改变,图形会自动更新。Autodraw窗口是一个特殊的窗口,它没有通常的图形窗口的全部功能,但可以自动更新,这和普通图形窗口不同。从Lens菜单中,选择Lens Drawing Conditions,得到电子表格,选择"Image space rays:",改变"Final dist",观察图形变化。

将"Final dist"选为"Draw to image surface"。现在可以看到透镜成像的详细情况。明显,轴外的像不太好。看到主要像差是场曲。

优化

本部分是讲解优化。需要定义一个误差函数(即评价函数、优化函数)error function,使焦距为100mm,还要消除三阶塞得彗差。

11)选择"Optimize>>Generate Error Function>>Aberration Operands…",建立一个OSLO进行

优化的error function。

"Operands Data Editor"中"NAME"栏是每个操作数的识别符号,"DEFINITION"栏的OCM列元素是每个操作数定义的值。每个操作数控制"NAME"栏中的一些系统参数。例如操作数#6 "PLC"控制"横向色差(Paraxial Lateral Color)"。在优化过程中,不需要控制所有这些参数,所以要确定用哪些项。

12)本例子中,要保留的操作数为CMA3和EFL。其它的都删除掉。CMA3表示像差的3级

"Coma",EFL表示"Effective Focal Length"。权重都设为1。

需要提到的是,在OSLO中,所有操作数的目标值是0。即优化算法会使所有项最小。因为EFL操作数是有效焦距,不能让它为0,而是100。

我们将第二个操作数设置为OCM21-100,并将其名字改为EFL_ERR。

13)现在点绿色的对号关闭电子表格,然后点文本窗口中的"Ope"按钮,文本窗口中会列出

当前操作数的值和误差函数的值。

误差函数的操作数已经定义好了。从文本窗口的输出可以看到,EFL中的误差几乎占误差函数整个误差的100%。需要优化此系统并校正焦距。

对一定的入射光束半径,控制从透镜最后一面出射的轴上光线斜率是控制系统的EFL的另一种方法。

为了实现优化,我们需要指定系统的参数为变量。这里使用的参数是透镜的第一个面的曲率半径(CV 1),和透镜到孔阑之间的距离(TH 2)。

14)在镜头表格中,点第1面的"RADIUS"栏按钮,选择"Variable(V)"。在第2面的"THICKNESS"

上选择"Variable(V)"。在第1、2面上的相应按钮上会显示V,表示它是变量。

15)下面开始优化镜头。在优化以前,先关闭lens spreadsheet(单击绿色对勾),且立即重

新打开它。此动作将当前系统保存在缓存中。如果优化过程中有什么问题,可以点红色的“X”回复到最后打开的表格系统中。

16)要优化,点文本窗口中的"Ite",会优化十个周期。只有输入了操作数和变量,此按钮才

能有效。

文本窗口会显示如下的样子(尽管有些小的不一样)。可以看到误差函数减小到0,说明这里变量解决这个问题适当。

17)在优化后,核对lens spreadsheet,和下面的一样。可以看到Efl正好为100。点文本窗

口中的"Abr",可以看到透镜的像差,显示PU = -0.05,塞得彗差CMA3为0。从上面看,完全满足初始的目标。

18)关闭表格,保存镜头。

设置滑动器

一个单透镜,如landscape lens,没有很多自由度。在这个练习中,将透镜的后表面控制为平面。Landscape透镜一般是新月的形状。下面来看看如何用OSLO的slider-wheel窗口找到最佳形式。看看一下弯曲像面的效果。

首先,建立一个基本的slider-wheel窗口,将第2、4个面的曲率半径和滑块结合起来。然后,示出如何利用拖动滑块或旋转鼠标滚轮对系统进行连续优化。

19)打开镜头,选择"Optimize>>Slider-Wheel Design…",打开Slider-Wheel设置表格。

20)首先,设置下图中显示的选项。

点"Spot diagram",设置"Graphics scale"为1.0;选择"All points",将滑块的数量设置为缺省值2;在Surfs栏中,输入2和4,参数都设置为"Curvature (CV)"。

21)关闭电子表格(绿色的对号),这时可以看到一个slider-wheel窗口和二个图形窗口(GW 31

& GW 32)。

22)通过拖动或点击滑块(滑块实际上就是个滚动条),或用鼠标滚轮。要用鼠标滚轮,将

指针放在滑块上的任意位置,然后转动滚轮。注意点列图:在中央部分、带孔径和边缘处像的样子。因为有像散,所以是椭圆形状,但没有彗差。现在可以拖动滑块或转动滚轮看会发生什么变化。

移动滑块,使CV[2]为负的,透镜变为正的,焦距变小。像质变化了,因为系统不再是没有彗差。

如果将曲率改变很大(< -0.033),光线追迹会失败。这时可以点OK,使错误框消失,然后使滑块向中间移动。

移动滑块,使CV[2]为正,透镜变为新月的样子,焦距变长,但最后透镜变为负的,光束发散。实验完了后,将CV[2]设置为0。

尝试改变CV[4](像面的半径),将其变为负的,可以增大轴外像的大小,实际上,可以找到一个线状焦点的位置,一个水平方向(子午焦点),一个垂直方向(弧矢焦点)。这说明系统没有彗差,如果设置CV[2]为某个值(如-.020),使系统有彗差,就不能实现这个。这就是设计者常说的不能聚焦。

23)正如如见slider-wheel分析功能很有趣,但OSLO中滑块的真正强大是允许通过拖动滑块

对系统进行重新优化。

将曲率半径重新置为0,如果调整了其它系统参数,可以重新打开此镜头。

重新打开滑块电子表格Optimize>>Slider Wheel Design,在Slider-wheel-Setup对话框中,设置"Enable sw_callback CCL function"为On,将"Level"设置为2,然后选择绿色的对号关闭Slider-wheel设置。

24)要看这样会做什么,关闭滑块窗口。看不到系统的任何变化,因为已经优化过了,但可

以看到文本的输入和下面类似。当移动滑块时,可以看到文本输出窗口一闪一闪的,因为系统在重新优化。

25)在图形窗口中,会看到和前面完全不同的情况。拖动滑块,使CV[2]往正的方向增大,

透镜变为弯月形,但焦距不变。彗差优化的过程中,孔阑面移动。通过第3个面上的height solve使像面保持在近轴像平面上,通过aperture solves调节透镜的直径,所以从视场边缘来的光线可以通过系统。

当透镜弯曲增加时,光栏移动方向相反,孔阑向透镜移动。

当然,系统的球差不是常数。要改善边缘视场的像质,要牺牲一些轴上像质。这可以通过非球面透镜实现,但这不是本练习的内容了。

电子信息工程专业毕业设计题目大全

电子信息工程毕业设计题目总 计: 1、本振源的分析与设计 2、恒流电源的设计 3、光释光仪器的研究 4、远程集中式抄表系统设计 5、红外测温的研究 6、GPS n车定位导航系统的研究设计 7、速度里程表的设计 &超升波倒车雷达设计9、基于USB接口的数据采集系统设计0、自动门控制系统设计1、楼宇自动化系统的设计2、医院住院呼叫系统的设计3、煤矿监控系统的设计4、粮库测问系统的设计5、基于RS485的煤矿数据采集系统设计6、基于单片机的高精度位移测量的设计与研究7、电路版回流焊机温度控制的研究& PC机与单片机串行通信实现点阵字符显示的设计9、校园一卡通系统设计0、单片机控制的防盗系统设计 1、数据采集系统设计 2、高精度电荷放大器设计 3、多路温度控制器设计 4、基于nRF9E5的无线温度采集模块的设计 5、多功能数字频率计的设计 6、数字合成信号发生器的设计 7、点阵式汉字电子显示屏的设计 &非接触式IC卡读写器的设计9、遥控电子密码锁的设计0、单片机与PC机间的串行通信接口电路设计1、电脑自动控制外部设备电源的研究2、声控机器人的研究(用凌阳单片机)3、超声波测距在汽车安全中的应用研究4、远程超表系统的研究5、利用电话控制家用电器的研究6、光纤在微位移测量中的应用研究7、利用示波器做晶体管特性图示仪的研究 &篮球记分系统的研究9、指纹识别应用于学生考勤的研究0、高精度A/D转换的研究1、5w 激光治疗仪ARM机设计 2、感应式报警器的设计 3、电子密码锁的设计 4、太阳能充电器的设计 5、蓝牙数据路由器的设计 6、出租车计价器的设计 7、多功能数字温度计的设计 &多功能数字湿度计的设计9、电荷放大器的研究和设计0、自行车里程速度表的设计1、R、L、C测量仪的设计2、基于单片机的集中空调中央控制器的软件设计3、基于单片机的集中空调中央控制器的硬件设计4、用PLC完成升降电梯的自动控制5、基于单片机的出租汽车计价器的设计6、半导体激光器参数测

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

电子信息工程专业本科毕业设计(论文)选题指南范文

电子信息工程专业本科毕业设计(论文)选题指南 一、电子信息工程专业的学科领域 电子信息工程专业属于电气信息类专业。电气信息类专业还包括:电气工程及其自动化();自动化();通信工程();计算机科学与技术();电子科学与技术();生物医学工程()。 二、电子信息工程专业的主要研究方向和培养目标 1、电子信息工程专业的主要研究方向 (1) 电路与系统 (2) 信息与通信系统 (3) 计算机应用 2、电子信息工程专业的培养目标 本专业培养具备电子技术和信息系统的基础知识,能从事各类电子设备和信息系统的研究、设计、制造、应用和开发的高等工程技术人才。 本专业是一个电子和信息工程方面的较宽口径专业。本专业学生主要学习信号的获取与处理、电子设备与信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的基本能力。 毕业生应具备以下几方面的知识、能力和素质: (1)较系统地掌握本专业领域宽广的技术基础理论知识、适应电子和信息工程方面广泛的工作范围; (2)掌握电子电路的基本理论和实验技术,具备分析和设计电子设备的基本能力; (3)掌握信息获取、处理的基本理论和应用的一般方法,具有设计、集成、应用及计算机模拟信息系统的能力; (4)了解信息产业的基本方针、政策和法规; (5)了解电子设备和信息系统的理论前沿,具有研究、开发新系统、新技术的初步能力; (6)掌握文献检索、资料查询的基本方法,具有较强的获取新知识的能力及一定的科学研究和实际工作能力; (7)具有独立观察,分析问题的能力,敢于标新立异,勇于置疑,具备开展科学创新活动的基本能力,能灵活地把所学知识服务于社会;

常用光学设计软件介绍

ZEMAX ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential)。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance 参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V CODE V是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 OSLO oslo是一套标准建构系统及最佳化的光学软件。最主要地,他是用来决定光学系统中最佳组件的大小和外型,如照相机、客户产品、通讯系统、军事/外层空间应用以及科学仪器等。除此之外、他也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 LENSVIEW LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,并且每一实例都显示它的空间位置。它搜集从1800年起至目前的光学设计数据,这个广博的LensVIEW数据库不仅囊括光学描述数据,而且拥有设计者完整的信息,摘要,专利权状样本,参考文件,美国和国际分类数据,和许多其它的功能。LensVIEW 并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。 ASAP ASAP是功能强大的光学分析软件,是专为仿真成像或光照明的应用而设计,让您的光学工程工作更加正确且迅速。ASAP让您在制作原型系统或大量生产前可以预先做光学系统的仿真以便加快产品上市的时间。 传统描光程序的速度是非常烦琐秏时的。ASAP对于整个非序列性描光工具都经过速度的优化处理,让您可以在短时间内就可做数百万条几何描光的计算。光线可不计顺序及次数的经过表面,还可向前,向后追踪。此外ASAP具有强大的指令集可以让您进行特性光线以及物体的

光学系统设计

光学系统设计(五) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.对于密接双薄透镜系统,要消除二级光谱,两透镜介质应满足 ( )。 A.相对色散相同,阿贝常数相差较小 B.相对色散相同,阿贝常数相差较大 C.相对色散相差较大,阿贝常数相同 D.相对色散相差较小,阿贝常数相同 2.对于球面反射镜,其初级球差表达公式为 ( )。 A.?δ2h 81L =' B. ?δ2h 81L -=' C. ?δ2h 41 L =' D. ?δ2 h 41 L -=' 3.下列光学系统中属于大视场大孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 4.场曲之差称为 ( )。 A.球差 B. 彗差 C. 像散 D. 色差 5.初级球差与视场无关,与孔径的平方成 ( )。 A.正比关系 B.反比关系 C.倒数关系 D.相反数关系 6.下面各像差中能在像面上产生彩色弥散斑的像差有( )。 A.球差 B.场曲 C.畸变 D.倍率色差 7.不会影响成像清晰度的像差是 ( )。 A.二级光谱 B.彗差 C.畸变 D.像散 8.下列光学系统中属于大视场小孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 9.正弦差属于小视场的 ( )。 A.球差 B. 彗差 C. 畸变 D. 色差 10.初级子午彗差和初级弧矢彗差之间的比值为 ( )。 :1 :1 C.5:1 :1 11.光阑与相接触的薄透镜重合时,能够自动校正 ( )。 A.畸变 B.场曲 C.球差 D.二级光谱 12.在子午像差特性曲线中,坐标中心为z B ',如0B '位于该点左侧,则畸变值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.厚透镜之所以在校正场曲方面有着较为重要的应用,是因为 ( )。 A.通过改变厚度保持场曲为零 B.通过两面曲率调节保持光焦度不变 C.通过改变厚度保持光焦度不变 D.通过两面曲率调节保持场曲为0 14.正畸变又称 ( )。 A.桶形畸变 B.锥形畸变 C.枕形畸变 D.梯形畸变 15.按照瑞利判断,显微镜的分辨率公式为 ( )。 A.NA 5.0λσ= B. NA 61 .0λ σ= C.D 014' '=? D. D 012' '=? 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 软件 软件 软件 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

光学软件介绍

CODE V CODE V是美国著名的Optical Research Associates(ORA®)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用。 CODE V:是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心和/或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。 CODE V 用于成像光学系统和自由空间光子装置的优化、分析及公差分配。 巧妙、易用的用户界面,快速进行设计设置智能的默认值和创新的算法,从容获取精确结果无与伦比的优化和公差分配能力基于衍射的图像模拟,轻松呈现光学系统性能CODE V 含有数种独特、快速的算法,而其它软件要么不包括这些算法,要么实施得不够好。CODE V 的全局优化使用了ORA 发明的算法。该算法是唯一一种能够在复杂光学系统,包括变焦镜头上产生有用结果的商用算法。工程师们可以使用这个功能生成初始设计,或者确认最终候选设计是否确实是最好的方案。 CODE V 的MTF 优化算法与使用有限差分算法的同类方案相比,速度更快且更加精确。CODE V 的玻璃优化更是无出其右,尤其是对可见光谱带以外的光谱带。 CODE V 的主要公差功能使用波前差分算法,使得公差成为设计过程的一部分,而不是在设计结束时进行分析。该算法可以比同类算法快好几个数量级,具体取决于系统的复杂程度。利用这一超凡能力,工程师们在设计周期的最早期阶段即可确定能得到最佳实际制造性能的设计概念,从而获得最佳的产品设计。

最新本科.电子信息工程毕业设计题目大全资料

毕业设计题目总结 下面是本人通过查各种资料以及老师推荐的、从各种参考书上摘下来的关于电子信息工程专业的毕业设计题目的枚举、希望对广大同学们有一定的帮助。 1、无线遥控门铃电路的设计与制作 本题目要求设计一个遥控门铃,该电路包括发射系统和接收系统两部分。当有人按动门铃按钮,发射机发出信号,同时,接收机在接收发射机发出的信号后,会发出悦耳的声音。有效作用距离30米。 2,linux系统下web服务器的搭建与设计 要求在嵌入式平台建立web服务器,其它电脑终端的浏览器输入ip地址,可以访问,web服务器的内容除必要的说明文字及图像之外,需要实时显示AD转换的数据(与做AD转换驱动的同学合作)。 对学生的要求除嵌入式的相关知识外,需要有简单的网页设计知识。 3.光电控制书写提醒器的设计与制作 本题目要求设计一个书写提醒器,该装置包括发射电路、接收电路、测光电路及延时电路几部分。该装置的作用是监测书写者头部位置,在书写者头部位置过低时会发出声光报警。 4、远离提示电路的设计与制作 本题目要求设计一个远离提示电路。该电路包括发射系统和接收系统两部分,可用于儿童看护和贵重物品防盗。要求其有效作用距离为15米,即当带有发射器的儿童或贵重物品在离开预定地距离15米以外时,接收器会发出报警声。 5、声光双控楼道灯控制器的设计与制作

本题目要求设计一个楼道灯控制开关,在天黑或光线较暗时,若有一定的声音(如较近的脚步声、击掌声等),均会控制电灯点亮,且在电灯点亮一小段时间后,自动控制电灯熄灭。电路在白天不起作用。 6、交通信号灯控制电路的设计与制作 本课题要求设计一个符合某地交通要求的交通信号灯控制器,用于控制十字交叉路口处设置的红、绿、黄三色信号灯(设计中用相应的二极管代替)及转向信号灯。 7、红外光控防盗报警器的设计与制作 本题目要求设计一个红外防盗报警器,在有人进入未经允许的区域(如靠近防盗物或破门而入)时,该装置发出报警声。 8、数字频率计的设计与制作 本题目要求学生设计、制作一个数字频率测量仪。具有较小的测量误差及方便扩展的测频范围(基本测频范围为10HZ-10KHZ )。能对ViM=0.2V~5V 的正弦波、三角波、方波等进行测量和显示;频率输出≥4位十进制显示。具有小数点自动定位的功能。 9、多路抢答器的设计与制作 本题目要求设计、制作一个抢答器。可供4个队同时参加比赛;具有锁存第一抢答者组号并显示的功能;由主持人控制系统清零和开始,并具有超时报警的功能。 10、数字电压表的设计与制作 本课题要求设计一个用于测量直流电压数字电压表。要求该电压表能实现2 1 3 位显示;电压测量范围为0-200V ,共分4档;电压表的分辨率为0.1mV ;电压表具有超量程显示的功能。 11、太阳能充电器的设计与制作 随着社会的不断进步和科学技术的高速发展,人们的生活节奏也在不断地加快,在这快速发展的年代,人们外出商务、旅行时,遇到手机没电的情况都是非

课程名称现代光学设计方法-北京理工大学研究生院

课程名称:现代光学设计方法 一、课程编码:0400013 课内学时:32学分:2 二、适用专业:仪器科学与技术各专业,光学工程专业,物理电子学专业 三、先修课程:应用光学,物理光学,光学测量,光学工艺等。 四、教学目的: 通过本课程的学习,使研究生: 1、了解现代光学系统像质评价所采用的方法,了解几何像差、垂轴像差、波像差、点列图、包围圆能量、光学传递函数等常用像质评价指标的概念和特点,掌握用Zemax软件中相应功能的使用方法; 2、了解光学自动设计的原理,了解适应法和阻尼最小二乘法两种自动优化方法的原理和特点,掌握用Zemax软件中自动优化功能的使用方法; 3、了解公差分析与计算的原理,掌握常用光学系统公差分析与计算的方法,掌握用Zemax软件中公差分析计算功能的使用方法; 4、学习经典光学系统的设计方法,了解变焦距系统的原理和设计方法,掌握用Zemax 软件中相应功能设计光学系统的方法; 5、学习空间光学系统、红外光学系统、非球面光学系统等现代典型光学系统的特点和设计方法。 五、教学方式: 课堂讲授,材料自学与课堂讨论,穿插设计实例分析。 六、教学主要内容及对学生的要求: 1光学系统像质评价方法4学时 1.1光学系统的坐标系统、结构参数和特性参数 1.2检测阶段的像质评价指标——星点检验 1.3检测阶段的像质评价指标——分辨率测量 1.4几何像差的定义及其计算 1.5垂轴像差的概念及其计算 1.6几何像差计算程序ABR的输入数据与输出结果 1.7几何像差及垂轴像差的图形输出 1.8用波像差评价光学系统的成像质量 1.9光学传递函数 1.10点列图 1.11包围圆能量 2光学自动设计方法4学时 2.1阻尼最小二乘法光学自动设计程序 2.2光学自动设计的全局优化 2.3适应法光学自动设计程序 2.4典型光学设计软件介绍 3公差分析与计算4学时 3.1公差设计中的评价函数 3.2光学公差的概率关系 3.3公差设计中的随机模拟检验

电子类毕业设计方案经典题目集

本工作室承接电子类毕业设计论文一条龙服务!!!电子毕业设计:945701216 1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文 5.FPGA电梯控制的设计与实现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 10.110KV变电所一次系统设计 11.报警门铃设计论文 12.51单片机交通灯控制 13.单片机温度控制系统 14.CDMA通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现 19.智能抢答器设计

20.基于LabVIEW的PC机与单片机串口通信 21.DSP设计的IIR数字高通滤波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器毕业设计论文 32.IIR数字滤波器的设计毕业论文 33.PC机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 35.110kV变电站电气主接线设计 36.m序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文 41.步进电动机竹竿舞健身娱乐器材

选择最佳的光学设计软件

用于设计攸关产品成败的光学系统的软件 选择最佳的光学设计软件 作为公司决策人,需要为解决公司的盈亏问题做出明智选择时,您会选择哪一种光学设计软件呢?如果光学系统的性能攸关产品成败,那么答案将是 CODE V ?。CODE V 能够增进设计团队的设计效率,提高首次设计和制造的成功率,加快产品上市时间,让您的产品具有所向披靡的竞争优势。 CODE V 软件由 Optical Research Associates (ORA ?) 开发而成。四十多年来,ORA 帮助许多客户走上成功之路: ? ORA 拥有世界上规模最大的商业光学工程软件开发 队伍。 ? ORA 利用最先进的软件配置管理方法,将软件开发流 程形式化,确保在这样的开发环境下能够产生创新算法,以提供高质量、高可靠性、高度精确的结果。 ? ORA 的客户支持员工具有 50 多人年的工程经 验,专门致力于帮助客户成功应用我们的产品。这是他们的全职工作,而不是额外承担的责任。 ? ORA 拥有专业软件测试员工。我们的测试人员 每天会构造和评估成百上千的测试案例,对开发中的代码进行测试。 ? ORA 的内部工程服务小组会在最尖端的真实工 程应用中验证 CODE V 的每个版本。 ? ORA 的员工中包括三名 OSA 研究员和四名 SPIE 研究员。ORA 的工程师们已发表 300 多篇学术论文,有些人还是与光学系统有关的近 100 项专利的发明人或共同发明人。 ORA 以开发世界一流的光学工程软件产品为己任。在这种力创一流的精神指引下,我们的产品使客户受益颇多,下面是其中的几个方面。 增进设计团队的设计效率 CODE V 的开发宗旨是帮助光学工程师完成从概念到制造的整个设计周期。Windows 标准图形用户界面有助于新用户快速掌握 CODE V 的强大功能。CODE V 还支持命令行输入、易于学习的宏编辑功能以及 COM 应用编程接口 (API)。所有这些将能让您的工程师们以最有效的方式使用程序,并且允许将 CODE V 与支持 COM 的其它工程软件工具整合使用。 CODE V 图形用户界面 (GUI) CODE V 有能力让工程师们为极其复杂的系统建模并进行分析。CODE V 支持多种不同的用户可编程子程序(例如: 用户编程的表面形状和用户编程的表面属性等),以充分运用系统建模的灵活性。任何基本表面形状均可应用衍射属性,以便进行光栅、kinoform 、二元光学系统等的建模。通过焦点分析、真实无焦建模(非常适合于设计目视系统)及其它功能,CODE V 支持像散光源、偏振器件、单轴晶体双折射材料、应力双折射建模。

光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青 ISUAL 计划团队 国立成功大学物理系 (第一版,1999年7月29日) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译, 由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更 多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

常用光学软件介绍

常用光学软件介绍 FRED FRED是一款美国的著名光学设计分析软件,目前由讯技光电科技(上海)有限公司代理。 FRED光机模拟设计软件,该软件是美国Photon Engineering所出产,由原开发ASAP 的主要核心工程师所设计研发,并导进TracePro的窗口人机接口,与其它同类产品相比,性能更高、模块类型丰富,性价比更具优势,只要租用价即可买断该软件,不用年年支付租赁费,而且一次即可拥有以下所有功能。 FRED运用的领域范围非常广泛,只要系统可以用几何光学来描述,都可以用它来做分析,常见的应用领域为:照明系统、导光管、投影系统、激光、干涉、杂散光、鬼影分析、生物医学、其它光学系统原型之系统设计等等,无论是简易或是复杂的成像与非成像系统结构,FRED都可以准确的建构及分析。 FRED是一套由Photon Engineering所研发出来的光学模拟软件(光学系统分析、设计、研究),也是您在光学领域上最佳的伙伴(FRED),而它的显示窗口是实体显示工作平台,您可以直接在windows窗口中看到您所分析、设计的光学系统如下图所示。FRED的人性化工作平台可以让使用者在虚拟的光学实验上,可以马上找出光学系统上的问题。 FRED是一套由Photon Engineering所研发出来的光学模拟软件(光学系统分析、设计、研究),也是您在光学领域上最佳的伙伴(FRED),而它的显示窗口是实体显示工作平台,您可以直接在windows窗口中看到您所分析、设计的光学系统如下图所示。FRED的人性化工作平台可以让使用者在虚拟的光学实验上,可以马上找出光学系统上的问题。 所以,无论您是在CAD(IGES)软件或FRED中建立模型,都可以实时的在FRED显示窗口中秀出您所设计的光学机构模块。 FRED的人性化接口可以让您在光学系统上随时随地加上对象、挡板、镀膜效果、透镜等等,来建构您所需要之光学系统。FRED的系统分类结构可使您很容易的变换任一个系统的坐标。 所以,当您想在设计的光学系统上作任意修正时,都可以随时随地的加以修正,其结果并会马上呈现于显示窗口中。 FRED更可以针对您的光源设为Coherent、Incoherent、多波长、任意的发光角、任意的方向。 在FRED之中没有任何的限制,您可以任意的设计出您所需的面、曲面、非球面、材质、镀膜、光源、光线数等等之设定。而且在FRED窗口下,您可以对任一面、线、对象、系统执行坐标转换或移动之效果。 TracePro TracePro是一套普遍用于照明系统、光学分析、辐射度分析及光度分析的光线模拟软体。它是第一套以ACIS solid modeling kernel为基本的光学软体。 第一套结合真实固体模型、强大光学分析功能、资料转换能力强及易上手的使用介面的模拟软体。

应用电子毕业设计题目

应用电子毕业设计 题目

应电专业学生毕业设计选题 总体要求: 1、给出方案与论证; 2、画出系统原理图和电路图; 3、主要电路设计与计算; 4、系统软件或程序;关键内容可在正文出现,其它程序列入附件 5、系统测试与指标; 6、稳定性与可靠性; 7、论文格式规范,其中正文字数不少于8000字,参考文献不少于10篇; 8、所有未在正文中列出的电路图、器件参数、测试数据等均列入附件; 7、在规定的时间内选定设计题目,制订设计方案,查阅文献; 8、每组任选一题,可一人一组,也可多人一组,分组最多4人。二人及二人以上一组的必须说明分工。 A类 1..智能化门锁系统 2.机动车驾驶员电子桩考试系统设计 3.多点温度采集与控制网络监控系统的实现-下位机传输协议及

应用程序设计 4.公交车汉字显示系统 5.XX商务楼智能化设计 6.XX商务楼智能化设计 --(网络)综合布线设计7.某商场2~ 7层消防报警系统设计 8.温度控制系统控制算法及输出驱动电路的实现9.十字路口的交通灯控制 10.自整定PID仿真研究 11.智能交通灯 12.手持机文本阅读器的设计---上位机软件13.手持机文本阅读器的设计手持机硬件14.EDA技术来实现数据通信 15.XX花园智能化系统设计 16.基于数字控制的三相逆变器设计 17.空调自控系统设计 18.三关节机器人控制系统设计及仿真 19.无限传媒制播网络系统 20.交流双速电梯的电气控制系统设计 21.具有双闭环微机控制的串级调速系统22.单片机控制自动往返电动小汽车 23.信号发生器 24.单片机温度控制

25.单片机设计电热水壶 26.基于AD7135数据采集的温度控制系统的研制———系统硬件设计及抗干扰处理 27.基于AD7135数据采集的温度控制系统的研制—系统硬件设计 28.基于USB的数据通信模块研究与设计——驱动程序部分29.多点温度采集与控制网络监控系统的实现 30.应用于单片机的红外通信接口的设计 31.电流检测仪软件研究 32.软测量理论及其应用 33.远距离数据采集模块的设计——数据采集模块 34.锅炉汽包水位和过热蒸汽温度的控制 35.微机控制V-M直流电机调速系统设计 36.基于USB的数据通信的研究与设计 37.电视监控系统 38.笼式电动机变压变频调速系统(vvvf)设计——SPWM控制39.汽车站智能化系统设计 40.电话报警控制器的研制 41.关于某料筒切割装置自动控制系统的设计 42.商场消防报警系统设计 43.XX大厦消防自动报警、视频监控系统设计 44.行政楼消防自动报警系统、通讯系统设计

现代光学设计作业

现代光学设计——结课总结 光学工程一班陈江坤 学号2120100556

一、掌握采用常用评价指标评价光学系统成像质量的方法,对几何像差和垂轴像差进行分类和总结。 像质评价方法 一、几何像差曲线 1、球差曲线: 球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球 差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单 根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。 2、轴外细光束像差曲线 这一般是由两个曲线图构成。图中左边的是像散场曲曲线,右边的是畸变,不同颜色 表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,左图横坐标是场曲,右图是畸变的百分比值,左图中几种不同色曲线间距 是放大色差值。

3、横向特性曲线(子午垂轴像差曲线): 不同视场的子午垂轴像差曲线,纵坐标EY代表像差大小,横坐标PY代表入瞳大小,每一条曲线代表一个视场的子午光束在像面上的聚交情况。理想的成像效果应当是曲线和横轴重合,所有孔径的光线对都在一点成像。纵坐标上对应的区间就是子午光束在理想像面上的最大弥散斑范围。这个数值和点列图中的GEO尺寸一致,GEO尺寸就是横向特性曲线中该视场三个光波中弥散最大的那个半径。其中主光线用于描述单色像差情况;三个波长曲线用于描述垂轴色差情况。横向像差特性曲线图表示了视场角由小到大时垂轴像差曲线的变化,从中可以看出子午垂轴像差随视场变化规律。子午垂轴像差曲线的形状当然是子午像差:细光束子午场曲、子午球差和子午彗差决定的,因此曲线形状和像差数量的对应关系经常在像差校正中用到。根据像差曲线可以判断出要改善系统的成像质量,就必须改变曲线的形状和位置,即改变三种子午像差的数量。 将子午光线对a、b作连线,该连线的斜率m = (Ya-Yb)/2h 与宽光束子午场曲X’T 成正比。口径改变时,连线斜率变化表示宽光束子午场曲也随着变化。当口径减小趋于0时,连线成了坐标原点(对应主光线)的切线,切线的斜率和细光束子午场曲x’t相对应。子午光线对连线的斜率与原点切线斜率之间的差和子午球差(X’T –x’t)成正比,两个斜率夹角越大,子午球差越大。即:宽光束子午场曲与细光束子午场曲的差和子午球差成正比。当宽光束子午场曲与细光束子午场曲的符号由同号变成异号时表明子午球差加大。子午光线对连线和纵坐标交点的高度等于(Ya +Yb)/2,是子午彗差K’T。不同波长子午光线对连线和纵坐标交点之差表示两种不同波长光之间的“色彗差”。彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 至于色差情况,三个波长的横向特性曲线差值就反映了轴外点垂轴色差的情况。横向特性曲线充分反映了轴外像点的成像质量和随入瞳孔径、视场大小的变化规律。在光学设计过程中,我们需要仔细的分析这些像差中那一个占据主要地位以及采取相应的措施,达到像差校正和像差平衡的目的。 弧矢像差的分析方法与子午像差分析方法相同。 对应轴上点,只有两种像差需要分析,即:轴向球差和轴向色差。“轴上点像差特性曲线(longitudinal aberration)”,通过对于轴上点球差、轴向色差的描述,综合的反映了轴上点成像质量;“场曲和畸变特性曲线”,描述了系统的子午场曲、弧矢场曲、色散、畸变等像差参数;“横向色差特性曲线”,描述了系统垂轴色差随着视场变化的规律。 二、点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。,点列图是在现代光学设计中最常用的评价方法之一。

常见光学仿真设计软件

1.APSS.v 2.1.Winall.Cracked 光子学设计软件,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 注:另附9张光源库 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.360docs.net/doc/2d14495904.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过 18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

毕业设计 光学设计软件OSLO应用

一、光学系统设计概述 1.光学系统设计基本步骤 一、确定设计指标 二、光学系统外形尺寸计算,可行性分析,设计指标修正 三、光学系统初始结构设计 四、像差平衡,必要时修改初始结构 五、像质评价与公差分析 六、绘制光学系统图、零件图 七、完成设计报告 光学系统的种类繁多,由于其结构参数与成像质量之间的复杂关系,即使简单的镜头,也不能从像质要求直接求解得可用的结果。因此,光学系统设计是一个非常复杂的过程,通常是先根据镜头的性能参数和像差要求选择适当的结构形式,再基于初级像差理论求解或从文献中查找最佳的初始结构参数,然后对像差进行逐步平衡,直到满足像质要求。 光学系统初始结构设计方法包括计算法、经验法、计算结合经验法、查资料法(即根据孔径、视场、波长、焦距,进行整体缩放)等。 光学设计软件的应用并没有改变这一过程,只是使这一过程的进程大为加快,使设计质量和效率大为提高。 2.光学自动设计概述 (一)结构参数和像差函数 光学系统的结构参数包括各表面的曲率半径与面形、各透镜中心厚度与间隔、光学材料参数(折射率、阿贝数等)。各种像差可以认为是结构参数的函数,结构参数变化,像差随之发生变化。由于结构参数的变化不全是任意的,各种像差之间存在相关性,应根据需要对像差进行综合平衡。 (二)评价函数 光学设计必须校正系统的像差,但既不可能也无必要把像差校正到完全理想的程度。因此,既需要选择像差的最佳校正方案,也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。这属于光学系统质量评价的问题。 评价函数是综合评价像质好坏的函数,它的一般形式为: 其中f1、f2……f m为各像差函数,如几何像差、波像差、畸变、色差等,f1*、f2*……f m*为各像差目标值,W1、W2……W m为权重因子。 评价函数值越小,光学系统的像质越好,所以评价函数也称为目标函数。 在光学设计中,根据不同的情况修改权重因子的大小是一项主要的工作。要严格控制的像差W大,控制比较松的像差W小,不控制的像差W=0。 3.像质评价 任何物体可以分解为点,也可以分解为各种频率的谱,两种不同的分解方法构成两类评价光学系统的方法。 第一类以物点所发出的光能在像空间的分布状况作为质量评价的依据。

相关文档
最新文档