材料成形原理 论文

合集下载

关于材料成型的论文4篇

关于材料成型的论文4篇

关于材料成型的论文精选4篇关于材料成型的论文篇一浅谈新型金属材料成型加工技术【摘要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。

在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。

【关键词】新型金属材料;成型加工;加工技术;技术创新当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。

除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。

那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。

1 关于新型金属材料的综述1.1 新型金属材料的固有特性新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。

当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。

1.2 新型金属材料的加工特性1.2.1 焊接性焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。

新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。

新型金属材料具有好的焊接性通常收缩小、导热性能好。

1.2.2 锻压性锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。

除此之外,金属的锻压性还会受到加工条件的影响。

1.2.3 铸造性金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。

材料成型锻压毕业设计论文[1]

材料成型锻压毕业设计论文[1]
进入二十一世纪以来,“能源”“环保”“低碳”“绿色”等词语日益深入人心。环保节能已经成为各个领域人们所追捧的趋势之一。模具行业同样如此。近几年来,绿色设计已延伸到机械制造业当中。而模具是工业生产的基础工艺装备,它的生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,因而在模具行业中提倡绿色设计应更为重要。“绿色模具”不仅仅指在使用时对环境的影响小,还应是从制造到报废的整个生命周期内对环境的破坏是最小的。
对于簧夹的设计,主要采用了簧夹铰链升降式一次弯曲成形模。这两副模具在设计中都涉及到弯曲模的设计,尤其是簧夹的设计就是采用一次弯曲成形模。对于需要两侧弯曲,尤其两侧对称的闭式弯曲的零件,采用铰链升降式一次弯曲成形模,效果不错。该模具的凹模采用两块铰链机构,由驱动的折板构成,其外斜面与模框吻合,弯形合模后自动锁紧,增加了刚性冲击的校正力,使弯形工件成形后可获校正,减少回弹。该冲模用带两个直径为3.2毫米孔的平毛坯,一次弯曲成形,随着两侧受压的拉簧伸张,顶着折板模块向内折,上模下行的过程中,将毛坯进行侧向两对应位置,相同形状的弯曲,以获得工件外形。这时由于顶杆的作用,使折板模块沿模框向外分开,同时伸张了的拉簧再次缩紧,工件及凸模一并抬起,最后取下工件。这种一次弯曲成形效率高,质量较好。
所谓复合模,就是在压力机的一次行程下,可以同时完成多道工序的冲裁模。可获得更长的模具寿命,更好的金属丝圆度,并且高度可预测的模具磨损性能。复合模是一种具有表面光洁度,最小摩擦力的耐磨人工合成材料。模具寿命长,金属丝表面光洁度较好。它的优点是模具寿命长,故障时间短,效率高。可获得尺寸范围广。优秀的防裂纹和破损的性能。平滑,可预测的模具磨损性能。主要应用在非铁的金属丝,特别是在尺寸较大,磨损较大而表面光洁度无关紧要时。
第二章
第一节

材料成型及控制工程(模具方向)毕业设计论文

材料成型及控制工程(模具方向)毕业设计论文

第一章概述1.1 课题来源本次毕业设计的题目是奇瑞A21汽车中支板冲压工艺分析及基于UG修边冲孔模具设计,该课题来源于东风汽车模具有限公司。

零件材料为B210P1深冲压用高强度钢(B——宝钢、210——最小屈服点值、P——强化方式、1——超低碳),厚度为1.2mm。

零件图如下:图1.1 奇瑞A21汽车中支板产品图1.2课题背景及意义该零件属汽车覆盖件,而修边冲孔模更是冲压模具中的典型,因此对该课题进行设计研究是必要的。

源于生产实际,不同于一般的理论性设计,对我们学习模具设计的学生来说,这样的应用型课题不但是对理论知识的巩固、提高,更是一种对于大型模具设计经验的积累,为日后的工作提供宝贵的财富。

东风汽车模具有限公司是国内最大的汽车模具设计与制造企业之一,它不仅为东风汽车公司,还为国内其他汽车厂家设计制造模具。

随着市场竞争日益激烈,汽车改型周期大幅度缩短,对这一技术的掌握程度变成了衡量企业竞争能力的重要指标之一。

公司在过去使用的是传统的二维CAD系统进行自底向上“搭积木”式地装配设计,这种设计过程是从冲模零件设计到冲模总体装配设计,既不支持冲模从概念设计到详细设计,又不能支持零件设计过程中的信息传递,零部件之间没有必要的内在联系和约束,其设计意图、功能要求以及许多冲模的装配信息都得不到必要的描述,设计效率极低。

近几年来公司为了满足客户的需求和自身快速发展的需要,提高自己的模具设计水平、缩短模具设计周期,改用三维软件(如UG软件)进行自顶向下的全参数化设计。

结合工艺性和制件的特点,在分析修边冲孔模结构设计特点的基础上,以UG作为开发平台进行三维修边冲孔模CAD。

随着我国汽车工业的迅速发展,新车型更新换代的速度不断加快,传统的覆盖件模具设计制造方法已不能适应产品开发的要求。

汽车覆盖件模具作为汽车车身生产的重要工艺装备,直接制约着汽车产品的质量和新车型的开发。

覆盖件模具因其设计制造难度大、周期长而常常成为制约汽车生产的主要因素。

材料成型技术论文

材料成型技术论文

材料成型技术课程论文题目:熔融沉积制造-FDM 系(部):专业:学生姓名:学号:完成时间:201 年月日前言快速成型技术(Rapid Prototyping)是 20 世纪80年代中后期发展起来的一项新型的造型技术。

RP技术是将计算机辅助设计(CAD) 、计算机辅助制造(CAM) 、计算机数控技术(CNC) 、材料学和激光结合起来的综合性造型技术。

RP经过十多年的发展 ,已经形成了几种比较成熟的快速成型工艺光固化立体造型( SL —Stereo lithography) 、分层物体制造(LOM —Laminated Object Manufacturing)选择性激光烧结(SLS—Selected Laser Sintering)和熔融沉积造型( FDM —Fused Deposition Modeling)等。

这四种典型的快速成型工艺的基本原理都是一样的 ,但各种方法各有其特点。

FDM (Fused Deposition Modeling)工艺是由美国学者Scott Crump于1988年研制成功,其后由Stratasys公司推出商品化的3D Modeler 1000、1100和FDM 1600、1650等系列产品。

后来清华大学研究开发出了与其工艺原理相近的MEM(Melted Extrusion Modeling)工艺及系列产品。

[1]目前,FDM工艺已经广泛应用于汽车领域,如车型设计的检验设计、空气动力评估和功能测试;也被广泛应用于机械、航空航天、家电、通信、电子、建筑、医学、办公用品、玩具等产品的设计开打过程,如产品外观评估、方案选择、装配检查、功能测试、用户看样订货、塑料件开模前检验设计以及少量产品制造等。

用传统方法需机几个星期、几个月才能制造的复杂产品原型,用FDM成型法无需任何道具和模具,可快速完成。

1 熔融沉积制造工艺原理1.1快速成形技术基本原理快速成型技术是对零件的三维 CAD 实体模型 ,按照一定的厚度进行分层切片处理 ,生成二维的截面信息 ,然后根据每一层的截面信息 ,利用不同的方法生成截面的形状。

材料成型毕业论文范文2篇

材料成型毕业论文范文2篇

材料成型毕业论文范文2 篇材料成型毕业论文范文一:金属材料加工中材料成型与控制工程摘要:本文以金属材料为例,对材料成型与控制工程中的加工技术进行细化分析,首先,理论概述了金属材料的选材原则,然后具体分析了铸造成型、挤压与锻模塑性成型、粉末冶金以及机械加工四种加工方法,旨在为相关工作人员提供有借鉴性的参考资料,进一步提高我国制造业的加工水平与整体质量。

关键词:材料成型;控制工程;金属材料;加工工艺0 引言对于我国制造业而言,材料成型与控制工程是其实现长期健康发展的根本保障,不仅如此,材料成型与控制工程也是我国机械制造业的关键环境,因此,相关企业必须对其给予高度重视。

无论是电力机械制造,还是船只等交通工具制造,均离不开材料成型与控制工程,材料成型与控制技术的水平与质量将会直接决定机械制造水平与质量。

因此,对材料成型与控制工程中的金属材料加工技术进行细化分析,具有非常重要的现实意义。

1金属材料选材原则在金属复合材料成型加工过程中,将适量的增强物添加于金属复合材料中,可以在很大程度上高材料的强度,优化材料的耐磨性,但与此同时,也会在一定程度上扩大材料二次加工的难度系数,正因此,不同种类的金属复合材料,拥有不同的加工工艺以及加工方法。

例如,连续纤维增强金属基复合材料构件等金属复合材料便可以通过复合成型; 而部分金属复合材料却需要经过多重技术手段,才能成型,这些成型技术的实践,需要相关工作人员长期不断加以科研以及探究,才能正式投入使用,促使金属复合材料成型加工技术水平与质量实现不断发展与完善。

由于成型加工过程中,如果技术手段存在细小纰漏,或是个别细节存在问题,均会给金属基复合材料结构造成一定的影响,导致其与实际需求出现差异,最终为实际工程预埋巨大的风险隐患,诱发难以估量的后果。

所以,相关工作人员在对金属复合材料进行选材过程中,必须准确把握金属材料的本质以及复合材料可塑性,只有这样,才能保证其可以顺利成型,并保证使用安全。

高分子材料成形加工 论文

高分子材料成形加工 论文

论文题目:注塑成型工艺——聚碳酸酯光盘生产技术课程名称聚合物加工姓名檀笑风学号0814121034专业08高分子材料与工程一班任课老师钱浩摘要:本文借助聚碳酸酯的光盘生产技术,对注塑加工工艺流程做了系统介绍。

从工艺特性、基材和注塑机的选取、工艺流程、工艺影响因素、常见问题和解决方案,几个角度作了清晰的介绍。

对今后的学习工作具有现实的指导意义。

关键词:光盘注塑工艺聚碳酸酯一、聚碳酸酯的工艺特性中文名称:2,2-(4-羟基苯基)丙烷聚碳酸酯英文名称:Polycarbonate化学结构:物化特性:①聚碳酸酯是一种无定型、无味、透明的热塑性工程塑料,其相对密度为1.20,具有良好的透光性,折光率为1.586;②聚碳酸酯主要特点是机械性能良好,既韧又刚、无缺口,冲击强度在热塑性塑料中名列前茅,接近玻璃纤维增强的酚醛或不饱和树脂,呈延性断裂。

成型的零件可达到很精密的公差,并在很宽的范围内保持尺寸稳定,优于聚酰胺ABS和聚甲醛;③热塑性好,热变性温度在135一145℃之间。

与其他塑料相比,聚碳酸酯的线胀系数低,且加人玻璃纤维后能降低l/3。

100℃以上长时间热处理,刚性稍有增加,弹性模量、弯曲强度、拉伸强度也随之增加,而抗冲值有所降低。

在100℃以上退火,可消除内应力;④聚碳酸酯具有良好的电性能,在较宽的湿度范围内,电绝缘性恒定,并耐电晕性。

聚碳酸酯体积电阻率和介电强度与聚酯薄膜相当。

另外还有自熄、易增强、阻燃、能着色等特性。

二、光盘制作对基材的要求在信息工业中,光盘生产已形成一项引人注目的高科技产业。

光盘基片由塑料加工而成,主要有两种加工方法:一种为刻录法,每片光盘先用4 种不同材料的塑料薄膜压制而成,然后用激光刻录。

这种方法生产速度慢、成本高,只适合于小批量生产。

另一种为注塑成型法,即通过塑料的注塑加工技术制作。

光盘主要通过塑料的精密注塑成型来完成。

注塑加工是光盘复制工艺过程的关键技术,在精密注塑过程中要将微小的凹槽精密地复制出来,不仅塑料基片的平面度要求很高,而且要求质量很均匀、残余应力很低,在进行检测时双折射要低。

材料成型论文范文2篇

材料成型论文范文2篇

材料成型论文范文2篇材料成型论文范文一:工科高校材料成型控制工程论文一、设计性实验选题的“五个原则”此外,设计性实验选题时,在把握综合性、创造性、应用性、自主性和灵活性这五个原则外,还要合理掌控学生专业知识结构、专业知识掌握程度及学生自主实验的可操作性等方面。

二、设计性实验选题的“四个方向”材料成型与控制工程专业设计性实验选题在把握“五个原则”的前提下,通常可通过“四个方向”来进行选题设立,即验证性实验转化为设计性实验、科研项目转化为设计性实验、生产项目转化为设计性实验和学生兴趣转化为设计性实验。

(一)验证性实验转化为设计性实验验证性实验是为促使学生掌握并加深对专业基本理论、知识的理解,而按照实验教材的要求,由学生进行实验操作,并从实验结果验证所学的理论知识。

由于实验结果在理论授课时已经涉及,因此学生实验的兴趣不浓,热情不高。

但不要因为这些就抹杀验证性实验验证理论知识,加深学生对基本理论知识理解的独特作用。

完全可以通过合理安排,将一些验证性实验转换为设计性实验。

这样就可以激发学生的实验兴趣,提高学生的实验学习主动性、自主性。

例如,对长杆型坯料进行局部镦粗是模锻生产中经常采用的变形工序之一。

因此,在《锻压工艺及模具设计》专业实验课中设立了“局部镦粗规则的验证”这项验证性实验。

该实验通过对不同长度试件,使用局部镦粗模进行镦粗,验证局部镦粗规则的正确性,观察和分析由于局部镦粗长度与直径比值的影响而出现的正常和不正常现象。

由于是验证性实验,学生兴趣不高,往往抱着看热闹的心态参加实验,不能达到良好的教学效果,但该实验涉及内容是比较典型且在生产中常用到的。

怎样保留并将其转换为学生感兴趣的设计性实验呢?这就需要转换思路,可将该实验内容转换为首先要求学生根据给定尺寸的不同试件,进行局部镦粗积聚工步计算,并绘制镦粗模模具图。

当然,由于实验经费及加工时间的限制,学生设计的镦粗模并不需要制作出来,因为给定尺寸的试件,其局部镦粗模主要模具尺寸及工步是唯一的,可以采用原有的局部镦粗模进行实验和鉴定学生设计结果的准确性,这些需要教师在实验过程中灵活掌握。

材料成型原理

材料成型原理

材料成型原理材料成型是指将原材料通过一定的加工工艺,使其获得所需形状和尺寸的过程。

成型工艺是制造业中非常重要的一环,它直接影响着制品的质量、成本和生产效率。

在材料成型过程中,原材料经历了多种力的作用,使得其内部结构发生变化,最终形成所需的产品。

本文将围绕材料成型原理展开讨论。

首先,材料成型的原理可以分为两种基本类型,一种是塑性变形,另一种是非塑性变形。

塑性变形是指在材料受到外力作用下,其形状和尺寸发生永久性变化的过程。

而非塑性变形则是指在材料受到外力作用下,其形状和尺寸发生弹性变化,当外力消失后,材料会恢复到原来的形状和尺寸。

这两种变形方式在材料成型过程中起着至关重要的作用。

其次,材料成型的原理还涉及到材料的流变性质。

材料的流变性质是指在受到外力作用下,材料的形变和应力之间的关系。

不同材料的流变性质各不相同,这直接影响了材料在成型过程中的变形行为。

例如,金属材料通常具有良好的塑性,能够在一定条件下产生塑性变形,而陶瓷材料则通常具有较差的塑性,容易发生开裂和破碎。

另外,材料成型的原理还包括了成型工艺中的温度、压力和速度等因素。

这些因素直接影响着材料的变形行为和成型过程中的能量转化。

在成型过程中,适当的温度可以使材料更容易发生塑性变形,而过高或过低的温度则可能导致材料的不均匀变形或者开裂。

同时,适当的压力和速度也能够有效控制材料的成型过程,保证成型产品的质量。

总的来说,材料成型原理是一个涉及多方面知识的复杂系统工程,它需要结合材料科学、力学、热学等多个学科的知识。

只有深入理解材料成型的原理,才能够更好地掌握成型工艺,提高产品的质量和生产效率。

希望本文能够为您对材料成型原理有更深入的了解提供帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何改进凝固过程中的问题
王迪阳 1006032036 材控(2)班
摘要:在当今金属工业不断发展的情况下,研究金属凝固过过程中的问题对于材料的利用和产品的质量都有一定的意义,因此研究如何让改进凝固过程中的问题尤为重要。

关键字:凝固晶粒金属
正文:晶粒形态的控制主要是通过形核过程的控制实现的。

促进形核的方法包括浇注过程控制方法、化学方法、物理方法、机械方法、传热条件控制方法等。

(1)控制浇注条件①低的浇注温度。

熔体的过热度较小,与浇道内壁接触就能产生大量的游离晶粒。

有助于已形成的游离晶粒的残存,这对等轴晶的形成和细化有利。

②合理的浇注工艺。

强化液流冲刷型壁能扩大并细化等轴晶区。

③合理控制冷却条件。

④选用合适的铸型。

(2)加入生核剂——孕育处理
孕育—向液态金属中添加少量物质以达到增加晶核数、细化晶粒、改善组织之目的的一种方法。

变质—加入少量物质通过元素的选择性分布而改变晶体的生长形貌,如球化或细化。

a)直接作为外加晶核; b)通过与液态金属的相互作用而产生非均匀晶核;
-能与液相中某些元素组成较稳定的化合物;-通过在液相中造成大的微区富集而使结晶相提前弥散析出 c) 加入强成分过冷元素生核剂。

-溶质富集、成分过冷会抑制晶体生长,促进非均匀形核导致晶粒细化。

(3)动态晶粒细化。

熔体在凝固过程中存在长时间、激烈的对流→晶粒或枝晶脱落、破碎、游离、增殖。

振动--机械振动、电磁振动、音频或超声波振动;搅拌--机械、电磁搅拌;
旋转振荡-周期性地改变铸型的旋转方向和旋转速度。

非规则共晶一般由金属-非金属(非小平面-平面)相或非金属-非金属(小平面-小平面)相组成,如Fe-C , Al-Si合金。

小平面相的各向异性使晶体长大具有强烈的方向性。

固-液界面为特定的晶面,长大过程中虽然共晶两相也依靠液相中原子扩散而协同长大,但固-液界面不平整,不规则。

小平面的长大属二维生长,它对凝固条件的反应极其敏感,因此非规则共晶组织的形态多种多样。

缩颈”现象:溶质浓度再分配→界面前沿液态金属凝固点降低→实际过冷度减小。

溶质偏析程度越大,实际过冷度就越小,其生长速度就越缓慢。

晶体根部紧靠型壁,溶质在液体中扩散均化的条件最差,偏析程度最为严重,生长受到强烈抑制。

远离根部,界面前方的溶质易于通过扩散和对流而均匀化,面临较大的过冷,其生长速度要快得多。

故在晶体生长过程中将产生根部“缩颈”现象,生成头大根小的晶粒。

熔点最低而又最脆弱的缩颈极易断开,晶粒自型壁脱落而导致晶粒游离。

铸件中三晶区的形成相互联系、彼此制约。

稳定凝固壳层的产生决定着表面细晶粒区向柱状晶区的过渡,而阻止柱状晶区进一步发展的关键则是中心等轴晶区的形成。

晶区的形成和转变是过冷熔体独立形核能力和各种形式晶粒游离、漂移与沉浮的程度这两个基本条件综合作用的结果。

决定了铸件中各晶区的相对大小和晶粒的粗细。

铸件宏观凝固组织的控制。

铸件结晶组织对铸件质量和性能的影响,表面
细晶粒区薄,对铸件的质量和性能影响不大。

铸件的质量与性能主要取决于柱状晶区与等轴晶区的比例以及晶粒的大小。

柱状晶:生长过程中凝固区域窄,横向生长受到相邻晶体的阻碍,枝晶不能充分发展,分枝少,结晶后显微缩松等晶间杂质少,组织致密。

但柱状晶比较粗大,晶界面积小,排列位向一致,其性能具有明显的方向性:纵向好、横向差。

凝固界面前方常汇集有较多的第二相杂质、气体,将导致铸件热裂。

等轴晶:晶界面积大,杂质和缺陷分布比较分散,且各晶粒之间位向也各不相同,故性能均匀而稳定,没有方向性;枝晶比较发达,显微缩松较多,凝固后组织不够致密。

细化能使杂质和缺陷分布更加分散,从而在一定程度上提高各项性能。

晶粒越细综合性能越好。

对塑性较好的有色金属或奥氏体不锈钢锭,希望得到较多的柱状晶,增加其致密度;对一般钢铁材料和塑性较差的有色金属铸锭,希望获得较多的甚至是全部细小的等轴晶组织;对于高温下工作的零件,通过单向结晶消除横向晶界,防止晶界降低蠕变抗力。

在当今这个高速发展的社会中,人们对金属材料的认识越来越多,对其的使用也在不断增加,进而对金属的某些性能也提出了更高的要求。

了解金属在凝固过程中存在的问题并提出可靠、可行的改进方案,则显得尤为重要。

相关文档
最新文档