机身外形初步设计-南京航空航天大学飞机设计研究所

合集下载

飞机结构与系统(第四章 飞机机身结构)

飞机结构与系统(第四章 飞机机身结构)
3)硬壳式: 结构特点: • 无桁梁,无桁条; • 蒙皮厚,与少数隔框组成机身。 受力特点: • 机身总体弯、剪、扭引起的全部轴 力和剪力由厚蒙皮承担; • 隔框用于维持机身截面形状,支持 蒙皮、承担框平面内的集中力。 不宜大开口,机身实际应用很少,只 适于局部气动载荷较大,要求蒙皮局部刚 度大的部位,如机头、尾锥等。
桁梁剖面
南京航空航天大学民航学院
机身结构组成
3. 机身蒙皮 1)功用: • 构成机身气动外形,保持表面光滑,承受局部空气动力; • 承受xoy,xoz两个平面内的剪力和绕x轴扭矩; • 和长桁一起组成壁板承 受两个平面内弯矩引起 的轴力; • 气密增压座舱部位的蒙 皮还要承受环向和轴向 的张应力。
南京航空航天大学民航学院
机身结构组成
2. 长桁与桁梁
1)功用: 长桁: • 承受和传递机身弯矩引起的轴力; • 与蒙皮组成承力壁板; • 承受部分作用在蒙皮上的气动力并传给隔框。 桁梁的截面积大于长桁,功用类似。
2)构造型式 简单式:从横剖面看只有一个结构元件; 组合式:从横剖面看有几个结构元件。 长桁多为简单式,桁梁有时采用组合式。
机身垂直面内剪力图及弯矩图
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
机身主要构件: • 蒙皮 • 纵向骨架:长桁、桁梁 • 横向骨架:隔框
南京航空航天大学民航学院
机身结构组成
1. 隔框 1)分类
南京航空航天大学民航学院
机身与其它部件的连接
四、发动机在机身上的安装
1. 机身内发动机的安装 另一种典型的发动机安装形式。
南京航空航天大学民航学院

飞行器设计重量估算

飞行器设计重量估算

• 注释:
客机的结构重量(机翼、机身、尾翼、起落架) 一般占最大起飞重量30%~35%。
基于统计方法的重量估算方程
参考文献
1. D. Howe, Aircraft Conceptual Design Synthesis, Professional Engineering Publishing Limited, London, UK, 2000. L. R. Jenkinson, P. Simpkin, D. Rhodes, Civil Jet Aircraft Design, AIAA Inc, 1999
基于统计方法的重量估算方程
• 机翼重量
– 按理想的基本结构重量、修正系数、机身影响系数 三部分分别计算。 (1)理想的基本结构重量MIPS
M IPS = mC + mr M0
(kg)
mC = 1920 A1.5 S 0.5 Nr (1 + λ )sec φ sec ϕ / τ f a
mr = 3S τ M 0 A0.25
• 基于近似分析模型
– 工程梁理论
• 基于数值仿真/虚拟样机的方法
– 结构有限元模型 – 三维CAD模型
按基本空重百分比分配重量指标
重量统计数据
按基本空重百分比分配重量指标
重量统计数据(续)
按基本空重百分比分配重量指标
对于同类型飞机,机翼、机身、尾翼、短舱、起落架、推进系统、 固定设备在基本空重所占百分比存在一定的统计关系。
• 重心调整
– 若重心估算的结果表明,基本空机重量不符合上述统计规 律,需调整机翼位置。
1 ΔxG = cA
⎤ ⎡ W机翼 − 1)⎥ Δx机翼 ⎢( ⎦ ⎣ Wto
Δx 机翼-机翼移动量 ΔxG - 全机重心在平均气动弦上 的移动量

变形飞机机翼折叠机构设计及折叠角度测量

变形飞机机翼折叠机构设计及折叠角度测量

变形飞机机翼折叠机构设计及折叠角度测量王鹏;郑祥明;尹崇;郭述臻【摘要】针对变形飞机机翼变形机构的设计要求,设计由舵机、蜗轮蜗杆机构、平行四边形机构组合而成的机翼变形机构,并设计基于三轴加速度计和DSP处理器的机翼折叠角度的测量算法和控制系统.利用加速度计分别求得机身和机翼相对于参考坐标系的角度,相减即得机身平面与机翼的夹角,制作一架小型折叠翼飞机模型对测量算法进行验证.结果表明:机翼能够稳定折叠在任一给定角度,测量算法准确,机翼实际折叠角度误差在可接受的范围内.【期刊名称】《航空工程进展》【年(卷),期】2013(004)003【总页数】6页(P333-338)【关键词】变形飞机;机翼折叠;角度测量;角度控制【作者】王鹏;郑祥明;尹崇;郭述臻【作者单位】南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京210016;南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京210016;南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京210016;南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京210016【正文语种】中文【中图分类】V249.1220 引言近年来,国际上对变形翼在无人机上的应用研究越来越广泛。

目前,变形翼主要有柔性翼、变后掠翼[1]、可变翼展型机翼、可折叠机翼[2]等。

可折叠翼像海鸥翅膀一样,根据飞行环境的改变或者任务需要做出相应的折叠,提高了飞行性能,拓展了飞行包线。

近年来,提出了一种未来无人作战飞行器的设计概念,其设想是:作为侦察机巡航飞行时机翼不折叠,收到攻击指令后作为攻击机加速飞行,内翼段上反折叠并且折叠角随着飞行马赫数增加而增大,通过机翼的折叠变形使飞行器快速进入高速突防或冲刺阶段,打击敌方的高价值目标。

国内外关于该概念飞行器的相关研究工作主要集中在机构实现[3-4]、气动性能[5-6]、气动弹性[7]等问题上,鲜有折叠翼角度测量与控制的资料,而折叠翼飞机最大的优势在于能够根据任务需要自动精确地改变机翼折叠角从而实现机敏性和速度的改变,因此对折叠角度精确测量与控制的研究显得十分必要和迫切。

气动特性分析

气动特性分析
• 抖振边界
– 将升力系数和M数分为二个区域:抖振区和无抖振区。
导致抖振的条件
• 当升力系数接近飞机最大升力系数CLmax ,机翼上表面 的气流发生分离。
• 当飞行速度超过阻力发散马赫数MDD,此时机翼上的 激波会引起不稳定的气流,导致气流分离。
当CL增加到一定值后,有气流分离。
当速度超过MDD后,有气流分离。
零升阻力
总零升阻力=各部件废阻之和+次项阻力
配平阻力
• 配平阻力是由于平尾或鸭翼为产生配平力矩而的升力而 引起的阻力,包括升致诱导阻力和型阻两部分。
• 现代运输机配平阻力一般占总阻力的2%或更少。
压缩性阻力
• 飞机在跨声速区飞行时,当飞机的飞行速度超过临界马赫 数Mcr时,机翼上出现局部超过声速的气流,会产生跨声 速压缩性阻力,使阻力增大。
气动特性 性能评估 经济性分析 排放量 维修性 ……
分析
输入 设计方案
任务
分析评估
计算模型 • 工程估算 • CFD
输出
巡航(高速) • 升阻特性
起飞/着陆(低速) • 最大升力系数 • 升阻特性
抖振升力系数
气动特性分析评估的方法
空气动力学理论
经典理论 无粘线性位流理论
无粘非线性位流理论
粘流理论 无粘有旋流理论 粘性有旋流理论
• 方法
– 采用部件形状因子的方法,计入压差阻力。 – 机身的压差阻力因子为:
Ffus 1 2.2 k 1.2 0.9 k 3
K 为机身长细比,即机身长度与机身最大直径之比 。
-发动机短舱的压差阻力因子:
Fnac
1 0.35 /
lnac dnac
lnac/dnac发动机短舱的长度与直径之比。

飞机操稳特性评估

飞机操稳特性评估

操稳分析内容
静稳定性
俯仰静稳定性导数 特征方程
特征根
稳定性
动稳定性
稳定性判据
模态特征
长周期
纵向
静操纵性
短周期 升降舵操纵力矩及配平曲线
纵向运动状态量对升降舵 及油门的操纵响应 横滚静稳定性导数 偏航静稳定性导数
操纵性
动操纵性
操稳 特性
稳定性
静稳定性 动稳定性
特征方程 特征根
稳定性判据
模态特征
横侧向
静操纵性
方向舵及副翼的操纵力矩
滚转 螺旋 荷兰滚
操纵性
动操纵性
非对称定常飞行时的平衡
横侧向运动状态量对方向 舵及副翼的操纵响应
主要操稳要求的校核
• 纵向
– 巡航和着陆配平
– 静稳定裕度
– 起飞时抬头力矩 – 短周期模态特性
对平尾面积的约束
– 长周期模态
这些操稳性能计算需要纵向气动导数。
主要操稳要求的校核
– 能快速对各种飞机构型的气动导数进行计算。
AVL的应用示例
载重电动遥控飞机 飞翼布局电动遥控飞机
基于面元法的气动导数计算
• DWT(Digital Wing Tunnel)数值风洞软件
– 基于无粘的线化位流方程;数值方法-面元法,C语言编写。 – 可估算升力、诱导阻力、摩擦阻力、纵向/横侧向静、动气动导数。
• 计算输出气动力与力矩系数(基本): • 计算输出静稳定性导数(基本): • 计算输出动稳定性导数: • 计算平尾配平时产生的相应的力与力矩 • 计算由襟翼、副翼及升降舵产生的力与力矩
基于涡格法的气动导数计算
• 涡格法程序AVL
– 由MIT的教授和他的学生Youngren开发。

起落架位置布置

起落架位置布置
起落架布置
南京航空航天大学
余雄庆
概念设计流程
设计
全ቤተ መጻሕፍቲ ባይዱ布局设计
No 满足要求? 方案最优?
设计要求、适航条例
Yes
机身外形初步设计
确定主要参数
初 步 方 案
方案分析与评估
起 落 架
分 系 统 发动机选择
重量特性
动力特性 操稳特性 噪声特性 可靠性
气动特性
性能评估 经济性分析 排放量 维修性
机翼外形初步设计
选择轮胎数目和尺寸的一般原则
主起落架
飞机 类型 Wto (lb) 116,000 220,000 330,000 572,000 775,000 14,000 25,000 35,000 60,000 Dt x bt in. x in. 40 x 14 40 x 14 46 x 16 52 x 20.5 49 x 17 18.5 x 7 24 x 8 24 x 8 35 x 9 PmWto 轮胎数 (每支柱) 2 4 4 4 (3支柱) 4 (4支柱) 1 1 2 1
0.07 0.05 0.08 0.07
单发螺 旋浆飞 机
1,600 2,400 3,800
15 x 6 17 x 6 16.5 x 6
0.80 0.84 0.84
1 1 1
15 x 6 12.5 x 5 14 xx5
0.20 0.16 0.16
1 1 1
Pm-主起落架载荷 Pn -前起落架载荷
Dt-轮胎直径(英寸)
0.06 0.06 0.07 0.07 0.06 0.13 0.09 0.10 0.12
战斗机
Pm-主起落架载荷 Pn -前起落架载荷
Dt-轮胎直径(英寸)

飞机结构设计.

飞机结构设计.
1.1.2 飞机结构设计的地位
图1.1 飞机研制的一般过程
1. 概念性设计阶段
根据设计要求,全面构思,形成粗略的断 语飞机设计的基本概念,并草拟一个 或几个能满足设计要求的初步设计方案
工作内容:
初步选定飞机的形式,进行气动外形布局 初步选择飞机的基本参数 选定发动机和主要的机载设备 初步选择各主要部件的主要几何参数 粗略绘制飞机的三面草图 初步考虑飞机的总体布置方案,初步的性能估算, 检查是否符合飞机设计所要求的性能指标 方案要具有足够的先进性且实际可行 花钱和耗时不多,但非常重要
寿命――飞机结构中的主要受力构件。如: 主梁、下壁板、接头、气密舱 热强度――高温处,如:后机身、尾喷 口、 激波产生处 破损安全结构――重要部件设计成多路传力 结构,如:中翼受力盒段 缓慢裂纹扩展结构――不可检处按安全寿命 设计
1.2.3 结构的使用条件
气象条件(温度和湿度)、介质条件(海 水、水汽等); 机场条件(主要是跑道品质); 维修条件(周期、次数、速度、能力)。
技术要求
技术要求:Vmax,升限,航程/作战半径, 起飞着陆距离, 载重/起飞重量,机动性 指标(加速,最小盘旋,爬升),使用 寿命; 非定量要求:全天候,机场要求,维护 要求; 趋势:V ,Hmax , 载重 ,航程 ;
苏-30
阵风
F-117
第四代战斗机(俄罗斯称之为第五代战斗 机)更着重强调同时具备隐身技术、超音 速巡航、过失速机动和推力矢量控制、近 距起落和良好的维修性等性能 。
飞机结构设计具体内容
飞机部件的结构打样设计(初步设计) 零构件设计 部件的结构图纸
飞机部件
设计师素质
设计师的第一要务是彻底熟悉飞机设计所 依据的规则; 其次,设计师应熟悉每一代飞机的型号。

机身整体壁板结构分析

机身整体壁板结构分析
南京航空航天大学 硕士学位论文 机身整体壁板结构分析 姓名:郑辉洲 申请学位级别:硕士 专业:飞行器设计 指导教师:童明波 20070101
南京航空航天大学硕壁板结构的设计、分析、制造与试验技术是 21 世纪干线及大 型飞机研制的关键技术之一。随着整体壁板的大量使用,为了对设计提供足够的 强度参考依据,必须对整体壁板进行相应的应力分析。本文从有限元分析、工程 算法以及试验三方面对整体壁板在轴压和剪切载荷下的强度进行了研究。 工程算法则重点研究了整体壁板在轴压、剪切状态下的静强度计算。轴压采 用与试验值相吻合的 Johnson 法,剪切采用半经验的“张力场分析方法” 。还参 照机身的结构形式、受载特点及其传力特性,分析比较了壁板结构的不同有限元 建模方法。使用 CATIA 建立了壁板全尺寸模型并导入 MSC.PATRAN 建立有限元模 型。 通过计算结果与试验数据的比较, 得出比较接近实际的有限元模型建模方法, 从而为更精确的计算和结构设计提供参考依据。 关键词:整体壁板,机身,有限元,应力分析,静强度
— II —
南京航空航天大学硕士学位论文
图、表清单
图 1.1 先进机身整体结构与常规组装结构对比.......................................................1 图 1.2 空客公司的 A380 和波音公司的 B787............................................................2 图 1.3 飞机整体设计结构关键部位分解图................................................................4 图 1.4 ARJ21 新支线飞机............................................................................................5 图 2.1 民机机身结构...................................................................................................7 图 2.2 普通框构造.......................................................................................................8 图 2.3 普通框载荷.......................................................................................................8 图 2.4 机身在垂直面内外载及内力图.......................................................................9 图 2.5 桁条式机身框平面内受 PY 力时传力分析 ...................................................10 图 3.1 组装壁板轴压试验件装配图.........................................................................12 图 3.2 组装壁板轴压试验件爆炸图.........................................................................13 图 3.3 组装壁板剪切试验件装配图.........................................................................13 图 3.4 组装壁板剪切试验件爆炸图.........................................................................13 图 3.5 整体壁板轴压试验件装配图.........................................................................14 图 3.6 整体壁板轴压试验件爆炸图.........................................................................14 图 3.7 整体壁板剪切试验件装配图.........................................................................15 图 3.8 整体壁板剪切试验件爆炸图.........................................................................15 图 4.1 歪斜因子.........................................................................................................18 图 4.2 歪斜角度.........................................................................................................18 图 4.3 锥度.................................................................................................................18 图 4.4 实际单元与母单元坐标.................................................................................19 图 4.5 长桁与蒙皮的中性面示意图.........................................................................21 图 4.6 凸台强制偏心示意图.....................................................................................21 图 4.7 局部刚度重叠示意图.....................................................................................21 图 4.8 整体壁板的板-梁模型简化图.....................................................................21 图 4.9 梁元折算为等效杆元和剪切板元的组合.....................................................22 图 4.10 钉元受力情况...............................................................................................23 图 4.11 铆钉板及其简化模型...................................................................................23 图 4.12 铆钉节点简化方案.......................................................................................24 图 4.13 局部刚度增加示意图...................................................................................24 图 4.14 使用 1 杆元+2 弹簧元模拟铆钉................................................................24 图 4.15 PATRAN 中提供的 FASTENER 单元 ........................................................25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机身外形初步设计
概念设计流程
设计
全机布局设计 No 机身外形初步设计 确定主要参数 满足要求? 方案最优?
设计要求、适航条例
Yes
初 步 方 案
方案分析与评估
分 系 统 发动机选择 机翼外形初步设计 尾翼外形初步设计 总体布置 形成初步方案 重量特性 动力特性 操稳特性 噪声特性 可靠性 气动特性 性能评估 经济性分析 排放量 维修性
2)摩擦阻力随长径比有可能增加。 3)对应一定M数,存在一个最有利的长径比,使机身阻力系数最小。
关于长径比的大小
• 长径比过小意味机身形状短粗,阻力增加,但刚度好,有 利于实现机型系列化(机身加长)。 • 长径比过大,机身刚度不好,不利于系列化机型机身加长。
机身外形参数对气动特性的影响
头部长径比对阻力发散马赫数的影响
机场适应性 ……
分析
提 纲
• 机身设计的基本要求 • 机身外形的主要参数
• 机身外形参数对气动和结构的影响
• 面积律 • 民机的客舱布置 • 民机机身外形初步设计 • 机身外形的初步设计的步骤
机身设计的基本要求
• 装载要求:有足够大的内部容积
– 民机:乘客、机组、使用项目、行李、货物、系统安装。 – 军机:机组、发动机安装、武器……
Area ruling of F-102A airplane
Zero lift drag for the YF-102 and F-102A airplanes
The resulting change in drag from the YF-102 to the F-102 was about 25 counts
• 为使飞机在跨音速范围内的阻力最小, 飞机各个部件组合在一起的横截面积的 分布图形,应该相当于一个最小阻力的 当量旋成体图形。
(1)不考虑面积律要求 (a)机翼-机身组合体
(2)考虑面积律要求 (b)当量旋成体 (c)横截面积分布

按面积律的要求对飞机进行修形:
- 将机身中段收缩成蜂腰形 - 将平尾、垂尾及发动机短舱等部件的纵向位置错开
• 气动要求:气动阻力小 • 结构要求:有利于结构布置
– 机翼、尾翼安装 – 发动机(尾吊布局)
• 适航要求
-抗坠毁性
– 应急撤离
机身外形的主要参数
• 总长度:L身 • 最大横截面积S身和当量直径d身 • 上翘角 • 中机身长度 • 前机身长度 • 后机身长度 d身当量直径:
d身
4 S 身, max

应用例子 美国F102和B-58
- 我国Q-5型强击机和J-12歼击机
美国B-58飞机横截面积分布图
1-机身;2-机翼;3-内侧发动机短舱;4-挂架;
5-外侧发动机短舱;6-挂架;7-整流包皮;8-尾翼。
按面积律要求修形的效果
注:当>1.5以后,效果就不显著
The famous application of the area rule
5 - 8
3.6 - 8 7 - 11
3 - 4
2.6 - 4 3 - 5
3 - 9
6 - 13 0 - 8
喷气旅客机 喷气公务机
6.8 - 11.5 7 – 9.5
1.8 – 4 2.5 - 5
11 – 16 6 - 11
面积律
• 面积律是研究飞机机体横截面积的分布 规律与波阻之间相互关系的理论。
F-106
• The F-102 configuration was completely redesigned incorporating a more refined, integrated area rule. • Further slimmed down by a reduced weapon bay capacity and shortened and repositioned engine air intake ducts, and powered by a fifty percent more powerful engine. • It was capable of routine Mach 2+ speeds.
– YF-102, F-102, F-106
YF-102
When it first flew , the prototype is unable to break the sound barrier
F-102
• The fuselage fineness ratio and area distribution had been increased and refined. • The fuselage mid-section cross-sectional area had been reduced • The cockpit canopy was reduced in cross-section with a near triangular cross-section • The cockpit and the side-mounted engine inlets were moved forward to reduce their sudden area build-up, or impact on the fuselage area. • The aft fuselage bustles (裙撑) were retained to avoid the rapid collapse of the cross-sectional area at the delta wing trailing edge. • It was able to fly at low supersonic speeds (M = 1.2).
机身外形参数对气动特性的影响
• θfc的影响
– θfc变大:摩擦阻力小,型阻增大,尾翼面积会增加; – θfc变小:摩擦阻力增大,型阻小,尾翼面积减小; – θfc的大小与着陆时着地角有关 。
长径比和上翘角的统计数据
机型 lf / df lfc / df θfc (deg)
单发螺旋浆双发螺旋浆 战斗机来自描述机身外形的相对参数
• 机身长径比: λ身 = L身 / d身 • 中机身长径比:λ中 = L中 / d中 • 头部长径比: λ头 = L头 / d头 • 尾部长径比: λ尾 = L尾 / d尾
机身外形参数对气动特性的影响
• 机身长径比λ身对阻力的影响
1)机身的压差阻力和波阻,随长径比增大而降低。
相关文档
最新文档