复变函数
复变函数的性质与分类

复变函数的性质与分类复变函数是数学中的一个重要概念,它在实际问题的建模和解决中具有广泛的应用。
本文将介绍复变函数的性质与分类,帮助读者更好地理解和应用复变函数。
1. 复变函数的定义复变函数是指自变量和函数值都是复数的函数。
设二元实数域R 中的二元有序对z=(x,y),其中x∈R,y∈R,因此z既可写成z=x+yi,也可写成z=(x,y)。
所以有R⊂C。
设f是以D为定义域的二元实数域R上的函数:若对于每一个属于D的z既唯一确定一个属于F的一个复数w=f(z)。
则称f为在D上取值于复数集F的复变函数,即示例代码star:编程语言:f: D → Fz→w=f(z)示例代码end其中z为自变量、w为函数值,D为定义域,F为函数值集合。
2. 复变函数的性质复变函数具有一些特殊的性质,这些性质是理解和应用复变函数的基础。
2.1 解析性如果一个函数在某个区域内可以展开为幂级数,则称该函数在该区域内解析。
解析性是复变函数重要的性质之一,在很多实际问题中起到关键作用。
2.2 连续性与实变函数类似,复变函数也具有连续性。
如果一个复变函数在某点处连续,则说明在该点附近,该函数没有突变或间断点。
2.3 可微性与实变函数不同,复变函数存在可微性这一特殊性质。
如果一个复变函数在某点处可导,则说明在该点处存在切线可以很好地描述该点附近的行为。
3. 复数平面和复平面为了更好地研究复变函数,我们引入了复数平面和复平面这两个概念。
3.1 复数平面复数平面是由所有复数构成的平面。
每个复数可以通过直角坐标系表示为一个有序对(x, y),其中x表示实部,y表示虚部。
通过把坐标原点(0,0)对应于零,将全部正实轴对应到实部正半轴,并且使得偏离原点的距离与两个坐标轴之间夹角相等来映射到剩下区域。
3.2 复平面复平面是由全部符合 z=x+iy 形式定义在D上取值于F 的全体点所组成的二维空间C所表示得到。
这样C族就可以嵌入Px(X 轴)和Nv (Y 轴)点平间难互独运动并且两轴都阳等L 技获取得到一个表示方便易操作全体符号z 点解析情况的几何工具空间。
第一章复变函数

为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|
•
z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x
o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg
大学数学复变函数

大学数学复变函数数学是一门广泛应用于各个领域的学科,不论是物理学、工程学还是经济学,都离不开数学的支持和应用。
而复变函数作为数学中的一个重要分支,具有多样化的性质和广泛的应用。
本文将对大学数学中的复变函数进行详细的介绍和探讨。
一、复变函数的定义与性质复变函数是数学中的一种特殊函数形式,它的自变量和因变量都是复数。
复变函数可以写成以下形式:f(z) = u(x, y) + i * v(x, y)其中,z = x + i * y,u(x, y)和v(x, y)分别为实部和虚部。
复变函数的定义可以看作是将复平面上的点z映射到另一个复平面上的点w,从而建立起了一个函数关系。
复变函数有一些重要的性质:1. 解析性:如果在某个区域内,函数f(z)在该区域上处处可导,则称该函数在该区域内解析。
2. 共轭函数:对于一个复变函数,可以定义其共轭函数。
共轭函数是将函数中所有虚部的符号取反而得到的的函数。
3. 调和函数:对于一个复变函数,如果其实部和虚部都是调和函数,则称该函数为调和函数。
4. 周期性:复变函数可以具有周期性,即存在某个常数T,使得f(z + T) = f(z)对于所有的z成立。
5. 极限性质:与实变函数类似,复变函数也具有极限性质,包括一致收敛、点态收敛等。
二、复变函数的应用复变函数在物理学、工程学、经济学等领域中有着广泛的应用。
以下是一些典型的应用领域:1. 电路理论:复数电路理论是电工学中的一个重要部分,复变函数可以用来分析交流电路的性质和行为。
2. 信号处理:在信号处理领域,复变函数有着广泛的应用。
例如,复数域中的傅里叶变换在信号处理中起着重要的作用。
3. 流体力学:复变函数在流体力学中的应用也非常广泛。
例如,通过复变函数可以分析流体的速度场、流线场等。
4. 统计学:复变函数在统计学中也有重要的应用,特别是在复数域中的概率论和数理统计学中。
5. 工程优化:复变函数在工程优化中也发挥着重要的作用。
复变函数

复变函数一、复数与复变函数1、w n =ZW=r 1/n [cos(θ+2ki πn )+isin(a +2ki πn )]其中k 取1、2、3、、、、、n-12、区域是开集,闭区域是闭集,除了全平面既是区域又是闭区域这一个特例外,区域与闭区域是两种不同的点集,闭区域并非区域。
3、单连通域:区域中没有洞和缝多连通域:区域中有洞或者缝二、解析函数1、解析函数:在z 0处可导,且在z 0的领域中可导。
2、解析函数的一个充分必要条件:函数f(x,y)=u(x,y)+iv(x,y),u(x,y)和v(x,y)在点(x,y)处可微,而且满足柯西——黎曼方程。
(C-R 方程)∂u ∂x =∂v ∂y ∂u ∂y =−∂v ∂xf(z) =∂u ∂x +i ∂v ∂x =∂v ∂y +i ∂v ∂x =∂u ∂x −i ∂u ∂y =∂v ∂y −i ∂u ∂yC-R 方程为函数f (z )可导的必要条件4、调和函数和共轭调和函数调和函数:二元实函数φ(x,y )在区域D 内有二阶连续偏导数,且满足二维拉普拉斯方程∂φ2∂x +∂φ2∂y =0 共轭调和函数:φ(x,y )及ρ(x,y)均在区域D 内的调和函数,且满足C-R 方程函数f(x,y)=u(x,y)+iv(x,y)在区域D 内解析的充分必要条件:在D 内u x,y 是v x,y 的共轭调和函数 5、初等函数指数函数:e iy =cosy+isinye z 是以2ki π为周期的周期函数对数函数:lnz=ln z +iargzLnz= ln z +iArgz= ln z +i(argz+2k π)Ln z 2≠2LnzLn z n ≠1n Lnz幂函数:z α=e αlnz α为正整数,函数为单值函数α=1n n 为正整数 有限值α=z 复数 无限个值三角函数:cosy=e iy +e −iy 2 siny=e iy −e −iy 2i 三、复变函数的积分1、常用的公式dz (z −z 0)n = 2πi n =1 0 n ≠1成立条件:a 、封闭区间的积分b 、z 0在封闭曲线C 的内部C 、被积函数分子为常数2、复合闭路定理3、闭路变形定理4、柯西——古萨定理设函数f (z )在单连通域D 内解析,则f (z )在D 内沿任意一条简单闭曲线C 的积分f z dz =05、柯西积分公式f(z)在简单闭曲线c 所围成的区域D 内解析,z 0为D 内任一点f(z 0)=12πi f(z)z −z 0dz 6、高阶导数公式f(z)在c 围成的D 内解析,f(z)的各阶导数均在D 内解析,z 0为D 内任一点f z 0(n )=n !2πi f(z)(z −z 0)dz7、计算积分的步骤a.分析奇点b.奇点在曲线的内部还是外部c.应用定理四、级数1、常见函数的级数e x =1+x +x 2+x 3+⋯,−∞<x <∞sinz= (−1)n ∞n=0z 2n +1 2n+1 ! e z = z n n!∞n=0cosz= (−1)n ∞n=0z 2n 2n !ln(1+z)= (−1)n ∞n=0z n +1n+111+z= (−1)n ∞n=0z n 11−z = z n ∞n=0 2、幂级数 只有 z −z 0 的正幂次项在其收敛域内可以为解析函数 收敛域:所要求的点到函数所有的孤立奇点最短的距离收敛半径:比值法、根值法函数在一点解析的充分必要条件:它在这点的领域可以展开为幂级数3、泰勒级数设函数f (z )在区域D 内解析,z 0为D 内的一点,R 为z 0到D 的边界上各点的最短距离,则当 (z −z 0) <R 时,f(z)可展开为幂级数。
复变函数第一章

z1 z1 z2 z2
Arg(
z1 z2
)
Arg
z1
Arg
z2
1、 幂函数
非零复数 z 的 n 次幂
zn rnein rn (cos n i sin n )
其中
zn z n , Arg zn nArg z.
令 r = 1,则得棣莫弗公式
(cos i sin )n cos n i sin n
21
•连续曲线 若实函数 x(t) 和 y(t) 在闭区间[, ]
上连续,则方程组
x x(t),
y
y(t),
( t )
或复数方程 z z(t) x(t) iy(t) ( t )
代表一条平面曲线,称为 z 平面上的连续曲线.
进一步地,若在 t 上,x '(t) 及 y '(t) 存在、
E(C)
线 C 把 z 平面唯一地分成
C、I(C) 及 E(C) 三个点集,
I(C)
它们具有如下性质:
(1)彼此不交;
O
C
x
(2)I(C) 是一个有界区域(称为 C 的内部);
(3)E(C) 是一个无界区域(称为 C 的外部).
25
•单连通区域 设 z 平面上的区域 D, 若在 D 内 无论怎样画简单闭曲线,其内部仍全含于 D, 则称 D 为单连通区域. 非单连通的区域称为多 连通区域.
y
z
v
w
2 O 2 x
4 O 4 u
31
•反函数 假设函数 w=f(z) 的定义域是 z 平面上的 集合 G,值域是 w 平面上的集合 G*. 对 G* 中 的每一个点 w,在 G 中有一个(或至少两个) 点与之相对应,则在 G* 上确定了一个单值(或
复变函数

1 x , lim 2 2 2 x 0 x (1 k ) 1 k
随 k 值的变化而变化 ,
所以 lim u ( x, y ) 不存在,
x →0 y →0
lim v( x, y ) = 0,
x →0 y →0
根据定理一可知, lim f ( z ) 不存在.
z0
证 (二)
令 z r (cos i sin ),
r cos 则 f (z) cos , r
25
当 z 沿不同的射线 arg z 趋于零时, f ( z )趋于不同的值. 例如 z 沿正实轴arg z 0 趋于零时, f ( z ) 1,
π 沿 arg z 趋于零时, f ( z ) 0, 2
故 lim f ( z ) 不存在.
12
4. 反函数的定义:
设w = f ( z )的定义集合为Z 平面上的集合M , 函数值集合为W 平面上的集合M *, 那末M * 中的 每一个点w必将对应着M中的一个(或几个)点.
于是在M *上就确定了一个单值 (或多值)函数 z = ( w ),它称为函数w = f ( z )的反函数, 也称 为映射w = f ( z ) 的逆映射.
13
根据反函数的定义,
w M *, w f [ ( w )],
当反函数为单值函数时, z [ f ( z )], z G .
如果函数 (映射) = f ( z )与它的反函数 w (逆映射) z = ( w )都是单值的, 那末称函数 (映 射) = f ( z )是一一对应的. 也可称集合M 与集 w 合M *是一一对应的.
2
2.单(多)值函数的定义:
如果 z 的一个值对应着一个w 的值, 那末 我们称函数 f ( z ) 是单值的. 如果 z 的一个值对应着两个或 两个以上 w 的值, 那末我们称函数 f ( z ) 是多值的.
数学复变函数的基本概念

数学复变函数的基本概念一、引言数学复变函数是复数域上的函数,它在数学和物理等领域有着广泛的应用。
本文将介绍数学复变函数的基本概念、性质和应用。
二、复数与复平面复数是实数的扩充,可以写成形式为a+bi的形式,其中a和b为实数,i为虚数单位。
复平面是由实轴和虚轴组成的平面,通过将复数表示为复平面上的点,实现了运算与几何之间的联系。
三、复变函数的定义复变函数是指定义在复数域上的函数,形如f(z) = u(z) + iv(z),其中u(z)和v(z)均为实数函数。
复变函数既可以描述平面上的点,也可以描述平面上的区域。
四、复变函数的解析性复变函数的解析性是指函数在某个区域内可导,并且在该区域内的导数处处存在。
解析函数具有许多重要的性质,例如:解析函数的导数也是解析函数。
五、复变函数的调和性复平面上的实部与虚部分别满足拉普拉斯方程,即u_xx+u_yy=0和v_xx+v_yy=0,则复变函数为调和函数。
具有调和性的函数在物理学的电势和流体力学等领域有着广泛的应用。
六、复变函数的整函数如果一个函数在整个复平面上都解析,则该函数称为整函数。
整函数不仅在有限区域内解析,而且在无穷远点也解析。
七、复变函数的级数展开利用级数展开可以将复变函数展开为无穷项的和。
泰勒级数和洛朗级数是常用的级数展开形式,在分析和计算上有着重要的应用。
八、复变函数的留数定理复变函数的留数定理是计算复变函数的积分的重要工具。
根据留数定理,函数在有限奇点上的留数等于该函数在该奇点处的展开式中-1次幂的系数。
九、复变函数的应用复变函数在科学和工程问题中有着广泛的应用。
例如:在电工中可以利用复变函数来计算交流电路中的各种参数;在流体力学中可以利用复变函数描述流体的速度场等。
结论数学复变函数作为一门基础学科,在各个领域都有着重要的地位和应用价值。
通过对其基本概念、性质和应用的学习,可以更好地理解和应用复变函数。
复变函数的概念

复变函数的概念复变函数的概念复变函数是指定义在复平面上的函数,它可以将一个复数映射到另一个复数。
与实变函数不同,复变函数具有更加丰富的性质和应用。
一、复数及其运算要理解复变函数的概念,首先需要了解复数及其运算。
一个复数可以表示为z=x+yi,其中x和y分别表示实部和虚部。
虚数单位i满足i²=-1。
在复数中,我们可以进行加、减、乘、除等基本运算。
其中加法和减法与实数类似,乘法和除法则需要注意公式的推导。
二、复平面及其坐标表示为了更方便地描述和分析复变函数,在平面直角坐标系中引入了一个新的坐标轴——虚轴,并将实轴称为实部轴,虚轴称为虚部轴。
这样就构成了一个二维平面——复平面。
在复平面中,每个点都可以表示为z=x+yi的形式。
这样我们就可以通过坐标来描述每个点,并将其映射到另一个点。
三、复变函数的定义与实变函数类似,对于给定的自变量z∈C(即z是一个复数),如果存在唯一确定的因变量w∈C(即w也是一个复数),则称w是z的函数值,记作f(z)。
四、复变函数的性质与实变函数不同,复变函数具有更加丰富的性质。
以下是一些常见的复变函数性质:1. 解析性:如果一个函数在某个区域内处处可导,则称该函数在该区域内解析。
2. 共形性:如果一个函数在某个区域内保持角度不变,则称该函数在该区域内共形。
3. 周期性:如果存在一个非零复数c,使得对于所有z∈C,有f(z+c)=f(z),则称f(z)为周期函数。
4. 解析延拓:如果一个解析函数可以通过某种方式扩展到整个复平面上,则称该解析函数具有解析延拓性质。
五、复变函数的应用由于复变函数具有丰富的性质和应用,因此在物理、工程、计算机科学等领域都有广泛的应用。
以下是一些常见的应用:1. 电路分析:利用复变函数可以方便地描述电路中电流和电压等物理量之间的关系。
2. 流体力学:利用共形映射可以将流体力学问题转化为更简单的几何问题。
3. 计算机图形学:利用复变函数可以方便地描述图形的旋转、缩放等变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数论产生于十八世纪。
1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。
而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。
因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。
到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。
复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。
当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。
后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。
二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。
比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。
它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。
广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。
因此,近年来这方面的理论发展十分迅速。
从柯西算起,复变函数论已有170多年的历史了。
它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。
它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。
现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
[编辑本段]内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。
如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。
复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。
由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。
利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和复变函数说明。
对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。
黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使人们把比较深奥的函数的解析性质和几何联系起来。
、关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。
导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。
共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。
留数理论是复变函数论中一个重要的理论。
留数也叫做残数,它的定义比较复杂。
应用留数理论对于复变函数积分的计算比起线积分计算方便。
计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。
广义解析函数所代表的几何图形的变化叫做拟保角变换。
解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。
在二次、三次代数方程求根的公式中就出现了形为式一式一的一类数,其中α,b是实数。
式二式二在实数范围内是没有意义的,因此在很长时间里这类数不能为人们所理解。
R·笛卡儿曾称之为虚数。
但是随着数学的发展,这类数的重要性就日益显现出来。
例如,每一个代数方程在此数域内至少有一个根,这就是代数学的基本定理。
有时也称它为达朗贝尔定理,而最初的严格证明则是由C.F.高斯给出的。
后来人们习惯以i表示复变函数论,并且称α+bi为复数。
在复数α+bi与平面上的点(α,b)之间可以建立一一对应。
L.欧拉在初等函数中引进了复变数,并给出了著名的欧拉公式e^ix=cosx+isinx。
欧拉公式揭示了三角函数与指数函数间的联系。
[编辑本段]发展柯西-黎曼方程一些实际问题也推动着复变函数理论的产生与发展。
早在1752年J.le R.达朗贝尔关于流体阻力的研究中,便考虑在什么条件下当平面上的点(x,y)趋于一点时复值函数u(x,y)+iv(x,y)存在导数。
这里要求导数与(x,y)所沿的路径无关。
这个问题的答案是:若?(z)=u+iv 在域D内定义,且u,v作为x,y的函数在D内可微,则?(z)可导的充要条件为:式(1)式(1)。
这个条件称为柯西-黎曼方程。
在域D内可导的函数称为解析函数或全纯函数。
由条件(1)易知,若u,v存在连续的二阶偏导数,则u,v应满足拉普拉斯方程。
由(1)联系着的两个调和函数称为共轭调和函数。
19世纪前半叶,柯西为复变函数理论的建立奠定了基础。
他定义了复变函数的积分,并证明了下述柯西积分定理:若?(z)在区域D内解析,C为可求长的简单闭曲线,且C及其内部均含于D内,则有式(2)式(2)。
柯西积分定理从柯西积分定理可以得出一系列重要结论,诸如柯西积分公式、柯西不等式、惟一性定理、最大模原理等。
特别地,若?(z)在域D内解析,则它在D内任意阶导数存在,并且在D 内每点α的邻域内?(z)可展为z-α的幂级数。
作为柯西积分定理的推广,则有应用广泛的留数定理。
代数学基本定理就是留数定理的一个简单推论。
应用它还可计算一些较复杂的定积分。
黎曼映射定理从几何观点看,定义在域D内的一个解析函数w=?(z),把D映为w平面上的一个区域。
这样的映射具有保持角度的性质,所以称为保角映射,又称共形映射。
19世纪中叶,黎曼对此作了很多研究。
他首先提出了如下的原理(狄利克雷原理):在简单闭曲线C上给了一个连续函数φ,则必存在于C内调和且连续到C上的函数u,u在C上的值与φ相同。
在此基础上,黎曼得出共形映射的基本定理:若单连通域D的边界多于一点,z0为D内一点且θ0为一实数,则存在惟一的单叶解析函数w=?(z)将D映为w 平面上的单位圆│w│<1,且满足?(z0)=0,?′(z0)>0。
这个定理称为黎曼映射定理,它是复变函数几何理论的基础。
根据这个定理,对于单连通区域内的解析函数常常可以化到单位圆内去研究。
后来C·卡拉西奥多里进一步指出,在黎曼映射定理中,若域D的边界为一简单闭曲线C,则C上的点与圆周│w│=1上的点也一一对应。
幂级数的作用如前所述,解析函数在每点邻域内可以展为幂级数,所以幂级数是研究解析函数的有力工具。
这也是K.外尔斯特拉斯从事研究的出发点。
若幂级数式(3)式(3)的收敛半径R为有穷正数,则?(z)在Γ:│z│<R内解析而在圆周│z│=R上?(z)至少有一个奇点z0,即不存在以z0为心的圆у和在у内解析的函数g(z),使在Γ与у的交内有g(z)=?(z)。
当│z│=R上所有的点都是?(z)的奇点时,?(z)就不能从Γ内解析开拓出去,这时|z|=R称为?(z)的自然边界。
关于收敛圆周上的奇点及自然边界的研究,J.(-S.)阿达马、S.曼德尔勃罗伊及G.波伊亚等人均有很好的工作。
若│z│=R上的点z0不是?(z)的奇点,则?(z)可以经过z0利用幂级数开拓到│z│=R 以外的部分。
从幂级数(2)出发,向各个方向尽量进行解析开拓,所得的全体幂级数构成一个集合。
这个集合定义了一个完全解析函数。
关于完全解析函数,(J.-)H·庞加莱和V·沃尔泰拉等人有重要工作。
完全解析函数可以是单值的或多值的。
对于多值函数,自变量z绕某些点一圈后函数从一个值变为另一个值,这些点称为分支点。
黎曼曲面是表示多值函数的具体的几何方法,它是由一些互相适当连接的重叠的平面构成的。
一个多值函数在其黎曼曲面上即成为单值的。
黎曼曲面的重要例子是代数函数,即由代数方程P(z,w)=0确定的函数。
这种函数的黎曼曲面恒可连续变形到球面或带有若干个环柄的球面。
环柄的个数称为黎曼曲面的亏格,它决定了该曲面的很多重要性质。
综述总之,复变函数的主要研究对象是解析函数,包括单值函数、多值函数以及几何理论三大部分。
在悠久的历史进程中,经过许多学者的努力,使得复变函数论获得了巨大发展,并且形成了一些专门的研究领域。
单值函数单值函数中最基本的两类函数是整函数和亚纯函数,它们分别是多项式和有理函数的发展。
外尔斯特拉斯将多项式的因式分解定理推广到整函数,而G.米塔-列夫勒则将有理函数分解为部分分式的定理推广到亚纯函数。
(C.-)é.皮卡、(F.-é.-J.-) é.波莱尔等进一步发现了整函数的取值与多项式的取值之间有着很大的相似性。
在此基础上,1925年R.奈望林纳建立了亚纯函数值分布的近代理论,对函数论的发展产生了重要影响。
从19世纪末一直到现在,有很多学者从事函数值分布论的研究,优秀工作很多。
它和复变函数论的其他领域也存在着密切联系。
例如,1973年A.伯恩斯坦应用实变函数的思想引进T^*函数,它在值分布论的亏量问题、整函数的最小模问题以及单叶函数的研究中都发挥了显著效用。
多值函数关于多值函数的研究主要是围绕着黎曼曲面及单值化的问题来进行的。
1913年(C.H.)H.外尔在其经典著作《黎曼曲面概念》中首先给出了抽象黎曼曲面的定义,它是流形这个现代数学基本概念的雏形。
黎曼曲面的研究不仅使自身形成了完美的理论,而且它为代数几何、自守函数、复流形、代数数论等近代数学重要分支的研究提供了简单、明了的模型。
复变函数几何理论在复变函数的应用上,共形映射具有重要的地位。
H.E.茹科夫斯基通过共形映射研究绕机翼的流动便是著名的例子。
实际应用中,常常要借助近似方法具体地构造出映射函数。
这方面有不少研究工作。
当然,有时并不需要知道具体的映射函数,只是应用其几何性质。
这就推动了复变函数几何理论的发展。
单叶函数的研究是复变函数几何理论的一个重要组成部分,特别是1916年L.比伯巴赫提出的单位圆内形如式(4)式(4)的单叶解析函数应有|αn|≤n的猜测引起了许多学者的注意。