数列的概念和表示方法

合集下载

高中数学-数列

高中数学-数列

数列的概念及简单表示法一、数列的概念1.数列定义:按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项2.数列与函数的关系:从函数观点看,数列可以看成以正整数集N+(或它的有限子集)为定义域的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值3.数列有三种表示法:是列表法、图象法和通项公式法二、数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列三、数列的两种常用的表示方法1.通项公式:如果数列{a n}的第n 项a n 与n 之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式2.递推公式:如果已知数列{a n}的第1 项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式四、通项公式的求法:1.观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.如数列2 , -1,10 , -17 , 26 , -37 ,,先将数列变为 2 , -5 , 10 , -17 , 26 , -37 ,,显然3 7 9 11 13 3 5 7 9 11 13S ⎪ ⎪ ⎨ - S 分母为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故n +1n 2 +1 a n = (-1)2n +1 .又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7⨯999, 999,而 9,99,999,依次又可写成10 -1,102-1,103-1, ,因此,这个数列的通项公式为a = 7 (10n -1)2. 公式法:(1) 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 n9(n = 1) (n ≥ 2) (2) 对于等差数列和等比数列,把已知条件代入其通项公式、前 n 项和公式列出方程(组)求解3.累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法 ⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和4. 累乘法:形如a = f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时,用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)=⎩5. 构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法 (1)对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加q 得, a+ q = p (a +q ) ,这样就构造出一个等比数列⎧a +q ⎫ ,其公比 p -1 n +1 p -1 n p -1 ⎨ n p -1⎬⎩ ⎭为 p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -1(2)对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列,设 a + xa =y (a + xa ) (*),显然⎧ y - x = p.把方程组的解代入(*)便可构成一个等 n +1 n n n -1 ⎨xy = q比数列,继而可以求出通项公式(3)以 a = ma n 给出的数列(p , q , m 均为非零整数),当m = q 时,可以构造一个 n +1pa n + q等差数列;当m ≠ q 时,可以构造一个一阶递推公式6. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n1n n 等 差 数 列 及 其 前 n 项 和一、等差数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2. 数学语言表达式: a n +1 - a n = d ( n ∈N +,d 为常数),或a n - a n -1 = d ( n ≥2,d 为常数)3. 等差中项:如果三个数x ,A ,y 组成等差数列,那么 A 叫做 x 和 y 的等差中项,且有 A =x + y 2二、等差数列的通项公式与前n 项和公式1. 若等差数列{a n }的首项是a ,公差是d ,则其通项公式为a = a + (n -1)d = dn + a - d (n ∈ N *)n11通项公式的推广: a = a + (n - m )d ( m , n ∈N) ⇒ d =a n - a mnm+n - m2. 等差数列的前n 项和公式S= na + n (n -1) d = n (a 1 + a n ) = d n 2 + (a - 1 d )n n 12 22 1 2 (其中n ∈N +, a 1 为首项,d 为公差, a n 为第n 项)数列{a }是等差数列⇔ S = An 2+ Bn(A , B 为常数)三、等差数列的性质1. 非零常数列既是等差数列又是等比数列2. 数列{ a n }为等差数列⇔ a n = pn + q (p,q 是常数)3. 数列{λa n + b }( λ, b 为常数)仍为等差数列4. 若m + n = p + q (m , n , p , q ∈ N + ),则a m + a n = a p + a q5. 等差数列{a n }中,若项数成等差数列,则对应的项也成等差数列6. 等差数列{a n }中,隔相同的项抽出一项所得到的数列仍为等差数列p +nq 2k 2k n n 7. 若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d8. 若{a n }、{b n }是等差数列,则{ka n } 、{ka n + pb n }{a }( p , q ∈ N *)…也成等差数列 9.单调性:{a n }的公差为d ,则: (1) d > 0 ⇔ {a n }为递增数列 (2) d < 0 ⇔ {a n }为递减数列 (3) d = 0 ⇔ {a n }为常数列( k 、 p 是非零常数)、10. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k - S … 是等差数列 11. 等差数列{a n }的单调性:当d >0 时, {a n }是递增数列;当d <0 时, {a n }是递减数列;当d =0 时, {a n }是常数列12. 若{a n }是等差数列,公差为d ,则a k 、a k + m 、a k +2m …(k ,m ∈N +)是公差为md的等差数列13. 若数列{a}是等差数列,前n 项和为S ,则⎧S n ⎫也是等差数列,其首项和{a}的首 nn⎨ n ⎬ n项相同,公差是{a n⎩ ⎭}公差的 1214. 若三个数成等差数列,则通常可设这三个数分别为 x - d , x , x + d ;若四个数成等差数列,则通常可设这四个数分别为 x - 3d , x - d , x + d , x + 3d 四、等差数列前n 项的性质1. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k- S … 是等差数列2. 若数列{a } {b } 都是等差数列,其前 n 项和分别为S T ,则a n= 2n -1n,nn ,nbTn 2n -13. 若数列{a }的前n 项和S = An 2+ Bn +C (A , B 为常数,C ≠ 0) ,则数列{a n }从第二项起是等差数列sn⎨ 2n偶奇 中 偶 奇 偶偶4. 若数列{a n }是等差数列的充要条件是前n 项和公式S n = f (n ) ,是n 的二次函数或一次函数且不含常数项,即 S = An 2 + Bn (A , B 为常数,A 2 +B 2 ≠ 0)5. 等差数列{a n }中,若a < 0,d > 0 ( a ≤ 0 的n 的最大值为k )则S 有最小值S ,前n 项绝对值的和T n 1 = ⎧⎪-s n nn ≤ k;若a > 0,d< 0,( n a n ≥ k0 的n 的最大 ⎪⎩s n - 2s k n ≥ k + 1值为k )则S 有最大值S ,前n 项绝对值的和T = ⎧⎪s nn ≤ kn k n⎨ ⎪⎩2s k - s n n ≥ k + 16. 等差数列{a n }中,若项数为奇数2n - 1,则中间项为a , S =(2n-1)a ,S - S = n - 1 d s n + a , 奇 = 奇 偶 2 1S n - 1 若n 为偶数,则S = nd2若n 为奇数,则S - S =a (中间项)7. 等差数列{a n }中,若项数n 为奇数,设奇数项的和和偶数项的和分别为S 、S ,则sn + 1 s a n奇=;若项数n 为偶数, 奇= 2S n - 1S a n + 12五、等差数列的前 n 项和的最值等差数列{a n }中1. 若a 1>0,d <0,则S n 存在最大值2. 若a 1<0,d >0,则S n 存在最小值六、等差数列的四种判断方法1. 定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列2. 等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列3. 通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列4. 前 n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列1- S 偶 偶 奇mb n 等 比 数 列 及 其 前 n 项 和一、等比数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q ( q ≠0)表示 2.数学语言表达式: a n= q ( n≥2, q 为非零常数),或 an +1 = q ( n ∈N , q 为非零常数)+a n -1 a n3. 等比中项:如果三个数x ,G ,y 组成等比数列,那么G 叫做 x 与 y 的等比中项,其中G = ±二、等比数列的通项公式及前n 项和公式1. 若等比数列{a }的首项为a ,公比是q ,则其通项公式为a = a q n -1n通项公式的推广: a n 1= a q n - mn 1a (1- q n )a - a q 2. 等比数列的前n 项和公式:当q =1 时, S n = na 1 ;当q ≠1 时, S n =11- q= 1 n1- q三、等比数列的性质 1. q = 1 ⇒{a n }为常数列2. q < 0 ⇒{a n } 为摆动数列3. 若正项数列{a n }为等比数列,则数列{log a a n }为等差数列4. 若{a }是等比数列,则{λa }(λ 为不等于零的常数),{a 2}⎧ 1 ⎫ {a r }(r ∈ Z ) 是等n n n⎨ a ⎬ n ⎩ n ⎭比数列,公比依次是q ,q 2 1 q r ,若数列{a } ,{b }都是等比数列且项数相同,则⎧ a n ⎫是等比数列, , n nq ⎨ ⎬ ⎩n ⎭ 5. 若数列{a }为等差数列,则数列{ba n}为等比数列6. 若 m + n = p + q (m , n , p , q ∈ N + ) ,则 a⋅ a = a ⋅ a ,当 p = q 时, a ⋅ a = a 2 即a p 是a m 和a n 的等比中项mnpqm n p7. 相隔等距离的项组成的数列仍是等比数列,即a k 、a k + m 、a k +2m …仍是等比数列,公比为xy1 1 1 1 2n ⎩ n ⎩ q m (即若项数成等差数列,则对应的项也等比数列)8. 任意两数a , b 都存在等差中项为a + b,但不一定都存在等比中项,当且仅当a , b 同号时 2才存在等比中项为9. 任意常数列都是等差数列,但不一定都是等比数列,当且仅当非零的常数列即是等差数列又是等比数列10. 等比数列{a n }的单调性:(1) 当q >1, a >0 或 0< q <1, a <0 时,数列{a n }是递增数列 (2) 当q >1, a <0 或 0< q <1, a >0 时,数列{a n }是递减数列 (3) 当q =1 时,数列{a n }是常数列11. 当q ≠-1,或q =-1 且 n 为奇数时,S n 、S 2n - S n 、S 3n - S 仍成等比数列,其公比为q n12. 等比差数列{a n }: a n +1 = qa n + d , a 1 = b (q ≠ 0) 的通项公式为⎧b + (n -1)d q = 1⎪ a n = ⎨bq n+ (d - b )q n -1 - d ;⎪q -1 q ≠ 1 ⎧nb + n (n -1)d(q = 1)其前 n 项和公式为 s n ⎪ ⎨(b - d ) 1- q + d n(q ≠ 1)⎪1- q q -1 1- q(四)判断给定的数列{a n }是等比数列的方法(1)定义法: an +1 = q (不为 0 的常数)⇔数列{a a n}为等比数列(2)中项法: a ⋅ a= a2⇔数列{a }为等比数列mn +2n +1n(3)前n 项和法:数列{a n }的前n 项和S n = A - Aq n (A 是常数, A ≠ 0, q ≠ 0, q ≠ 1 )⇔数列{a n }为等比数列= nS 1 1 ⎨ - S 数 列 求 和一、公式法1. 等差数列的前n 项和公式: S n2. 等比数列的前n 项和公式 (1) 当q =1 时, S n = na 1= na 1+n (n -1) d = n (a 1 + a n)2 2a (1- q n )a - a q(2) 当q ≠1 时, S n = 11- q = 1 n1- q3. 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 (n = 1) (n ≥ 2) 4. 差比数列求和:通项为a n b n 型,其中{a n }是等差数列,{b n }是等比数列,称为差比数列.求和方法为(设 d , q 分别是{a n },{b n }的公差、公比):令S n = a 1b 1 + a 2b 2 + + a n b n …①,两边同乘以q 得qS n = a 1b 1q + a 2b 2q + + a n b n q , ∴qS n = a 1b 2 + a 2b 3 + + a n b n +1 …②,①-②得 (1- q )S n = a 1b 1 + (a 2 - a 1)b 2 + + (a n - a n -1)b n - a n b n +1 = a 1b 1 + d b 2 + d b 3 + + d b n -1 + d b n - a n b n +1 = a 1b 1 + d (b 2 + b 3 + + b n -1 + b n ) - a n b n +1= a 1b 1 + d ⨯b (1- qn) 1- q-a nb n +1,∴当q ≠ 1时, Sn = a 1b 1 - a n b n +1 + d ⨯ 1- q b (1- q n) (1- q )2二、观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.1.数列 2 , -1,10 , - 17 , 26 , - 37 , ,先将数列变为 2 , - 5 , 10 , - 17 , 26 , - 37, ,分母379 111335 79 11 13n +1n 2 +1 为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故a = (-1)2n +1 .2.又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7 ⨯999,9 9 9,而 9,99,999,依次又可写成10 -1,102-1,103 -1, ,因此,这个数列的通项公式为a = 7 (10n -1)n9n⎪ ⎪ 3. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n三、累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和四、累乘法:形如a= f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)五、构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法1. 对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加qp -1得, a +q = p (a +q) ,这样就构造出一个等比数列⎧a + q ⎫ ,其公比为 n +1p -1 np -1 ⎨ n p -1⎬⎩ ⎭p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -12. 对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列, =⎩设 a + xa =y (a + xa ) (*),显然⎧y - x = p.把方程组的解代入(*)便可构成一个等n +1n n n -1⎨xy = q比数列,继而可以求出通项公式3. 以 a= ma n 给出的数列( p , q , m 均为非零整数),当m = q 时,可以构造一个等n +1pa n + q差数列;当m ≠ q 时,可以构造一个一阶递推公式 4. 形如a n +1 = pa n + q (其中 p , q 均为常数且 p ≠ 0 )型的递推式:(1) 若 p = 1时,数列{ a n }为等差数列 (2) 若q = 0 时,数列{ a n }为等比数列(3) 若 p ≠ 1 且q ≠ 0 时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设a n +1 + λ = p (a n + λ) ,展开移项整理得a n +1 = pa n + ( p -1)λ ,与题设a = pa + q 比较系数(待定系数法)得λ =q, ( p ≠ 0) ⇒ a + q = p (a + q)n +1np -1 n +1p -1n p -1⇒ a + q= p (a + q ) ,即⎧a + q ⎫构成以a + q为首项,以 p 为公比的等比 np -1 n -1 p -1 ⎨ n p -1⎬ 1 p -1⎩ ⎭数列.再利用等比数列的通项公式求出⎧a + q ⎫的通项整理可得a . ⎨ n p -1⎬ n法二:由a= pa ⎩ ⎭ + q 得a = pa + q (n ≥ 2) 两式相减并整理得a n +1 - a n= p , 即 n +1 n n n -1 a - an n -1{a n +1 - a n }构成以a 2 - a 1 为首项,以 p 为公比的等比数列.求出{a n +1 - a n }的通项再转化为累加法便可求出a n .5. 形如a n +1 = pa n + f (n ) ( p ≠ 1) 型的递推式: (1) 当 f (n ) 为一次函数类型(即等差数列)时:法一:设a n + An + B = p [a n -1 + A (n -1) + B ] ,通过待定系数法确定 A 、B 的值,转化成以a 1 + A + B 为首项,以 p 为公比的等比数列{a n + An + B } ,再利用等比数列的通项公式求出{a n + An + B } 的通项整理可得a n .法二:当 f (n ) 的公差为d 时,由递推式得: a n +1 = pa n + f (n ) , a n = pa n -1 + f (n -1)两式相减得: a n +1 - a n = p (a n - a n -1 ) + d ,令b n = a n +1 - a n 得: b n = pb n -1 + d 转化为“4”求出 b n ,再用累加法便可求出a n .(2) 当 f (n ) 为指数函数类型(即等比数列)时:法一:设a n + λ f (n ) = p [a n -1 + λ f (n -1)],通过待定系数法确定λ 的值,转化成以 a 1 + λ f (1) 为首项,以 p 为公比的等比数列{a n + λ f (n )} ,再利用等比数列的通项公式求出{a n + λ f (n )} 的通项整理可得a n .法二:当 f (n ) 的公比为q 时,由递推式得: a n +1 = pa n + f (n ) ——①,a n = pa n -1 + f (n -1) ,两边同时乘以q 得a n q = pqa n -1 + qf (n -1) ——②,由①②两式相减得a - a q = p (a - qa ) ,即 a n +1 - qa n= p ,在转化为类型Ⅴ㈠便可求出a . n +1 n n n -1 a - qa nn n -1法三:递推公式为an +1 = pa n + q n (其中p ,q 均为常数)或a = pa n + rq n (其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以q n +1 ,得:a n +1 = p • a n + 1 ,引入辅助数列{b }(其中b = a n ),得: b = p b + 1 再应用类型 q n +1 q q n qn n q nn +1 q n q“4”的方法解决。

数列的概念及简单表示法

数列的概念及简单表示法

第1节数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类3.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.4.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).[常用结论与微点提醒] 1.一些常见数列的通项公式(1)数列1,2,3,4,…的通项公式为a n =n ; (2)数列2,4,6,8,…的通项公式为a n =2n ; (3)数列1,2,4,8,…的通项公式为a n =2n -1; (4)数列1,4,9,16,…的通项公式为a n =n 2; (5)数列1,12,13,14,…的通项公式为a n =1n . 2.已知递推关系求通项一般有两种常见思路: (1)算出前几项,再归纳、猜想; (2)利用累加或累乘法求数列的通项公式.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A3.已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1B .a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意,故选C.答案 C4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 答案 (-3,+∞)5.(2018·台州月考)在数列{x n }中,x 1=10,x n =log 2(x n -1-2),则数列{x n }的第2项是________,所有项和T =________. 解析 ∵x 1=10,x n =log 2(x n -1-2),∴x 2=log 2(x 1-2)=log 28=3,x 3=log 2(x 2-2)=log 21=0. 数列{x n }所有项的和为10+3+0=13. 答案 3 136.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 a 1=1,a 2=6=1+5=1+5×(2-1),a 3=11=1+5×2=1+5×(3-1), a 4=16=1+5×3=1+5×(4-1), ∴a n =1+5×(n -1)=5n -4. 答案 5n -4考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n ,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数,故所求数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 (1)数列0,23,45,67,…的一个通项公式为( ) A .a n =n -1n +2(n ∈N *)B .a n =n -12n +1(n ∈N *)C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *) (2)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.解析 (1)注意到分子0,2,4,6都是偶数,对照选项排除即可.(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n 1n (n +1).答案 (1)C (2)(-1)n1n (n +1)考点二 由S n 与a n 的关系求a n (易错警示)【例2】 (1)(2017·温州市十校联考)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)-2n -1(2)⎩⎨⎧4,n =1,2·3n -1,n ≥2规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形. 【训练2】 (1)若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.答案 (1)⎩⎨⎧2,n =1,6n -5,n ≥2 (2)(-2)n -1考点三 由数列的递推关系求通项公式【例3】 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.(2)(2018·衢州质检)在数列{a n }中,a 1=1,(n 2+2n )(a n +1-a n )=1(n ∈N *),则通项公式a n =________.解析 (1)由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n-1,∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1), ∴a n =3×2n -1-2(当n =1时,也满足).(2)由(n 2+2n )(a n +1-a n )=1得a n +1-a n =1n 2+2n =12×⎝ ⎛⎭⎪⎫1n -1n +2,所以a 2-a 1=12×⎝ ⎛⎭⎪⎫11-13,a 3-a 2=12×⎝ ⎛⎭⎪⎫12-14,…,a n -1-a n -2=12⎝ ⎛⎭⎪⎫1n -2-1n ,a n -a n -1=12⎝ ⎛⎭⎪⎫1n -1-1n +1,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=12×⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=74-2n +12n (n +1).答案 (1)3×2n -1-2 (2)74-2n +12n (n +1)规律方法 (1)形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.(2)形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n =f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项.(3)形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【训练3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项公式a n =________.(2)(一题多解)若a 1=1,a n =n -1n a n -1(n ≥2),则通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)法一 因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1·a n -2,…,a 2=12a 1,以上(n-1)个式子的等号两端分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n . 法二 因为a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n -1n ·n -2n -1·n -1n -2·…·1=1n . (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3. 答案 (1)n (n +1)2+1 (2)1n(3)2n +1-3基础巩固题组一、选择题1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n+1·2n 2n +1,故a 10=-2021. 答案 C2.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B .cos n π2C .cosn +12πD .cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D3.(一题多解)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A .2n -1B .2n -1+1C .2n -1D .2(n -1)解析 法一 由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.法二 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1. 答案 A4.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A .7B .6C .5D .4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D5.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A .2n -1B .n 2C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D6.(2018·宁波镇海中学调研)已知数列{a n }的首项a 1=a ,其前n 项和为S n ,且满足S n +S n -1=4n 2(n ≥2,n ∈N *),若对任意n ∈N *,a n <a n +1恒成立,则a 的取值范围是( ) A .(3,5)B .(4,6)C .[3,5)D .[4,6)解析 由S n +S n -1=4n 2(n ≥2,n ∈N *),得S n +1+S n =4(n +1)2.两式相减得,a n +1+a n =8n +4(n ≥2),则a n +2+a n +1=8n +12.两式相减得,a n +2-a n =8(n ≥2).又由a 1=a ,a 1+a 2+a 1=16得a 2=16-2a ,又由a 1+a 2+a 3+a 1+a 2=4×32得a 3=4+2a ,所以a 2n =a 2+8(n -1)=8n +8-2a ,a 2n +1=a 3+8(n -1)=8n -4+2a .因为对任意n ∈N *,a n <a n +1恒成立,所以⎝ ⎛a <16-2a ,8n +8-2a <8n -4+2a ,8n -4+2a <8(n +1)+8-2a ,解得3<a <5. 答案 A二、填空题7.若数列{a n }满足关系a n +1=1+1a n,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85. 答案 858.已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又a n a n +1=S n ,则a 3-a 1=________.解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,由于a 1≠0,则a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1. 答案 19.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a 1=________;a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2.答案 4 ⎩⎨⎧4,n =1,2n +1,n ≥210.(2018·绍兴一中适应性考试)数列{a n }的前n 项和为S n =n 2+n +1,b n = (-1)n ·(a n -2)(n ∈N *),则数列{a n }的通项公式为________,数列{b n }的前50项和为________.解析 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=n 2+n +1-[(n -1)2+(n -1)+1]=2n ,当n =1时不满足上式,则其通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.当n =1时,b 1=-1;当n ≥2时,b n =(-1)n ·(a n -2)=(-1)n ·2(n -1),则数列{b n }的前50项和为-1+2×1-2×2+2×3-…+2×49=-1+2×(1-2+3-…+49)=-1+2×25=49.答案 a n =⎩⎨⎧3,n =1,2n ,n ≥2 49三、解答题11.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍).∴从第7项起各项都是正数.12.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,……a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2. 显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2. 能力提升题组13.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.答案 D14.(2018·杭州调考)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 019的值为________.解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 019=6×336+3,∴a 2 019=a 3=1.答案 115.(2017·金丽衢十二校联考)对于各项均为整数的数列{a n },如果a i +i (i =1,2,3,…)为完全平方数,则称数列{a n }具有“P 性质”.不论数列{a n }是否具有“P 性质”,如果存在与{a n }不是同一数列的{b n },且{b n }同时满足下面两个条件: ①b 1,b 2,b 3,…,b n 是a 1,a 2,a 3,…,a n 的一个排列;②数列{b n }具有“P 性质”,则称数列{a n }具有“变换P 性质”. 下面三个数列:①数列{a n }的前n 项和S n =n 3(n 2-1);②数列1,2,3,4,5;③1,2,3, (11)具有“P 性质”的为________;具有“变换P 性质”的为________. 解析 对于①,当n ≥2时,a n =S n -S n -1=n 2-n ,∵a 1=0,∴a n =n 2-n ,∴a i +i =i 2(i =1,2,3,…)为完全平方数,∴数列{a n }具有“P 性质”;对于②,数列1,2,3,4,5,具有“变换P 性质”,数列{b n }为3,2,1,5,4,具有“P 性质”,∴数列{a n }具有“变换P 性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P 性质”. 答案 ① ②16.(2018·台州测试)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).17.(一题多解)已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .(1)解 当n =1时,a 1=S 1=4.对于n ≥2,有a n =S n -S n -1=2n (n +1)-2(n -1)n =4n . 又当n =1时,a 1=4适合上式,故{a n }的通项公式a n =4n . 将n =1代入T n =2-b n ,得b 1=2-b 1,故T 1=b 1=1. (求b n 法一)对于n ≥2,由T n -1=2-b n -1,T n =2-b n ,得b n =T n -T n -1=-(b n -b n -1),b n =12b n -1,所以数列{b n }是以1为首项,公比为12的等比数列,故b n =21-n . (求b n 法二)对于n ≥2,由T n =2-b n ,得T n =2-(T n -T n -1),2T n =2+T n -1,T n -2=12(T n -1-2),T n -2=21-n (T 1-2)=-21-n ,T n =2-21-n ,b n =T n -T n -1=(2-21-n )-(2-22-n )=21-n . 又n =1时,b 1=1适合上式,故{b n }的通项公式b n =21-n .(2)证明 (法一)由c n =a 2n ·b n =n 225-n , 得c n +1c n=12⎝ ⎛⎭⎪⎫1+1n 2. 当且仅当n ≥3时,1+1n ≤43<2,即c n +1<c n .(法二)由c n =a 2n ·b n =n 225-n ,得c n +1-c n =24-n [(n +1)2-2n 2]=24-n [-(n -1)2+2]. 当且仅当n ≥3时,c n +1-c n <0,即c n +1<c n .。

数列的基本概念和规律

数列的基本概念和规律

数列的基本概念和规律数列是数学中常见的概念之一,是一种按照一定规律排列的数的集合。

它在数学和实际生活中都有广泛的应用。

在本文中,我们将介绍数列的基本概念和规律,并举例说明其在不同领域的具体应用。

一、数列的定义和表示方式数列是由一系列有序的数按照一定规律排列而成的。

一般地,数列可以用下标表示,如a₁、a₂、a₃,也可以用公式表示,如an=n²。

其中,a₁、a₂、a₃是数列的前三项,an是数列的第n项。

二、数列的分类根据数列的规律性质不同,我们可以将数列分为等差数列、等比数列和斐波那契数列三种常见类型。

1. 等差数列等差数列是指数列中的相邻两项之间的差值相等的数列。

其通项公式一般为an=a₁+(n-1)d,其中a₁为首项,d为公差。

等差数列在实际生活中有着广泛的应用,比如计算机科学中的循环语句、物理学中的匀速直线运动等。

2. 等比数列等比数列是指数列中的相邻两项之间的比值相等的数列。

其通项公式一般为an=a₁*q^(n-1),其中a₁为首项,q为公比。

等比数列在金融和经济学中有着重要的应用,比如复利计算、人口增长预测等。

3. 斐波那契数列斐波那契数列是指数列中的每一项都等于前两项之和的数列。

其通项公式一般为an=an-1+an-2,其中a₁=a₂=1。

斐波那契数列在自然界中随处可见,比如植物叶子的排列、螺旋线的形成等。

三、数列的求和公式在某些情况下,我们需要求解数列的前n项和。

对于等差数列和等比数列,我们可以通过求和公式快速计算出结果。

1. 等差数列的求和公式对于公差为d的等差数列,其前n项和公式为Sn=(n/2)(a₁+an)。

2. 等比数列的求和公式对于公比为q且q≠1的等比数列,其前n项和公式为Sn=a₁*(1-q^n)/(1-q)。

四、数列的应用举例数列在不同领域都有着广泛的应用。

以下是一些具体的例子。

1. 自然科学领域数列在物理、化学和生物学等自然科学领域中有着重要的应用。

比如在物理学中,等差数列可以用来描述匀速直线运动中物体的位移随时间的变化;等比数列可以用来描述指数增长或衰减的过程。

数列的概念和表示方法

数列的概念和表示方法

数列的概念和表示方法数列是数学中重要的概念之一。

它由一系列按照一定规律排列的数字组成,这些数字依次排列,每一个数字称为数列的项。

数列的概念和表示方法有着广泛的应用,能够帮助我们解决很多实际问题。

一、数列的概念数列是按照一定规则排列的数字序列。

数列中的每个数字称为该数列的项。

数列可以无限延伸,也可以中断。

数列中的规律可以通过一定的公式或递推关系进行表示。

数列是数学研究以及实际问题解决中的重要工具。

二、数列的表示方法1. 通项公式通项公式是用代数表达式来表示数列中任意一项与该项所在位置之间的关系。

通项公式通常依赖于数列的项数或项号。

例如,斐波那契数列的通项公式为Fn = Fn-1 + Fn-2,其中n为项号,Fn表示第n项的值。

2. 递推公式递推公式是通过已知的一些项来推导出数列中的其他项的公式。

递推公式是数列的项之间的关系表达式。

例如,等差数列的递推公式为an = a1 + (n-1)d,其中an表示第n项的值,a1为首项的值,d为公差。

3. 图形表示数列也可以通过图形表示来展示其规律。

可以使用折线图、柱状图等方式将数列中的项与其对应的位置进行关联,从而更直观地观察数列的规律。

三、数列的应用数列的概念和表示方法在实际问题的解决中有着广泛的应用。

1. 自然科学中常常涉及到一些指数、级数等数列的求和问题。

例如天体物理学中的一些数学模型,对宇宙星系中星体的数量进行估算,可以使用数列求和的方法。

2. 经济学中,通过构建数列模型可以研究经济发展的趋势,并对经济指标进行预测和分析,从而指导经济政策的制定。

3. 在工程领域,数列的应用也非常广泛,如电子电路中的信号处理、图像处理等领域都离不开数列分析与处理。

4. 生活中的一些规律也可以通过数列进行描述,如雨滴的滴落、植物的生长等,都可以用数列来表示和研究。

总结:数列作为数学中的一个重要概念,有着广泛的应用领域。

通过数列的概念和表示方法,我们可以更好地理解和分析规律性的事件和现象。

数列的概念与简单的表示方法

数列的概念与简单的表示方法
规律:从第3个数开始,每一个数都等于它的前两个数的和。 三角形数: 1,3,6,10,……
规律:1 =1
3 =1+2
6 =1+2+3
10 =1+2+3+4
正方形数:1,4,9,16,……
规律: 1
4
9
16
问题:以上这三列数有什么共同特点? 按照一定顺序排列 着的一列数称为数列。
数列的概念
1、数列定义:按一定次序排成的一列数叫数列。 2、项的定义:数列中的每一个数都叫做这个数列的项, 各项依次叫做这个数列的第1项a1(或首项),第2项a2 ,… ,第n项an … , n是数列的项数。 3、数列的一般表示:数列的一般形式可表示a1,a2,… ,an,…简记为{an}。 注意:其中an是数列的第n项。
传说古希腊毕达哥拉斯学派的数学家经常在沙 滩上研究数学问题,他们在沙滩上画点或用小 石子摆成不同形状来研究数。
1
3
6
10
1,3,6,10,……,由于它们能够表示三角形,就把这 样的数称为三角形数。
1
4
9
16
类似的,1,4,9,16,……,这样的数称为正方形数。
1,1,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,21=8+13,……
n×(n+1) ……
解:这个数列的前4项都是分子为1的负分数,且分母等于 它的项数乘上后一项项数。 这个数列的一个通项公式为 an =(-1)/n×(n+1)
按项数

2、数列的分类:
{
有限数列 无穷数列 递增数列 递减数列 常数列 摆动数列
按增减性

数列知识点归纳总结中职

数列知识点归纳总结中职

数列知识点归纳总结中职一、数列的概念及表示方法1. 数列的概念数列是按照一定规律排列的一组数,其中每个数称为这个数列的项。

数列是数学中经常出现的一种基本概念,可以用来描述各种各样的数量的变化规律。

2. 数列的表示方法数列可以通过一般项的表示方式、递推式的表示方式以及图形表示等方式来表示。

(1)一般项的表示方式:通常用a1,a2,a3,...,an,...来表示数列的项,其中a1表示数列的第一个项,an表示数列的第n 项。

(2)递推式的表示方式:可以用一个数列的前几项来表示数列中任意一项,常见的递推关系有等差数列、等比数列等。

(3)图形表示:可以通过图形的方式来表示数列的规律,如图表、曲线等。

二、常见数列1.等差数列如果一个数列中任意相邻两项的差都是一个常数d,那么这个数列就是等差数列。

等差数列的一般项通常表示为an = a1 + (n - 1)d,其中a1为首项,d为公差。

2.等比数列如果一个数列中任意相邻两项的比都是一个常数q且q≠0,那么这个数列就是等比数列。

等比数列的一般项通常表示为an = a1 * q^(n-1),其中a1为首项,q为公比。

3.斐波那契数列斐波那契数列是一个非常经典的数列,其规律是从第三项开始,每一项都等于前两项之和。

斐波那契数列的一般项表示为an = an-1 + an-2,其中a1 = 1, a2 = 1。

4.等差等比混合数列有时候数列既有等差又有等比的特点,这种数列就是等差等比混合数列。

这种数列的一般项可以表示为an = a + (n-1)d + bn,其中a为首项,d为公差,b为首项,n为项数。

5.递推数列递推数列是一种通过前几项来确定后面项的数列,常见的有数列的递推式,递推数列的一般项可以表示为an = f(an-1, an-2,...,an-k),其中f为递推式。

三、数列的性质1. 数列的有界性数列中如果存在一个数M,使得对于数列的每一项an都成立|an| ≤ M,那么称这个数列有界。

数列的概念及简单表示方法

数列的概念及简单表示方法

§6.1 数列的概念及简单表示法1.数列的定义按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.5.已知S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)所有数列的第n 项都能使用公式表达.( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +12.( × )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n +1=S n +1-S n . ( √ ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( √ ) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 答案 A解析 ∵S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ∴a n =2n -1,∴a 8=2×8-1=15.3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( )A .1B .9C .10D .55答案 A解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.4. (2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =_____.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1.当n =1时,也符合a n =(-2)n -1. 综上,a n =(-2)n -1.5. (2013·安徽)如图,互不相同的点A1,A 2,…,A n ,…和B 1,B 2,…,B n …分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是________.答案 a n =3n -2由相似三角形面积比是相似比的平方知OA 2n +OA 2n +2=2OA 2n +1,即a 2n +a 2n +2=2a 2n +1, 因此{a 2n }为等差数列且a 2n =a 21+3(n -1)=3n -2,故a n =3n -2.题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式:(1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….思维启迪 先观察各项的特点,然后归纳出其通项公式,要注意项与项数之间的关系,项与前后项之间的关系.解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn.也可写为a n=⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(1)数列-1,7,-13,19,…的一个通项公式是a n =________.(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)(-1)n ·(6n -5) (2)2n +1n 2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为a n =(-1)n (6n -5).(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.题型二 由数列的前n 项和S n 求数列的通项例2 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ; (2)S n =3n +b .思维启迪 当n =1时,由a 1=S 1,求a 1;当n ≥2时,由a n =S n -S n -1消去S n ,得a n +1与a n 的关系.转化成由递推关系求通项. 解 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1, n ≥2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________.(2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________.(3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n .则{a n }的通项公式为________.思维启迪 观察递推式的特点,可以利用累加(乘)或迭代法求通项公式. 答案 (1)n (n +1)2+1 (2)2×3n -1-1 (3)a n =n (n +1)2解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1),即a n +1+1a n +1=3,所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法)a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1)=…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. (3)由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1.∴a na n -1=n +1n -1.∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2,又∵a 1=1,∴a n =n (n +1)2.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1na n -1(n ≥2),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N +),则a 5等于 ( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1na n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n.(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.数列问题中的函数思想典例:(12分)已知数列{a n }.(1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N +,都有a n +1>a n .求实数k 的取值范围.思维启迪 (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N +上单调递增,但自变量不连续.从二次函数的对称轴研究单调性. 规范解答解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. [4分]②∵a n=n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N +,∴当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.[8分](2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N +,所以-k 2<32,即得k >-3.[12分]温馨提醒 (1)本题给出的数列通项公式可以看做是一个定义在正整数集N +上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.(2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. (3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.方法与技巧1. 求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2. 强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).3. 已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有二种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法可求数列的通项公式.失误与防范1. 数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2. 数列的通项公式不一定唯一.A 组 专项基础训练 (时间:40分钟)一、选择题1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cosn π2C .cosn +12π D .cosn +22π答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2. 数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( )A .3×44B .3×44+1C .45D .45+1答案 A解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2).∴当n =6时,a 6=3×46-2=3×44.3. 若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15 答案 A解析 由题意知,a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.4. 已知数列{a n }的通项公式为a n =(49)n -1-(23)n -1,则数列{a n }( )A .有最大项,没有最小项B .有最小项,没有最大项C .既有最大项又有最小项D .既没有最大项也没有最小项 答案 C解析 ∵数列{a n }的通项公式为a n =(49)n -1-(23)n -1,令t =(23)n -1,t ∈(0,1],t 是减函数,则a n=t 2-t =(t -12)2-14, 由复合函数单调性知a n 先递增后递减. 故有最大项和最小项,选C.5. 若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于 ( )A.56B.65C.130 D .30答案 D解析 当n ≥2时,a n =S n -S n -1=nn +1-n -1n=1n (n +1),所以1a 5=5×6=30.二、填空题 6. 已知数列{n 2n 2+1},则0.98是它的第________项.答案 7解析 n 2n 2+1=0.98=4950,∴n =7.7. 数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N +,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=_____.答案6116解析 由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 8. 已知{a n }是递增数列,且对于任意的n ∈N +,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 答案 (-3,+∞) 解析 方法一 (定义法)因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 方法二 (函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数上的函数f (n )为增函数, 故只需满足f (1)<f (2),即λ>-3. 三、解答题9. 数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故数列从第7项起各项都是正数.10.已知数列{a n }的通项公式为a n =9n (n +1)10n,试判断此数列是否有最大项?若有,第几项最大,最大项是多少?若没有,说明理由. 解 a n +1-a n =9n +1(n +2)10n +1-9n (n +1)10n =9n 10n ·8-n10,当n <8时,a n +1-a n >0,即a n +1>a n ; 当n =8时,a n +1-a n =0,即a n +1=a n ; 当n >8时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 8=a 9>a 10>a 11>…,故数列{a n }有最大项,为第8项和第9项, 且a 8=a 9=98×9108=99108.B 组 专项能力提升 (时间:30分钟)1. 跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为( )A .8种B .13种C .21种D .34种 答案 C解析 设跳到第n 个格子的方法种数有a n ,则到达第n 个格子的方法有两类: ①向前跳1格到达第n 个格子,方法种数为a n -1;②向前跳2格到达第n 个格子,方法种数为a n -2,则a n =a n -1+a n -2, 由数列的递推关系得到数列的前8项分别是1,1,2,3,5,8,13,21. ∴跳到第8个格子的方法种数是21.故选C.2. 数列{a n }满足a n +a n +1=12(n ∈N +),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92 D.132答案 B解析 ∵a n +a n +1=12(n ∈N +),∴a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2.∴S 21=10×12+a 1=5+12-2=72.3. 若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________.答案 4解析由题意得⎩⎪⎨⎪⎧k (k +4)(23)k ≥(k +1)(k +5)(23)k +1k (k +4)(23)k≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10k 2-2k -9≤0,由k ∈N +可得k =4.4. 已知数列{a n }满足前n 项和S n=n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎪⎨⎪⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.5. 设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N +.(1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N +,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ). 即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N +. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N +, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2[12(32)n -2+a -3], 当n ≥2时,a n +1≥a n ⇒12(32)n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).。

数列的概念及表示方法

数列的概念及表示方法
公元前 13 世纪意大利数学家斐波那契的名著《算盘全书》中, 记载了一个著名的问题,某人有一对新生的兔子饲养在围墙 中,如果它们每个月生一对兔子,且新生的兔子从第三个月开 始也是每个月生一对兔子, 问一年后围墙中共有多少对兔子?
据 载 首 先 是 由 19 世 纪 法 国 数 学 家 吕 卡 将 级 数 {an} : 1,1,2,3,5,8,13,21,34,…,an+1=an+an-1 命名为斐波那契数列, 它在数学的许多分支中有广泛应用.
②用列表法表示:
n an
1 1
2 1 2
3 1 3
4 1 4
5 1 5
… …
③用图象法表示为(在下面坐标系中绘出):
数列中的项与数集中的元素进行对比,数列中的项具有怎样的性质?
答 (1)确定性:一个数是或不是某一数列中的项是确定的,集合中
的元素也具有确定性; (2)可重复性: 数列中的数可以重复, 而集合中的元素不能重复出现(即 互异性); (3)有序性: 一个数列不仅与构成数列的“数”有关, 而且与这些数的排 列次序有关,而集合中的元素没有顺序(即无序性); (4)数列中的每一项都是数,而集合中的元素还可以代表除数字外的 其他事物.
下面是用列举法给出的数列, 请你根据题目要求补充完整. (1)数列:1,3,5,7,9,… ①用公式法表示:an= 2n-1,n∈N ; ②用列表法表示:
*
n an
1 1
2 3
3 5
4 7
5 9
… …
③用图象法表示为(在下面坐标系中绘出):
1 1 1 1 (2)数列:1,2,3,4,5,…
1 * , n ∈ N ①用公式法表示:an= n .
1.按照一定顺序排列的一列数称为 数列,数列中的每一个数叫做这个 数列的 项 .数列中的每一项都和它的序号有关,排在第一位的数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 数列的有关概念 2.数列的分类 3. 数列的表示方法: 1.列举法 2.通项公式法 3.图像法
课堂练习:课本3页 第2题。 5页 第1,2题
作业:习题一(课本6页)第1,2题。
谢谢观看! 2020
第七章 数列
7.1 数列的概念
学习目标
理解数列的概念,掌握数列表示法,掌握通项公式的求 法 学习重点 数列的概念,能求出通项公式 以及由通项公式求项
丞相发明了国际象棋, 因为很好玩,所以……
64个格子
你想得到 什么样的
赏赐?
Let me see
丞相
国王
我得考考国王
请国王在棋盘的第1格放1 颗麦子,第2格放2颗麦子, 第3格放4颗麦子,如此下 去,后一格麦子数是前一 格的2倍,放满64格。请国 王把这些麦子赏赐给臣。
臣将不胜感激!
这个要求真的很容易满足吗?聪明的同学请 您帮国王参谋,参谋!
1, 2, 22 , 23,…,263
这个要求 太容易 满足了!
1+2+22+…+263=?
举例:
(1)麦粒的数量:1, 2, 22 , 23 ,…,263
(2)正整,1,2,3,4,5的倒数排成一列:1,
1 2
,
1 3
,
解:这个数列的前4项
22 1 , 32 1
2
3
, 42 1 ,52 1 ;
4
5
的分母都是序号加上1,分子都是分母的平方减去1,所以它
的一个通项公式是
n 12 1
an
n 1
1.如图所示:
23 14
6 7 10 58 9
BC
… AD
问:2002位于A、B、C、D的哪个位置? B
2.数列 1,3,6,10,( 15 ),21,28,
1,1,1,1,1,1,...
常数列
3,3,3,L 3L
1
0
1
an
三.数列 的表示方

1.列举法
序号
数列的一般形式: a1, a2 , a3 , , an ,
或简记为 an. 第1项(或首项)
第n项
an与an 的
an 表示数列 a1, a2 , a3 , , an , ,
而an 只表示这个数列的第n项.
1, 1, 1 , 1 , 1,…
an=1
20 3.图像法
18 16 14 12 10 8
6 4 2
0 1234
an 2n的图像
是些孤立点
5 6 7 8 9 10
5
做出常数数列: 3,3,3,3,图象
4
3 2 做出摆动数列:- 1,1,- 1,1,图象
我们好孤单!
1
0
1
2
3
4
5
-1
例1 根据下面数列 an 的通项公式,写出它的前5项及10项:
注:数列中的项必须是数,而集合中的元素不一定是数
二.数列的分类:
按数列中项数分
有穷数列
1, 1 , 1 , 1 ,5,5,…
2.按数列中项与项之间的大小关系分:
递增数列
3,5,7,…,2n+1, …
递减数列
1 , 1 , 1 ,L 1 L 2 4 6 2n
摆动数列

an
2n 2n 1


an 1n (2n 1)
解:
⑴在
an
2n 中依次取
2n 1
n=1,2,3,4,5,10
得到数列
n
n
1
2
的前5项及10项分别为:
,
4
,
6
,
8
,
10
.
20
3 5 7 9 11 21
⑵在 an 1n (2n 1) 中依次取n=1,2,3,4,5,10得 数
列 1n (2n 1) 的前5项及10项分别为:-1,3,-5,7,-9.19
区别是什么?
2.通项公式法
序号n
1
2
3
4 … 20
项 an
2
22
a1 a2
23
24
… 220
a3
an 2n
数列an的第n项 an 与 n 之间的关系 数列的通项公式.
(公式)
通项公式
1. 1, 2, 3,2, 5, 6, L
an n
2. 2, 4,8,16,32, 64, L
an 2n
3.
例2 写出下面数列的一个通项公式,使它的前4项分别是下列各数:
⑴ 22 1, 32 1 ,42 1
2
3
4
52 1 ,5
分析: 序号 1
2
3
4
项分母 2 =1+1 3 =2+1 4 =3+1 5=4+1 项分子 ( 1+1)2 -1 (2+1) 2 -1 (3+1)2 -1 (4+1) 2 -1
1 4
,
1 5
.
(3)无数个1和-1排成一列:1,-1,1,-1……
(4)无穷多个5排成一列数:5,5,5,5,…
一.数列的定义
按照一定次序排列的
一列数叫做 数列
1. 都是一列数;
数列中的每一个数叫
做数列的 项
2. 都有一定的次序
思考: 数列与集合有什么区别?
集合讲究:无序性、互异性、确定性, 数列讲究:有序性、可重复性、确定性
相关文档
最新文档