中考统计与概率知识点大全
初中数学概率与统计知识点总结与归纳

初中数学概率与统计知识点总结与归纳在初中数学中,概率与统计是一个重要的知识领域,它涉及到我们生活中的各种随机事件和数据处理。
通过学习概率与统计,我们可以更好地理解和分析数据,做出准确的推断和预测。
下面将对初中数学中的概率与统计知识点进行总结与归纳。
一、概率1. 概率的基本概念概率是指某个事件发生的可能性大小,通常用一个介于0和1之间的数来表示。
0表示不可能事件,1表示必然事件。
2. 事件的互斥与独立性互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否相互不影响。
互斥事件的概率相加等于总事件的概率。
3. 事件的可能性事件的可能性等于有利结果数目除以总结果数目,通常用分数或百分比表示。
4. 抽取样本的概率当从一个有限的样本空间中进行抽样时,抽取每个样本的概率相等。
可以通过计算有利结果数目与总结果数目之比来求得概率。
5. 随机事件的概率计算通过数学方法和实验方法,可以计算复杂事件的概率。
对于简单事件,可以通过计数的方法来计算。
6. 事件的补事件的概率事件的补事件是指与其对立的事件,两个事件的概率相加等于1。
7. 代数运算通过代数运算,可以对事件的概率进行加法和乘法运算。
加法运算用于求两个事件中至少发生一个的概率,乘法运算用于求两个事件都发生的概率。
二、统计1. 数据的收集与整理统计学中的数据可以通过调查、实验或观察获得。
收集到的数据需要进行整理,包括去除异常值和冗余数据。
2. 数据的分布形式数据可以分为定量数据和定性数据。
定量数据可以进行精确计量,如身高、体重等,而定性数据是非数值性的,如性别、颜色等。
数据分布形式有离散型和连续型两种。
3. 数据的图表表示统计学中常用的图表包括条形图、折线图、饼图和散点图。
这些图表可以直观地展示数据的特征和规律。
4. 数据的中心趋势通过求数据的平均值、中位数和众数等可以了解数据的中心趋势。
平均值是全部数据的总和除以数据数量,中位数是将数据按大小排序后居中位置的数值,众数是出现次数最多的数值。
初三数学总复习——统计与概率

初三数学总复习——第五单元 《统计与概率》 第一课时 《数据的收集、整理和描述》 一、数据的收集与整理收集数据的方法主要有全面调查(又叫普查)与抽样调查两种(注意两种方法的适用范围)。
全面调查指考察全体对象的调查;抽样调查指为了一特定目的而对一部分由代表性的个体所进行的调查。
抽样调查的目的是用样本特征去估计总体特征。
二、总体、个体、样本和样本容量的概念 总体:所要考察对象的全体; 个体:组成总体的每一个考察对象;样本:从总体中取出的一部分个体叫总体的一个样本; 样本容量:样本中个体的数量. 三、数据的描述、整理1、条形图:能够显示每组中的具体数据,易于比较数据之间的差别;2、折线图:易于显示数据的变化趋势;3、扇形图:显示各部分在总体中所占的百分比,易于显示各组数据于总体的大小。
例1、(1)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为()A .1万件B .19万件C .15万件D .20万件(2)下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解吉首市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查(3)如图,是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( ) A .4 B .8 C .10 D .12(4)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( ) A .个体B .总体C .样本容量D .总体的一个样本(5)要反映某市一天内气温的变化情况宜采用( )8 64 2 O40 50 60 70 80成绩A .条形统计图B .扇形统计图C .频数分布直方图D .折线统计图(6)如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为.例2、下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.练习:一、填空与选择题1、某活动小组为了解所在地区老年人的健康状况,分别作了以下调查,你认为抽样比较合理的是( ) A 、在学校附近调查了1000名老年人的健康状况; B 、在医院调查了1000名老年人的健康状况; C 、调查了小组某成员10户老年邻居的健康状况;D 、利用派出所户籍网随机调查了该地区10%的老年人的健康状况 2、观察统计图,下列结论正确的是( )A 、甲校女生比乙校女生少B 、乙校男生比甲校男生少C 、乙校女生比甲校男生多D 、乙校女生比男生多3、今年我市有9万名初中毕业生参加升学考试,为了了解9万名考生的数学成绩,从中抽取2000名考生数学成绩进行统计分析.在这个问题中总体是( )A .9万名考生B .9万名考生的数学成绩C .2000名考生D .2000名考生的数学成绩 4、要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是( ) A .一年中随机选中20天进行观测; B .一年中随机选中一个月进行连续观测; C .一年四季各随机选中一个月进行连续观测;D .一年四季各随机选中一个星期进行连续5、从鱼塘中捕得同时放养的草鱼240尾,从中任选9尾称得每尾鱼的质量分别是:1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾草鱼的总质量大约是千克6、某校把学生的笔试成绩、实践能力和成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀,甲、乙、丙三人的各项成绩如右表(单位:分),则优秀的是笔试成绩实践能力成长记录甲 90 83 95 乙 88 90 95 丙908890175150台数 冰箱%% 35%10% 电脑电视机热水器 洗衣机注意..:将答案写在横线上 5%二、现从我市区近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解答下列问题:(l )卖出面积为110-130cm 2的商品房有套,并在右图中补全统计图;(2)卖出最多的商品房约占全部卖出的商品房的%;(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?三、今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将统计图①补充完整;(3)在统计图②中,“无所谓”部分所对应的圆心角是_________度;(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有__________万人.并根据统计信息,谈谈自己的感想.(不超过30个字)四、某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.乒乓球 20% 足球第二课时 《数据的分析》四、描述一组数据的集中趋势的特征数1、平均数(加权平均数):nx x x x n+++=21(n 表示数据的个数);2、众数:一组数据中出现次数最多的数据;3、中位数:将一组数据按大小顺序排列,处在最中间位置的一个数(当数据个数为奇数个时)或最中间位置两个数的平均数(当数据个数为偶数个时)为这组数据的中位数. 五、描述一组数据的波动大小(离散程度)的量极差、方差:一般地,这两个量越小,反映这组数据的波动越小,即数据越稳定.极差=n最小数据最大数据- ;方差:[]222212)()()(1x x x x x x n s n -++-+-=六、频数与频率:反映一组数据中某种对象出现的频繁程度频数:一组数据中某种对象出现的个数;频率n频数= 。
中考统计与概率知识点大全

统计与概率知识点归纳
考点一、全面调查与抽样调查
考点二、统计学中的几个基本概念
总体、个体、样本、样本容量、样本平均数、总体平均数 考点三、平均数(x 读作“X 拔”)、加权平均数、 众数、中位数
1、众数:
2、中位数:
考点四、方差 、标准差
1、方差的概念、通常用“2s ”表示,])()()[(1222212x x x x x x n
s n -++-+-= 2、标准差的概念、用“s ”表
])()()[(1222212x x x x x x n
s s n -++-+-== 考点五、几种常见的统计图
1、 条形统计图、折线统计图、扇形统计图
2、 频数分布直方图
① 极差: ②频数: ③频率:
考点六、确定事件和随机事件
1、确定事件:
2、随机事件:
考点七、概率的意义与表示方法
1、概率的意义:
2、事件的概率的表示方法:
考点八、列表法求概率
1、列表法
2、列表法的应用场合 (当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
)
考点九、树状图法求概率
1、树状图法
2、运用树状图法求概率的条件 (当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
)
考点十、用频率估计概率、 考点十一、概率的应用:主要用来评判某项活动是否“合算”,游戏是否“公平”等。
初中概率统计知识点总结

初中概率统计知识点总结概率统计是数学中的一个分支,是对现实生活中事件出现的可能性进行研究和计算的一门学科,也是统计学的一部分。
概率统计的应用非常广泛,从商业到科学领域都有应用。
初中阶段的概率统计主要介绍了概率的概念、概率计算和统计学的基础知识,下面我们来总结一下初中概率统计的主要知识点。
一、概率的基本概念1. 事件和样本空间事件是指在一次随机试验中可能发生的结果,通常记作A、B等。
样本空间是指随机试验的所有可能结果的集合,一般用Ω表示。
2. 概率的定义概率是指某一事件发生的可能性大小,通常用P(A)表示事件A的概率。
概率的取值范围是0到1,其中0表示事件A不可能发生,1表示事件A一定发生。
3. 等可能事件如果事件A和事件B在同一个样本空间中,且发生的可能性相同,称事件A和事件B是等可能事件,此时有P(A) = P(B) = 1/ n (n 是样本空间中的元素个数)。
4. 互斥事件如果事件A和事件B不能同时发生,称事件A和事件B是互斥事件,此时有P(A∪B) = P(A) + P(B)。
5. 事件的对立事件如果事件A的对立事件发生的概率为1-P(A),称事件A的对立事件。
二、概率的计算1. 加法法则对于任意两事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 条件概率在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),有P(A|B) = P(A∩B) / P(B)。
3. 乘法法则对于两个事件A和B,有P(A∩B) = P(A) * P(B|A) = P(B) * P(A|B)。
4. 全概率公式对于事件B和事件A的任意一个划分,有P(A) = ΣP(Bi) * P(A|Bi)。
五、统计学的基础知识1. 数据的表示统计学中常用的数据表示有频数分布、频率分布、累积频数、累积频率等。
2. 平均数一组数据的平均数是指所有数据的和除以数据的个数,用来表示一组数据的中心倾向。
初中概率与统计知识点汇总

初中概率与统计知识点汇总概率与统计是数学中的一门重要分支,它涉及到我们日常生活中的各种问题,如抛硬币、掷骰子、抽奖等等。
在初中阶段,我们开始接触概率与统计的基本概念和计算方法。
下面将对初中阶段概率与统计的知识点进行汇总和解释。
一、概率的基本概念概率是描述事件发生可能性的一种数学方式。
在初中阶段,我们主要学习了以下几个与概率相关的基本概念:1.样本空间:一个随机试验中所有可能结果的集合称为样本空间。
例如,掷一枚硬币的样本空间为{正面,反面}。
2.事件:样本空间中的一个子集称为事件。
例如,掷一枚硬币出现正面的事件可以表示为{正面}。
3.事件发生的概率:事件发生的概率是指事件在所有可能结果中出现的可能性大小。
我们可以用一个介于0到1之间的数来表示概率,其中0表示不可能事件,1表示必然事件。
4.等可能概率:当样本空间中的每个事件发生的概率相等时,我们称这样的概率为等可能概率。
例如,抛一枚均匀硬币正面和反面的概率均为1/2。
二、事件的计算方式我们可以通过列出样本空间、计算事件发生的次数或计算事件发生的可能性来确定事件的概率。
在初中阶段,我们主要学习了以下几种计算事件的方法:1.频率:通过实验重复多次来确定事件发生的可能性,频率等于事件发生的次数除以试验次数。
例如,通过多次掷一枚均匀硬币,我们可以得到正面朝上的频率。
2.理论概率:根据事件发生的可能性来确定概率。
例如,一枚均匀硬币正面朝上的概率为1/2。
3.样本点法:通过列出样本空间中的样本点,并对事件发生的样本点进行计数,从而确定概率。
例如,掷一枚均匀硬币正面朝上的概率可以通过样本点法得出为1/2。
三、概率的运算在初中阶段,我们学习了概率的加法法则和乘法法则。
概率的运算可以帮助我们计算复杂事件的概率。
1.加法法则:当两个事件没有同时发生的可能性时,它们的概率可以通过将它们的概率相加来计算。
例如,抛一枚硬币正面朝上的概率为1/2,抛一颗骰子出现1的概率为1/6,那么抛硬币正面朝上或者抛骰子出现1的概率为1/2+1/6=2/3。
数学中考知识点统计及概率有哪些

数学中考知识点统计及概率有哪些随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而使用统计过程中产生了种种悖论。
下面是小编给大家带来的数学中考知识点统计及概率,欢迎大家阅读参考,我们一起来看看吧!数学中考知识点统计初步频率分布1、有关概念(1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在100个以内时,通常分成5-12组。
(2)频数:每个小组内的数据的个数叫做该组的频数。
各个小组的频数之和等于数据总数n。
(3)频率:每个小组的频数与数据总数n的比值叫做这一小组的频率,各小组频率之和为l。
(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。
(5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。
图中每个小长方形的高等于该组的频率除以组距。
每个小长方形的面积等于该组的频率。
所有小长方形的面积之和等于各组频率之和等于1。
样本的频率分布反映样本中各数据的个数分别占样本容量n的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。
2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列领率分布表;(5)绘频率分布直方图。
中考数学知识点:统计初步一、重要概念1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、计算方法1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
中考数学总复习:统计与概率

中考数学总复习:统计与概率统计与概率是中学数学中的一大重要内容,也是中考数学中出现频率较高的考点之一。
本文将从统计和概率两个方面进行和复习,以帮助同学们系统地回顾和巩固相关知识点。
统计一、数据的整理和统计学中的第一步是对所给的数据进行整理和,常见的方法有以下几种:1.频数表:将数据按照取值的不同进行分类,并统计每个类别中数据出现的频数。
示例: | 数据 | 频数 | | —- | —- | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 5 |2.频率表:在频数表的基础上,计算每个类别的频率,即频数与样本容量的比值。
3.线性图:可用于展示数据的分布特征,横坐标表示数据的取值,纵坐标表示频数或频率。
二、代表性指标代表性指标是对数据集中趋势或平均水平进行衡量的数值,常见的代表性指标有以下几种:1.平均数:在一组数据中,所有数值的和除以数据的个数。
示例:给定一组数据:4, 5, 6, 7, 8,求平均数。
平均数 = (4 + 5 + 6 + 7 + 8) / 5 = 30 / 5 = 62.中位数:将一组数据从小到大排列,位于中间位置的数值。
示例:给定一组数据:3, 5, 1, 9, 2,求中位数。
排序后的数据:1, 2, 3, 5, 9 中位数为33.众数:一组数据中出现频率最高的数值。
三、概率概率是研究随机事件发生可能性的数学分支。
以下是概率计算中常用的一些基本概念和方法:1.样本空间:随机试验的所有可能结果组成的集合。
2.事件:样本空间中的一个子集。
3.概率:事件发生的可能性大小,范围在0到1之间。
4.加法法则:对于两个互斥事件 A 和 B,它们同时发生的概率等于各自概率的和。
示例:P(A ∪ B) = P(A) + P(B)5.乘法法则:对于独立事件 A 和 B,它们同时发生的概率等于各自概率的乘积。
示例:P(A ∩ B) = P(A) × P(B)以上仅为统计与概率的部分内容,同学们在备考中需结合教材和试题进行全面复习。
概率与统计中考知识点总结

概率与统计中考知识点总结一、概率1.1 随机试验与概率随机试验是指满足以下条件的试验:在一定条件下,试验的结果是不确定的,但是结果的可能性是可知的。
样本空间是随机试验的全部可能结果的集合,事件是样本空间的子集。
概率是指事件发生可能性的大小。
1.2 概率的性质(1)非负性:任何事件的概率都大于等于零。
(2)规范性:样本空间的概率是1。
(3)可列可加性:若事件A₁、A₂、A₃、…两两互不相容,则P(A₁∪A₂∪A₃∪…) = P(A₁) + P(A₂) + P(A₃) + …1.3 事件的概率(1)等可能事件的概率:对于n个等可能事件,它们的概率都是1/n。
(2)事件的概率计算:P(A) = n(A) / n(S),其中n(A)是事件A中元素的个数,n(S)是样本空间S中元素的个数。
(3)互斥事件的概率:对于互斥事件A和B,P(A∪B) = P(A) + P(B)。
1.4 条件概率(1)在事件B已发生条件下事件A发生的概率:P(A|B) = P(A∩B) / P(B)。
(2)条件概率的性质:- P(AB) = P(A)×P(B|A) = P(B)×P(A|B);- P(A₁A₂) = P(A₁)×P(A₂|A₁) = P(A₂)×P(A₁|A₂)。
1.5 独立事件若P(A₁A₂) = P(A₁)×P(A₂),则事件A₁和A₂是独立事件。
1.6 事件的相互关系事件A和B的关系可以用交、并、差、余等集合的运算来描述:(1)交集:事件A和B同时发生的事件记为A∩B。
(2)并集:事件A或B发生的事件记为A∪B。
(3)差集:事件A发生而B不发生的事件记为A-B。
(4)余集:事件A不发生的事件记为A¯。
1.7 重要公式(1)全概率公式:P(A) = P(A|B₁)×P(B₁) + P(A|B₂)×P(B₂) + … + P(A|Bₙ)×P(Bₙ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考统计与概率知识点
大全
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
第五章 统计初步与概率初步
考点一、平均数 (3分)
1、平均数的概念
(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,
)(121n x x x n
x +++= 叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为n
f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2、平均数的计算方法
(1)定义法
当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:
)(121n x x x n
x +++= (2)加权平均数法: 当所给数据重复出现时,一般选用加权平均数公式:n
f x f x f x x k k ++=2211,其中n f f f k =++ 21。
(3)新数据法:
当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',
a x x -=22',…,a x x n n -='。
)'''(1'21n x x x n
x +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
考点二、统计学中的几个基本概念 (4分)
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点三、众数、中位数 (3~5分)
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
考点四、方差 (3分)
1、方差的概念
在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即
2、方差的计算
(1)基本公式:
(2)简化计算公式(Ⅰ): 也可写成2222212)][(1x x x x n
s n -+++= 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',
a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x n
s n -+++= 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得,',,','21n x x x 的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s ”表示,即
考点五、频率分布 (6分)
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率。
考点六、确定事件和随机事件 (3分)
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点七、随机事件发生的可能性 (3分)
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点八、概率的意义与表示方法 (5~6分)
1、概率的意义
一般地,在大量重复试验中,如果事件A 发生的频率m
n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P
(A )=P
考点九、确定事件和随机事件的概率之间的关系 (3分)
1、确定事件概率
(1)当A 是必然发生的事件时,P (A )=1
(2)当A 是不可能发生的事件时,P (A )=0
2、确定事件和随机事件的概率之间的关系 事件发生的可能性越来越小
0 1概率的值
不可能发生 必然发生
事件发生的可能性越来越大
考点十、古典概型 (3分)
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
m
等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
n
考点十一、列表法求概率(10分)
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
考点十二、树状图法求概率(10分)
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点十三、利用频率估计概率(8分)
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。