Systemverilog的一个牛人总结

合集下载

systemverilog 可综合 语法

systemverilog 可综合 语法

systemverilog 可综合语法-概述说明以及解释1.引言1.1 概述SystemVerilog是一种硬件描述语言,其可综合语法用于描述硬件设计的行为和结构。

可综合语法是指在编写SystemVerilog代码时,能够被综合工具翻译成底层硬件电路,并最终映射到FPGA或ASIC等可编程器件上的语法规则和风格。

因此,可综合语法在硬件设计中起着至关重要的作用。

在硬件设计中,可综合语法使设计工程师能够通过代码描述硬件的功能和结构,包括处理器、逻辑电路、存储器等。

通过使用可综合语法,设计工程师可以更加灵活地实现各种功能和性能要求,同时也能提高设计的可维护性和可重用性。

SystemVerilog的可综合语法特点是其结构化的设计风格,丰富的数据类型和内置的高级语言功能。

与传统的硬件描述语言相比,SystemVerilog提供了更多的抽象层次和编程特性,可以更高效地完成复杂的硬件设计任务。

例如,SystemVerilog支持面向对象的设计方法,可以使用类和对象对设计进行建模和封装。

此外,SystemVerilog还提供了多种数据类型和运算符,使设计工程师可以更方便地处理各种数据和信号。

综上所述,可综合语法在SystemVerilog中具有重要的地位和作用。

通过使用可综合语法,设计工程师能够更加方便地描述和实现各种硬件功能,提高设计的效率和可靠性。

在今后的硬件设计中,可综合语法的应用将更加广泛,并且不断发展和完善,以满足不断变化的设计需求。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构的目的是为了给读者提供清晰的导航和理解文章的逻辑框架。

通过合理的结构,读者可以更好地理解文章的目的和内容,并能够有序地阅读和理解整个文档。

本文的结构如下:第一部分是引言部分,用于介绍文章的背景和相关信息。

在引言部分,我们将概述SystemVerilog可综合语法的定义和作用,并介绍本文的结构和目的。

第二部分是正文部分,主要内容是关于SystemVerilog可综合语法的定义和特点。

systemverilog的例子

systemverilog的例子

systemverilog的例子(原创版)目录1.SystemVerilog 概述2.SystemVerilog 的例子3.例子的解析4.总结正文SystemVerilog 是一种硬件描述语言,主要用于设计和验证数字电路和模拟混合信号电路。

它基于 Verilog,并添加了许多新的功能,如类、继承、多态和封装等,使得 Verilog 更加强大和灵活。

SystemVerilog 的一个关键应用是模块化设计和验证,可以将电路划分为多个模块,然后对每个模块进行验证,最后将所有模块组合在一起进行系统级验证。

下面是一个简单的 SystemVerilog 例子,用于演示如何使用SystemVerilog 进行模块化设计和验证。

假设我们要设计一个 4 位加法器,可以将其划分为两个模块:一个用于实现 4 位全加器,另一个用于实现进位处理。

首先,我们创建一个名为"full_adder"的模块,用于实现 4 位全加器。

```verilogmodule full_adder (input [3:0] A,input [3:0] B,input Cin,output [3:0] Sum,output Cout);assign Sum[0] = A[0] ^ B[0] ^ Cin;assign Sum[1] = A[1] ^ B[1] ^ (Cin << 1);assign Sum[2] = A[2] ^ B[2] ^ (Cin << 2);assign Sum[3] = A[3] ^ B[3] ^ (Cin << 3);assign Cout = (Sum[0] & Sum[1] & Sum[2] & Sum[3]) | (Sum[0] & Sum[1] & Sum[2] & (Cin << 1)) | (Sum[0] & Sum[1] & (Cin << 2)) | (Sum[0] & (Cin << 3));endmodule```接下来,我们创建一个名为"adder_module"的模块,用于实现进位处理。

system verilog 标准

system verilog 标准

系统Verilog是一种硬件描述语言(HDL),用于描述数字电路。

它包含了Verilog的所有特性,并添加了一些新的特性。

这些新的特性包括在设计中引入了数据类型的定义,更好地支持设计的抽象,以及更自然地支持设计的层次式描述。

在本文中,我们将深入了解System Verilog标准。

1. 介绍System Verilog标准System Verilog是IEEE标准1800,最初是由Accellera组织进行开发的。

它于2005年发行,是Verilog HDL的扩展,它添加了许多新的特性,使得它更适合于硬件验证和设计。

2. System Verilog的特性System Verilog添加了许多新的特性,以提高Verilog HDL的功能。

其中一些主要特性包括:a. 对象导向编程:System Verilog引入了面向对象的编程范式,使得设计和验证更加抽象和灵活。

b. 增强了数据类型和操作:System Verilog引入了更多的数据类型和操作,更好地支持设计和验证的需求。

c. 增加了随机性:System Verilog引入了随机性,使得验证更加全面和高效。

3. System Verilog在硬件验证中的应用System Verilog的特性使得它在硬件验证中应用广泛。

它提供了丰富的验证方法和工具,包括:a. 事务级建模(TLM):System Verilog提供了TLM的支持,使得验证更加抽象和高效。

b. Constrained随机验证:System Verilog引入了constrained random的验证方法,使得验证更加全面和高效。

c. Coverage驱动验证:System Verilog提供了coverage驱动的验证方法,使得验证更加全面和高效。

4. System Verilog在硬件设计中的应用除了在硬件验证中应用广泛外,System Verilog在硬件设计中也有着广泛的应用。

SystemVerilog语言知识介绍

SystemVerilog语言知识介绍

SystemVerilog语言知识介绍SystemVerilog是一种硬件描述与验证语言(HDVL),它基于IEEE 1364-2001 Verilog硬件描述语言(HDL),并对其进行了扩展,包含扩充了C语言数据类型、结构、压缩与非压缩数组、接口、断言等等,这些都使得SystemVeri log在一个更高的抽象层次上提高了设计建模的能力。

Syst emVerilog由Accellera开发,它要紧定位在芯片的实现与验证流程上,并为系统级的设计流程提供了强大的连接能力。

下面我们从几个方面对SystemVerilog所作的增强进行简要的介绍,期望能够通过这个介绍使大家对SystemVeril og有一个概括性的熟悉。

1. 接口(Interface)Verilog模块之间的连接是通过模块端口进行的。

为了给构成设计的各个模块定义端口,我们务必对期望的硬件设计有一个全面的认识。

不幸的是,在设计的早期,我们很难把握设计的细节。

而且,一旦模块的端口定义完成后,我们也很难改变端口的配置。

另外,一个设计中的许多模块往往具有相同的端口定义,在Verilog中,我们务必在每个模块中进行相同的定义,这为我们增加了无谓的工作量。

SystemVerilog提供了一个新的、高层抽象的模块连接,这个连接被称之接口(Interface)。

接口在关键字interfac e与endinterface之间定义,它独立于模块。

接口在模块中就像一个单一的端口一样使用。

在最简单的形式下,一个接口能够认为是一组线网。

比如,能够将PCI总线的所有信号绑定在一起构成一个接口。

通过使用接口,我们在进行一个设计的时候能够不需要首先建立各个模块间的互连。

随着设计的深入,各个设计细节也会变得越来越清晰,而接口内的信号也会很容易地表示出来。

当接口发生变化时,这些变化也会在使用该接口的所有模块中反映出来,而无需更换每一个模块。

下面是一个接口的使用实例:实际上,SystemVerilog的接口不仅仅能够表示信号的绑定与互连。

systemverilog类的方法

systemverilog类的方法

systemverilog类的方法SystemVerilog类的方法SystemVerilog是一种硬件描述语言,用于设计和验证数字电路。

在SystemVerilog中,类是一种重要的概念,用于组织和封装代码。

类中的方法是实现类功能的关键部分。

本文将介绍一些常见的SystemVerilog类的方法。

1. 构造函数(Constructor)构造函数是一种特殊的方法,用于在创建类的实例时初始化对象的成员变量。

它的名称与类名相同,并且没有返回类型。

构造函数可以有参数,用于传递初始化值。

例如,一个名为"myClass"的类的构造函数可以如下所示:```systemverilogclass myClass;int data;function new(int value);data = value;endfunctionendclass```在实例化类时,可以通过传递参数来调用构造函数,并初始化对象的成员变量。

```systemverilogmyClass obj = new(10);```2. 成员函数(Member Function)成员函数是定义在类中的方法,可以操作类的成员变量,并实现类的功能。

成员函数可以有返回值和参数。

例如,一个名为"add"的成员函数可以如下所示:```systemverilogclass myClass;int data;function int add(int value);data += value;return data;endfunctionendclass```在类的实例上调用成员函数时,可以使用"."运算符来访问该函数,并传递参数。

例如:```systemverilogmyClass obj;obj.add(5);```3. 静态函数(Static Function)静态函数是定义在类中的方法,不依赖于类的实例,可以直接通过类名调用。

SystemVerilog语言知识介绍

SystemVerilog语言知识介绍

SystemVerilog语言知识介绍1. 对面向对象编程(OOP)的支持:SystemVerilog引入了类和对象的概念,使得设计和验证更加模块化和可重用。

类可以包含数据成员和成员函数,可以继承和多态,从而使设计更加灵活和可扩展。

2. 接口:SystemVerilog引入了接口的概念,用于定义组件之间的通信和互连。

接口可以包含信号和方法,可以被多个模块实例化和连接在一起,从而简化了设计和验证的过程。

3. 任务和函数:SystemVerilog支持任务和函数的定义,用于执行一些特定的操作和计算。

任务是并发执行的,可以用于模拟硬件行为。

函数可以返回一个值,可以用于计算逻辑和数据处理。

4. 动态数组:SystemVerilog引入了动态数组的概念,可以在运行时动态地分配和管理内存。

这对于处理变长数据结构(如队列和堆栈)非常有用,同时也可以简化设计和验证的过程。

5. 时序建模:SystemVerilog提供了一些特性,用于描述和模拟数字系统中的时序行为。

例如,可以使用时钟、触发器和延迟来定义和控制信号的时序关系。

这使得设计和验证更加准确和可靠。

6. 断言:SystemVerilog引入了断言的概念,用于描述和验证设计的一些属性和约束。

断言可以在运行时检查设计的正确性,并在出现错误时提供错误信息。

这对于设计和验证的调试和验证非常有用。

除了以上特性,SystemVerilog还具有一些其他的功能,如并行块、并行循环、封装和配置等。

这些功能都使得SystemVerilog成为一个强大而灵活的硬件描述语言,广泛应用于数字系统的设计和验证。

总的来说,SystemVerilog是一种用于硬件设计和验证的高级硬件描述语言。

它具有面向对象编程的特性,支持接口、任务和函数,提供动态数组和时序建模等功能。

它的强大和灵活性使得它成为了工业界和学术界广泛使用的硬件描述语言之一。

System-Verilog笔记总结

System-Verilog笔记总结

Systemverilog数据类型l 合并数组和非合并数组1)合并数组:存储方式是连续的,中间没有闲置空间。

例如,32bit的寄存器,可以看成是4个8bit的数据,或者也可以看成是1个32bit 的数据。

表示方法:数组大小和位,必须在变量名前指定,数组大小必须是【msb:lsb】Bit[3:0] [7:0] bytes ;(2)二维数组和合并数组识别:合并数组:bit [3:0] [7:0] arrys; 大小在变量名前面放得,且降序二维数组:int arrays[0:7] [0:3] ; 大小在变量名后面放得,可降序可升序位宽在变量名前面,用于识别合并和非合并数组,位宽在后面,用于识别数组中元素个数。

3)非合并数组一般仿真器存放数组元素时使用32bit的字边界,byte、shortint、int都放在一个字中。

、非合并数组:字的地位存放变量,高位不用。

表示方法:Bit [7:0] bytes;4)合并数组和非合并数组的选择(1)当需要以字节或字为单位对存储单元操作。

(2)当需要等待数组中变化的,则必须使用合并数组。

例如测试平台需要通过存储器数据的变化来唤醒,需要用到@,@只能用于标量或者合并数组。

Bit[3:0] [7:0] barray[3] ; 表示合并数组,合并数组中有3个元素,每个元素时8bit,4个元素可以组成合并数组可以使用barry[0]作敏感信号。

¥l 动态数组随机事物不确定大小。

使用方法:数组在开始是空的,同时使用new[]来分配空间,在new[n]指定元素的个数。

Int dyn[];Dyn = new[5]; Ref int array[ ]);If(len<0) begin$display(“Bad len”);【Returun;rant,.request,.rst,.clk);Test t1(arbif);Endmodule[l Modport背景:端口的连接方式包含了方向信息,编译器依次来检查连续错误;接口使用无信号的连接方式。

uvm system verilog总结

uvm system verilog总结

uvm system verilog总结### UVM System Verilog 总结#### 导语UVM(Universal Verification Methodology)与System Verilog的结合,为芯片设计验证领域带来了革新。

这种方法论不仅提高了验证效率,还增强了验证的可重用性和覆盖率。

本文将全面总结UVM与System Verilog的相关概念、特点以及应用。

---#### 一、UVM与System Verilog概述**1.1 UVM简介**UVM是建立在System Verilog基础上的一个标准化验证方法论,旨在提供一种通用的、模块化的验证平台。

它通过将验证环境分层,实现了环境的可重用性和易于维护性。

**1.2 System Verilog简介**System Verilog是一种硬件描述和验证语言,结合了Verilog和VHDL的优点,并增加了面向对象编程的特性。

它在芯片设计和验证中广泛应用。

---#### 二、UVM的核心特点**2.1 面向对象**UVM采用面向对象的设计思想,将验证环境分为不同的类和层次,便于管理和重用。

**2.2 模块化**UVM的模块化设计使得验证环境可以根据不同的测试需求灵活组合和配置。

**2.3 自动化**UVM支持自动化测试,包括自动生成测试序列、自动检查和报告错误等。

---#### 三、System Verilog在UVM中的应用**3.1 非阻塞赋值**System Verilog的非阻塞赋值在UVM中用于描述硬件行为。

**3.2 面向对象编程**System Verilog的面向对象编程特性使得UVM可以定义基类和派生类,实现代码的复用。

**3.3 功能覆盖**利用System Verilog的功能覆盖(Functional Coverage)特性,UVM 可以全面检查设计功能的覆盖率。

---#### 四、UVM与System Verilog的结合优势**4.1 提高验证效率**UVM与System Verilog的结合使得验证人员可以快速搭建验证环境,提高验证效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转一篇Systemverilog的一个牛人总结(2012-12-12 16:47:06)转载▼标签:分类:Dreamyworksystemverilog验证面向对象杂谈Systemverilog数据类型l 合并数组和非合并数组1)合并数组:存储方式是连续的,中间没有闲置空间。

例如,32bit的寄存器,可以看成是4个8bit的数据,或者也可以看成是1个32bit的数据。

表示方法:数组大小和位,必须在变量名前指定,数组大小必须是【msb:lsb】Bit[3:0] [7:0] bytes ;2)二维数组和合并数组识别:合并数组: bit [3:0] [7:0] arrys; 大小在变量名前面放得,且降序二维数组: int arrays[0:7] [0:3] ; 大小在变量名后面放得,可降序可升序位宽在变量名前面,用于识别合并和非合并数组,位宽在后面,用于识别数组中元素个数。

3)非合并数组一般仿真器存放数组元素时使用32bit的字边界,byte、shortint、int都放在一个字中。

非合并数组:字的地位存放变量,高位不用。

表示方法:Bit [7:0] bytes;4)合并数组和非合并数组的选择(1)当需要以字节或字为单位对存储单元操作。

(2)当需要等待数组中变化的,则必须使用合并数组。

例如测试平台需要通过存储器数据的变化来唤醒,需要用到@,@只能用于标量或者合并数组。

Bit[3:0] [7:0] barray[3] ; 表示合并数组,合并数组中有3个元素,每个元素时8bit,4个元素可以组成合并数组可以使用barry[0]作敏感信号。

l 动态数组随机事物不确定大小。

使用方法:数组在开始是空的,同时使用new[]来分配空间,在new[n]指定元素的个数。

Int dyn[];Dyn = new[5]; //分配5个元素空间Dyn.delete() ; //释放空间l 队列在队列中增加或删除元素比较方便。

l 关联数组当你需要建立一个超大容量的数组。

关联数组,存放稀疏矩阵中的值。

表示方法:采用在方括号中放置数据类型的形式声明:Bit[63:0] assoc[bit[63:0]];l 常量:1)Verilog 推荐使用文本宏。

好处:全局作用范围,且可以用于位段或类型定义缺点:当需要局部常量时,可能引起冲突。

2)Parameter作用范围仅限于单个module3)Systemverilog:参数可以在多个模块里共同使用,可以用typedef 代替单调乏味的宏。

过程语句l 可以在for循环中定义变量,作用范围仅在循环内部for(int i=0;i<10;i++)array[i] =i;l 任务、函数及void函数1)区别:Verilog中task 和function最重要的区别是:task可以消耗时间而函数不能。

函数中不能使用#100的延时或@的阻塞语句,也不能调用任务;Systemverilog中函数可以调用任务,但只能在fork joinnone生成的线程中。

2)使用:如果有一个不消耗时间的systemverilog任务,应该把它定义成void函数;这样它可以被任何函数或任务调用。

从最大灵活性角度考虑,所有用于调用的子程序都应该被定义成函数而非任务,以便被任何其它任务或函数调用。

(因为定义成任务,函数调用任务很有限制)l 类静态变量作用:1)类的静态变量,可以被这个类的对象实例所共享。

当你想使用全局变量的时候,应该先想到创建一个类的静态变量静态变量在声明的时候初始化。

2)类的每一个实例都需要从同一个对象获取信息。

l 静态方法作用:当静态变量很多的时候,操作它们的代码是一个很大的程序,可以用在类中创建一个静态方法读写静态变量,但是静态方法不能读写非静态变量。

l ref高级的参数类型Ref 参数传递为引用而不是复制。

Ref比input 、output、inout更好用。

Function void print_checksum(const ref bit [31:0] a[ ]);1) 也可以不用ref进行数组参数传递,这时数组会被复制到堆栈区,代价很高。

2) 用带ref 进行数组参数传递,仅仅是引用,不需要复制;向子程序传递数组时,应尽量使用ref以获得最佳性能,如果不希望子程序改变数组的值,可以使用const ref。

3) Ref参数,用ref 传递变量;可以在任务里修改变量而且,修改结果对调用它的函数可见,相对于指针的功能。

l Return语句增加了return语句。

Task任务由于发现了错误而需要提前返回,如果不这样,那么任务中剩下的语句就必须被放到一个else条件语句中。

体会下Task load_array(int len. Ref int array[ ]);If(len<0) begin$display(―Bad len‖);Returun;//任务中其它代码endtaskl 局部数据存储automatic作用Verilog中由于任务中局部变量会使静态存储区,当在多个地方调用同一个任务时,不同线程之间会窜用这些局部变量。

Systemverilog中,module和program块中,缺省使用静态存储;如果想使用自动存储,需加入automatic关键词。

测试平台l Interface背景:一个信号可能连接几个设计层次,如果增加一个信号,必须在多个文件中定义和连接。

接口可以解决这些问题。

好处:如果希望在接口中增加一个信号,不需要改变其他模块,如TOP模块。

使用方法:(1)接口中去掉信号的方向类型;(2)DUT 和测试平台中,信号列表中采用接口名,例化一个名字注意:因为去掉了方向类型,接口中不需要考虑方向信号,简单的接口,可以看做是一组双向信号的集合。

这些信号使用logic类型[d1]。

双向信号为何可以使用logic呢?这里的双向,只是概念上的双向,不想verilog中databus多驱动的双向。

双向信号如何做接口?(1)仲裁器的简单接口Interface arb_if( input bit clk);Logic [1:0] grant,request;Logic rst;EndinterfaceDUT 使用接口:Module arb(arb_if arbif);…Always @(posedge arbif.clk or negedge arbif.rst)endmodule(2)DUT 不采用接口,测试平台中使用接口(推荐)DUT 中源代码不需要修改,只需要再top中,将接口连接到端口上。

Module top;Bit clk;Always #2 clk =~clk;Arb_if arbif(clk);Arb_port al(.grant(arbif.grant),.request(arbif.grant),.rst(arbif.rst),.clk(arbif.clk));Test t1(arbif);Endmodulel Modport背景:端口的连接方式包含了方向信息,编译器依次来检查连续错误;接口使用无信号的连接方式。

Modport将接口中信号分组并指定方向。

例子:l 在总线设计中使用modport并非接口中每个信号都必须连接。

Data总线接口中就解决不了,个人觉得?因为data是一个双驱动l 时钟块作用:一旦定义了时钟块,测试平台就可以采用@arbif.cb等待时钟,而不需要描述确切的时钟信号和边沿,即使改变了时钟块中的时钟或边沿,也不需要修改测试代码应用:将测试平台中的信号,都放在clocking 中,并指定方向(以测试平台为参考的方向)。

并且在modprot test(clocking cb,最完整的接口:Interface arb_if(input bit clk);Logic[1:0] grant,request;Logic rst;Clocking cb @(posedge clk);Output request;Input grant;EndclockingModport test (clocking cb,Output rst);Modport dut (input clk, request,rst,Output grant);endinterface变化:将request 和grant移动到时钟块中去了,test中没有使用了。

l 接口中的双向信号Interface master_if(input bit clk); //在类中为了,不使用有符号数,常用bit[]定义变量 Wire [7:0] data;Clocking cb@(posedge clk);Inout data;EndclockingModport TEST(clocking cb);endinterfaceprogram test(master_if mif);initial beginmif.cb.data <= ‗z;@mif.cb;$display(mif.cb.data); //总线中读数据@mif.cb;Mif.cb.data <= 8‘h5a; //驱动总线@mif.cb;Mif.cb.data <= ‗z; //释放总线注:(1)interface 列表中clk 采用的是input bit clk;为什么要用bit?(2)时钟块clocking cb 中,一般将testbench中需要的信号,方向指定在这里;而在modprot 指定test信号方向的时候,采用clocking cb。

(3)interface中信号,不一定都用logic,也可采用wire(双驱动);systemverilog中如果采用C代码的风格(参数列表中方向和类型写一起),必须采用logic类型(4)现在的风格,DUT 没才用clocking cb ,测试平台和DUT的时钟如何统一?l 激励时序DUT和测试平台之间时序必须密切配合。

l 测试平台和设计间的竞争状态好的风格:使用非阻塞赋值可以减少竞争。

systemverilog验证中initial 中都采用<= 赋值,而等待延迟采用@arbif.cb等待一个周期来实现。

而verilog中采用的风格时,initial 中采用=阻塞赋值,沿时可以采用#2,等实现。

因此时钟发生器,只能放在module 中,而不能放在program中l Program中不能使用always块测试平台可以使用initial 但不能使用always,使用always 模块不能正常工作。

原因:测试平台的执行过程是进过初始化、驱动和响应等步骤后结束仿真。

如果确实需要一个always块,可以使用initial forever 来完成。

相关文档
最新文档