直流系统常见接线方式

直流系统常见接线方式
直流系统常见接线方式

直流系统常见接线方式

直流系统常用接线包括:

直流电源系统接线

直流馈线接线

直流电源系统常用接线方式

直流系统电源接线应根据电力工程的规模和电源系统的容量确定。按照各类容量的发电厂和各种电压等级的变电所的要求,直流系统主要有以下几种接线方式。

一组充电机一组蓄电池单母线接线

特点:

接线简单、清晰、可靠。

一套充电机接至直流母线上,所以蓄电池浮充电、均衡充电以及核对性放电都必须通过直流母线进行,当蓄电池要求定期进行核对性充放电或均衡充电而充电电压较高,无法满足直流负荷要求时,不能采用这种接线。

适用范围:

适用于110kV以下小型变(配)电所和小容量发电厂,以及大容量发电厂中某些辅助车间。

对电压波动范围要求不严格的直流负荷,不要求进行核对性充放电和均衡充电电压较低,能满足直流负荷要求的阀控型密封铅酸蓄电池组。

二组充电机一组蓄电池单母分段接线

蓄电池经分段开关接至两端母线,二套充电机分别接至两段母线。

分段开关设保护元件,限制故障范围,提高安全可靠性。

适用范围:

适用于110kV以下小型变(配)电所和小容量发电厂,以及

大容量发电厂中某些辅助车间。

对电压波动范围要求不严格的直流负荷。

不要求进行核对性充放电和均衡充电电压较低的蓄电池,如阀控型密封铅酸蓄电池组。

二组充电机二组蓄电池双母接线

整个系统由二套单电源配置和单母线接线组成,两段母线间设分段隔离开关,正常两套电源各自独立运行,安全可靠性高。

与一组电池配置不同,充电装置采用浮充、均充以及核对性充放电的双向接线,运行灵活性高。

适用范围:

适用于500kV以下大、中型变电所和大、中型容量发电厂。

负荷对直流母线电压的要求和对运行方式的要求不受限制。

三组充电机二组蓄电池双母接线

特点:

备用充电机采用均充、浮充兼备的接线,运行方式灵活,可靠

性高。

正常运行时充电装置与蓄电池在母线并联运行,直流母线电源切换时不停电,提高了直流母线供电的可靠性

适用范围:

适用于500kV大型变电所和大容量发电厂。

适用于对直流母线电压有任何要求的负荷和任何类型的蓄电

池,可以满足蓄电池各种工况运行的需要。

500kV变电站直流系统,应满足两组蓄电池、两台高频开关电

源或三台相控充电装置的配置要求,每组蓄电池和充电装置应分别接

于一段直流母线上,第三台充电装置(如果有备用充电装置)可在两

段母线之间切换,任一工作充电装置退出运行时,手动投入第三台充电装置。

补充说明:

1.直流系统中的主要电源是蓄电池组,其次是充电和浮充电设备。220~500kV变电所蓄电池正常情况下以浮充电方式运行。直流负荷实际上由浮充电设备供电,蓄电池处于浮充电状态。

2.当有两组蓄电池时,每段直流母线接一组蓄电池和一套浮充电设备。两套浮充电设备应接在不同的交流电源回路。

3.110kV以下变电所一般采用单母线接线,220~500kV变电所常用的直流母线接线方式有单母线分段和双母线两种。

4.330kV及以上电压等级变电站应采用三台充电装置,两组蓄电池组的供电方式。

5.重要的220kV变电站应采用三台充电装置,两组蓄电池组

的供电方式。

常见馈线接线方式

直流系统馈电网络有两种供电方式:

环形供电

辐射形供电

环形供电

在大型直流网络中,环形供电网络操作切换较复杂、寻找接地故障点也较困难;环形供电网络路径较长,电缆压降也较大,因此,变电站直流系统的馈线网络应采用辐射状供电方式,不宜采用环状供电方式。

辐射形供电

辐射电源供电网络是以直流屏上直流母线为中心,直接向各用电负荷供电的一种供电方式。

采用辐射电源供电方式的优点:

一个设备或系统由1~2条馈线直接供电,当

设备检修时或调试时,可方便地退出,不致影响其他设备。

当直流系统发生接地故障时,便于接地故障点的查找。

电缆的长度较短,压降较小。

采用辐射电源供电方式的缺点:

馈线数量增加,电缆总长度增加,可能使直流主屏数增加,投资较大。

辐射电源供电方式配置的基本原则

1.下列回路由独立的直流回路供电:

信号回路单独设置直流供电回路。

具有双重跳闸线圈和双重化保护装置的电气元件,设置两组直流电源时,由独立的回路分别供电给两套保护装置并各自动作于一组

跳闸线圈。

发电机或发电厂-变压器组,对主保护、后备保护、异常运行

保护以及励磁设备配置二回或三回直流回路。

不同的直流回路应接于不同总熔断器的直流母线段上。

2.在负荷较多且分布较集中的地方应设置直流分电屏,由直流

分电屏向各个负荷分别供电。

补充说明:

1.对于直流馈线,220kV及以上变电所考虑到保护装置的双

重化及控制回路的双重化;

一是要求保护电源与控制电源分开,分别由不同的小开关供电或供不同的小母线;

二是要求双重化的两组电源由直流系统不同的母线电。

2.继电保护装置、信号回路、断路器控制回路直流电源,应分别由专用的直流空气开关供电。

3.双配置继电保护,两套保护装置、断路器两组跳闸线圈应分别由专用的直流空气开关供电,且接与不同的直流小母线。

4.对直流系统的空气开关或熔断器,其容量不但要满足在最大动态工作电流的2倍,还一定要考虑上下级的配合,上级开关或熔断

器的容量不能低于下级总的最大动态工作电流的2倍。

5.事故照明宜分为两个回路,分别接在两段母线上。

中压配电网10kV线路接线方式及配电自动化

中压配电网10kV接线方式及配电自动化 摘要:配电网改造和配电网自动化系统建设的目的在于提高配电网的可靠性。配电网接线方式的选择是高水平配电自动化系统的前提和重要基础。该文从现实角度出发,探讨了几种适合我国实际的配电网架接线方式及它们的优缺点,在此基础上着重介绍了如何实施配电网自动化。 关键词: 配电网位于电力系统的末端,直接与用户相连,整个电力系统对用户的供电能力和供电质量最终都必须通过它来实现和保障。中压配电网的规划、改造和建设已成为电力发展的一项十分重要的基础工程,其中电网接线方式的选择是一个十分重要的问题。不同的城市电网,负荷密度、地理环境、配电变电站的保护方式、配电网的接地方式等是不同的,因此配电网的接线方式及自动化的实施应因地制宜、各具特点。本文介绍了配电网的接线设计原则和配电自动化的实施原则,并针对几种典型接线方式探讨了配电自动化的实施。 1 配电网接线方式设计原则 目前正在进行的城市电网建设改造工程,和即将实施的配电系统自动化建设工程,都要求对配电网的接线方式进行规划设计,特别是配电系统自动化对一次系统接线方式的依赖性很强,它决定了配电系统自动化的故障处理方式。因此,配电网的接线方式必须和配电系统自动化规划紧密结合,一次系统接线方式必须满足配电系统自动化的要求。配电网接线方式设计应遵循以下原则: ?便于运行及维护检修; ?优化网架结构、降低线损; ?保证经济、安全运行;节约设备和材料,投资合理; ?适应配电自动化的需要; ?有利于提高供电可靠性和电压质量; ?灵活地适应系统各种可能的运行方式。 2 配电自动化的实施原则 注重投入产出。首先是先进性与实用性的综合考虑。先进,即功能先进,设备满足使用要求、符合发展趋势、不落后;实用,对做好工作有较大帮助,对提高管理水平有较大意义,不搞“花架子”。此外,还要注意不同的地区要采用不同的模式,如负荷密集程度、负荷重要性、经济发达程度、发展趋势、售电收入等。 合理的网架基础。它包括多供电途径的环状网(或网格状网)开环运行,合理的设备容量和采用可靠的开关设备,灵活的运行方式,恰当分段、恰当联络,负荷密集区和重要区域设开闭所,以及合理的控制和管理权限划分。 统一规划、分步实施。系统规模较大,必须认真规划,盲目上马会导致“推倒重来”的风险,规划负荷发展趋势,规划体现高的投入产出,规划反映不同地区的差异,首先实施网架基础好,经济、社会效益明显的区域,首先实施条件成

常见低压配电系统简介

1.1 低压配电系统简介 本章所描述的低压配电系统是根据国际电工委员会标准IEC 664-1的要求来定义的,适用于海拔至2000m,额定交流电压至1000V,额定频率至30kHz或直流至1500V的系统中。另外,在通信设备中所说的交流配电,一般是指220/ 380V 的供电系统。 IEC 364-3标准中,按照载流导体的配置和接地的方法划分成TN、TT和IT交流配电系统,在下面的图示中给出了配电系统的一些实例。 图中: ---在大多数情况下,配电系统适用于单相和三相设备,但为了简化起见,图中仅划出了单相设备; ---供电电源可以是变压器的次级绕组,电动机驱动的发电机或不间断电源系统;字母代号的含义: 第一个字母T或I表示电源对地的关系,第二个字母N或T表示装置的外露导电部分对地关系,横线后字母S、C或C-S表示保护线与中性线的组合情况。1.1.1 TN配电系统 TN配电系统中,电源有一点(通常是中性点)直接接地,设备端的外露导电部分通过保护线(即PE线包括PEN线)与该接地点连接的系统。按照中性线(N)与保护线的组合情况,TN系统又分为以下三种型式: ---TN-S系统:整个系统中保护线PE与中性线N是分开的,见图5-2; ---TN-C-S系统:系统中有一部分保护线PE与中性线N是分开的,见图5-3;---TN-C系统:整个系统中保护线PE与中性线N是合一的,见图5-4。

图1-1TN-S配电系统实例 图1-2TN-C-S配电系统实例 如图5-4在系统的某一部分中,中线和保护接地功能合并在一根单独的导线上(PEN) 注:将PEN导线分解成保护接地线和中线的点可在建筑物入口处或建筑物的配电板上。

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点 (1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线. (2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系. 以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统. 配电系统设计的基本原则 (1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级. (2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电. (3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电. (4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加. (5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.

(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电. (7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器. (8)单相用电设备的配置应力求三相平衡. (9)当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电. (10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关. (11)在用电单位内部的邻近变电所之间宜设置低压联络线. (12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.

第三章 配电系统的接线方式

第三章配电系统的接线方式 第一节放射式接线 一、放射式接线 1.定义:从电源点用专用开关及专用线路直接送到用户或设备的受电端,沿线没有其他负荷分支的接线称为放射式接线,也称专用线供电。 2.使用场合:用电设备容量大、负荷性质重要、潮湿及腐蚀性环境的场所供电。 3.分类:单电源单回路放射式、双回路放射式接线, 二、单电源单回路放射式 1.接线 如图3-1所示,该接线的电源由总降压变电所的6~10kV母线上引出一回线路直接向负荷点或用电设备供电,沿线没有其他负荷,受电端之间无电的联系。 1-低压配电屏 2-主配电箱 3-分配电箱 图3-1 单电源单回路放射式 2.特点 (1)当出线线路发生故障,线路之间互不影响,供电可靠性高; (2)线路简单易于操作维护,保护装置简单,易于实现自动化; (3)开关设备数量较多,线路有色金属消耗量大,初次投资较大; (4)当电源或母线出现故障或检修时,将导致所有出线停电; (5)当某条出线发生故障、变压器故障及开关设备停电检修时,该线路负荷停电。 3.适用范围 此接线方式适用于可靠性要求不高的二级、三级负荷。 三、单电源双回路放射式 1.接线 如图3-2所示,同单电源单回路放射式接线相比,该接线采用了对一个负荷点或用电设备使用两条专用线路供电的方式,即线路备用方式。 图3-2 单电源双回路放射式 2.特点

(1)由于每个负荷点或用电设备采用两条线路供电,当一条线路故障或开关检修时,另一条备用线路可以投入运行; (2)由于采用备用方式,要求在选择这两条线路及其开关设备应相同,增大了投资量; (3)当电源或母线出现故障或检修时,仍会导致所有负荷停电; (4)同单电源单回路放射式相比提高了线路供电可靠性。 3.适用范围 此接线方式适用于二级、三级负荷。 四、双电源双回路放射式(双电源双回路交叉放射式) 1.接线 两条放射式线路连接在不同电源的母线上,其实质是两个单电源单回路放射的交叉组合。 图3-3 双电源双回路的放射式 2.特点 (1)采用此接线最大的好处是每个负荷点或用电设备有两个独立的一次电源供电; (2)当正常电源故障时,经过手动或自动的电源切换装置,可以简单迅速地切换到备用电源上,保证不停电; (3)这种配电形式一次侧为双路电源,要求电源的两组开关设备应有可靠的联(互)锁装置,以免误操作; (4)当一线路故障时,全部负载应当由另一线路供电,所以要求每一线路应有足够的容量能够负担全部负载; (5)由于双电源、双线路和双开关设备,供电可靠性较高,但初次投资也较高,开关操作复杂,维护比较困难。 3.适用范围 此接线方式适用于可靠性要求较高的一级负荷。 五、具有低压联络线的放射式 1.接线 该接线主要是为了提高单回路放射式接线的供电可靠性,从邻近的负荷点或用电设备取得另一路电源,用低压联络线引入。 2.特点 (1)一次侧电源或变压器出现故障会导致所有出线停电; (2)当某条出线发生故障或停电检修时,该线路负荷由另一路低压联络线供电。 3.适用范围 互为备用单电源单回路加低压联络线放射式适用于用户用电总容量小,负荷相对分散,各负荷中心附近设小型变电所(站),便于引电源。与单电源单回路放射式不同之处,高压线路可以延长,低压线路较短,负荷端受电压波动影响较前者小。 此接线方式适用于可靠性要求不高的二、三级负荷。若低压联络线的电源取自另一路电源,则可供小容量的一级负荷。

低压配电系统三种形式

根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 TN系统: 电源变压器中性点接地,设备外露部分与中性线相连。 TT系统: 电源变压器中性点接地,电气设备外壳采用保护接地。 IT系统: 电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。 1、TN系统 电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类: 即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。 1.1、TN—C系统 其特点是: 电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。 (1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;

(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位; (3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。 由上可知,TN-C系统存在以下缺陷: (1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。 (2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。 (3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。 (4)、重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。 TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。 1.2、TN—S系统 整个系统的中性线(N)与保护线(PE)是分开的。 (1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源; (2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位; (3)TN—S系统PE线首末端应做重复接地,以减少PE线断线造成的危险。 (4)TN—S系统适用于工业企业、大型民用建筑。

工厂供配电系统主接线方案【精编版】

工厂供配电系统主接线方案【精编版】

本文按照钢铁厂供电系统对供电可靠性、经济性的要求,根据钢铁厂的负荷性质、负荷大小和负荷的分 布情况对本厂供电系统做了全面综合的分析,详细阐述了工厂总降压变电所实现的理论依据。通过对整个供电系统的分析和对钢铁厂的电力负荷,功率补偿,短路电流的计算,合理的选择电力变压器、断路器等各种电气设备;对工厂总降压变电所不同的主接线方案进行比较,选择可靠性高,经济性好的主接线方案,实现了工厂供电系统安全、可靠、优质、经济地运行。 关键词供电系统;电力负荷;功率补偿;电气设备;主接线;继电保护

目录

1 前言 1.1概述 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送和分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在一般工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重很小。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。例如某些对供电可靠性要求很高的工厂,即使是极短时间的停电,也会引起重大设备损坏,或引起大量产品报废,甚至可能发生重大的人生事故,给国家和人民带来经济上甚至政治上的重大损失。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求。 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。

电力系统电气主接线的形式和要求

电力系统电气主接线的形式和要求 1.主接线的基本要求 (1)可靠性电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。保证电气接线可靠性可以用多种措施来实现。 (2)灵活性电气系统接线应能适应各式各样可能运行方式的要求。并可以保证能将符合质量要求的电能送给用户。 (3)安全性电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。 (4)经济性其中包括最少的投资与最低的年运行费。 (5)应具有发展与扩建的方便性在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。 2.单母线接线 (1)单母不分段 每条引入线和引出线的电路中都装有断路器和隔离开关, 电源的引入与引出是通过一根母线连接的。 单母线不分段接线适用于用户对供电连续性要求不高的二、三级负荷用户。 2)单母线分段接线 单母线分段接线是由电源的数量和负荷计算、电网的结构来决定的。 单母线分段接线可以分段运行,也可以并列运行。 用隔离开关、负荷开关分段的单母线接线,适用于由双回路供电的、允许短时停电的具有二级负荷的用户。 用断路器分段的单母线接线,可靠性提高。如果有后备措施,一般可以对一级负荷供电。 3)带旁路母线的单母线接线 当引出线断路器检修时,用旁路母线断路器代替引出线断路器,给用户继续供电。旁路断路器一般只能代替一台出线断路器工作,旁路母线一般不能同时连接两条及两条以上回路,否则当其中任一回路故障时,会使旁路断路器跳闸。断开多条回路。通常35kV的系统出线8回以上、 110kV系统出线6回以上,220kV系统出线4回以上,才考虑加设旁路母线。 (4)单母线分段带旁路 在正常运行时,系统以单母线分段方式运行,旁路母线不带电。如果正常运行的 某回路断路器需退出运行进行检修,闭合旁路断路器,使旁路母线带电,合上欲检修回路旁路隔离开关,则该线路断路器可退出运行,进行检修。 这种旁路母线可接至任一段母线,在容量较少的中小型发电厂和 35~110kV变电所中获得广泛应用。 3.双母线接线 (1)双母线接线 一组作为工作母线,另一组作为备用母线,在两组母线之间,通过母线联络断路器(简称为母联断路器)进行连接。把双母线系统形成单母线分段运行方式,即正常运行时,使两条母线都投入工作,母联断路器及其两侧隔离开关闭合,全部进出线均匀分配两条母线。这种运行方式可以有效缩小母线故障时的停电范围。 双母线接线主要优点有: 1)检修任一组母线时,不会中断供电。 2)检修任一回路的母线隔离开关时,只需断开该回路,其它回路倒换至另一组母线继续运行。 3)工作母线在运行中发生故障时,可将全部回路换接至备用母线,迅速恢复供电。 4)任一回路断路器检修时,可用母联断路器代替其工作。 5)方便试验。需要对某回路做试验时,只需把此回路单独切换至备用母线即可。 (2)双母线带旁路接线 在双母线接线方式中,为使线路在出线断路器检修时不中断供电,可采用带旁路接线。

低压配电系统供电方式

配电系统 传统上将电力系统划分为发电、输电和配电三大组成系统。 发电系统发出的电能经由输电系统的输送,最后由配电系统分配给各个用户。 一般地,将电力系统中从降压配电变电站(高压配电变电站)出口到用户端的这一段系统称为配电系统。 配电系统是由多种配电设备(或元件)和配电设施所组成的变换电压和直接向终端用户分配电能的一个电力网络系统。[编辑本段] 配电系统的组成 在我国,配电系统可划分为高压配电系统、中压配电系统和低压配电系统三部分。 由于配电系统作为电力系统的最后一个环节直接面向终端 用户,它的完善与否直接关系着广大用户的用电可靠性和用电质量, 因而在电力系统中具有重要的地位。 我国配电系统的电压等级,根据《城市电网规划设计导则》的规定,220kV及其以上电压为输变电系统,35、63、110kV 为高压配电系统,10、6kV为中压配电系统,380、220V为低压配电系统。

[编辑本段] 低压配电系统的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 1、TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。这种供电系统的特点如下。 (1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 (2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统难以推广。 (3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

低压配电系统接地方式的分类doc资料

低压配电系统接地方式的分类 电源侧的接地称为系统接地,负载侧的接地称为保护接地。国际电工委员会(IEC )标准规定的低压配电系统接地有IT系统、TT系统、TN系统三种方式。 1、IT系统 电源端带电部分对地绝缘或经高阻抗接地,用电设备金属外壳直接接地。IT系统示意图见下图:IT系统适用于环境条件不良、易发生一相接地或火灾爆炸的场所,如煤矿、化工厂、纺织厂等, 也可用于农村地区。但不能装断零保护装置,因正常工作时中性线电位不固定,也不应设置零线重复接地。 2、TT系统 TT系统的示意图见下图。该系统电源中性点直接接地,用电设备金属外壳用保护接地线接至与 电源端接地点无关的接地级,简称保护接地或接地制。 当配电系统中有较大量单相220V用电设备,而线路敷设环境易造成一相接地或零线断裂,从 而引起零电位升高时,电气设备外壳不宜接零而采用TT系统。TT系统适用于城镇、农村居住区、 工业企业和分散的民用建筑等场所。当负荷端和线路首端旳装有漏电开关,且干线末端装有断零保护时,则可成为功能完善的系统。 3、TN系统

TN系统的电源端中性点直接接地,用电设备金属外壳用保护零线与该中心点连接,这种方式简称保护接零或接零制。按照中必线(工作零线)与保护线(保护零线)的组合事况TN系统又分以下三种形式: (1)TN —C系统。在该系统中,工作零线和保护零线共用(简称PEN),此系统习惯称为三相四线制系统。系统示意图如下: (2)TN —S系统。在该系统中,工作零线N和保护零线PE从电源端中性点开始完全分开, 此系统习惯称为三相五线制系统。示意图见下图: TN —C —S系统。在该系统中,工作零线同保护零线是部分共用的,此系统即为局部三相 五线制系统。系统示意图见图 5.10 —5.

电力系统电气主接线的形式和要求

电力系统电气主接线的形式和要求 1、主接线的基本要求 (1)可靠性电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。保证电气接线可靠性可以用多种措施来实现。 (2)灵活性电气系统接线应能适应各式各样可能运行方式的要求。并可以保证能将符合质量要求的电能送给用户。 (3)安全性电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。 (4)经济性其中包括最少的投资与最低的年运行费。 (5)应具有发展与扩建的方便性在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。 2、单母线接线 (1)单母不分段 每条引入线和引出线的电路中都装有断路器和隔离开关, 电源的引入与引出是通过一根母线连接的。 单母线不分段接线适用于用户对供电连续性要求不高的 二、三级负荷用户。 2)单母线分段接线

单母线分段接线是由电源的数量和负荷计算、电网的结构来决定的。 单母线分段接线可以分段运行,也可以并列运行。 用隔离开关、负荷开关分段的单母线接线,适用于由双回路供电的、允许短时停电的具有二级负荷的用户。 用断路器分段的单母线接线,可靠性提高。如果有后备措施,一般可以对一级负荷供电。 3)带旁路母线的单母线接线 当引出线断路器检修时,用旁路母线断路器代替引出线断路器,给用户继续供电。旁路断路器一般只能代替一台出线断路器工作,旁路母线一般不能同时连接两条及两条以上回路,否则当其中任一回路故障时,会使旁路断路器跳闸。断开多条回路。通常35kV的系统出线8回以上、110kV系统出线6回以上,220kV 系统出线4回以上,才考虑加设旁路母线。 (4)单母线分段带旁路 在正常运行时,系统以单母线分段方式运行,旁路母线不带电。如果正常运行的 某回路断路器需退出运行进行检修,闭合旁路断路器,使旁路母线带电,合上欲检修回路旁路隔离开关,则该线路断路器可退出运行,进行检修。 这种旁路母线可接至任一段母线,在容量较少的中小型发电厂和35~110kV变电所中获得广泛应用。

低压配电系统设计

第四章低压配电系统设计 4.1 低压配电系统概述 配电系统设计的一般规定供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品。供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品. 4.2 设计原则 (1)配电系统应做到供电可靠,电能质量好,满足生产要求。对一级负荷应由两个独立电源;对二级负荷一般要有两个电源,可以手动切换,在条件很困难的情况下,允许只有一个电源。 (2)配电系统的接线力求简单灵活,便于操作维护,并能适应负荷的变化和系统的发展。同一电压的配电级数不宜多于两级。 (3)制定配电系统方案时,一般不考虑当一电源系统发生故障或检修停电时,另一电源进线也同时发生故障。 (4)制定配电系统方案时要充分考虑节约基建投资,降低运行费用,减少有色金属的消耗量。 (5)配电系统应考虑负荷的增长,预留必要的发展余地作出分期建设的规划。配、变电所的电源进线要有适当的富裕的供电能力。 4.3 设计的一般规定和要求 4.3.1负荷分级 按对供电可靠性要求的负荷分类 我国将电力负荷按其对供电可靠性的要求及中断供电在政治上、经济上造成的损失或影响的程度划分为三级,分别为一级、二级、三级负荷。 ⑴符合下列情况之一时,应为一级负荷 ①中断供电将造成人身伤亡时。 ②中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程

电力系统基础习题及答案解析

第一章电力系统概述习题 一、填空题 1.根据一次能源的不同,发电厂可分为火力发电厂、水力发电厂、风力发电厂和核能发电厂等。 2.按发电厂的规模和供电范围不同,又可分为区域性发电厂、地方发电厂和自备专用发电厂等。 3.火电厂分为凝汽式和供热式火力发电厂。 4.水电厂根据集中落差的方式分为堤坝式、引水式和混合式。 5.水电厂按运行方式分为有调节、无调节和抽水蓄能电厂。 6.变电所根据在电力系统的地位和作用分为枢纽变电所、中间变电所、地区变电所、终端变电所。 7.衡量电能质量的指标有电压、频率、正弦交流电的波形。 8.根据根据对用电可靠性的要求,负荷可以分成第Ⅰ类负荷、第Ⅱ类负荷、第Ⅲ类负荷。 二、判断题 1、火力发电厂是利用煤等燃料的化学能来生产电能的工厂。(√) 2、抽水蓄能电站是利用江河水流的水能生产电能的工厂。(×) 3、变电站是汇集电源、升降电压和分配电力的场所 , 是联系发电厂和用户的中间环节。(√) 4、中间变电站处于电力系统的枢纽点 , 作用很大。(×) 5、直接参与生产、输送和分配电能的电气设备称为一次设备。(√) 6、电流互感器与电流表都是电气一次设备。(×) 7、用电设备的额定电压与电力网的额定电压相等。(√) 8、发电机的额定电压与电力网的额定电压相等。(×) 9、变压器一次绕组的额定电压与电力网的额定电压相等。(×) 10、所有变压器二次绕组的额定电压等于电力网额定电压的倍。(×) 11、二次设备是用在低电压、小电流回路的设备。(√) 12、信号灯和控制电缆都是二次设备。(√) 13、根据对用电可靠性的要求,负荷可以分成5类。(×) 三、简答题 1.发电厂和变电所的类型有哪些。 答:发电厂分火力发电厂、水力发电厂、风力发电厂和核能发电厂。 根据变电所在电力系统的地位和作用分成枢纽变电所、中间变电所、地区变电所和终端变电所。

电力系统主接线

第1章前言 1.1电气主接线系统设计的意义 电气主接线主要指发电厂、变电所及电力系统中传送电能的通路, 这些通路中有发电机、变压器、母线、断路器、隔离开关、电抗器、线路等设备。它们的连接方式, 对供电可靠、运行灵活、检修方便以及经济合理等起着决定性的作用,它反映出电厂的整个供电系统全貌和其所选用的电气设备、元件型号规格和数量以及它们之间的相互关系。它不仅是初步设计审查的重要内容之一, 同时也是将来电气值班运行人员进行各种操作的重要依据。电气主接线的设计是否合理, 将直接影响到电厂基本建设投资效益和今后的安全及可靠运行,同时也是做好发电厂电气设计的关键。同时,电气主接线的设计也是变电所电气设计的主体。它与电力系统、电厂功能参数、基本原始资料以及电厂的运行可靠性、经济性的要求等密切相关,并对电器选择和布置,继电保护和控制方式等都有较大的影响。因此,主接线的设计显得尤为重要。 针对发电厂而言,电气主接线已经成为电气设计最为关键的环节,关系着电能的安全输送,关系着居民用电的可靠保障和自身运行的安全性、稳定性。合理的设计能够有效节省基建投资,方便以后的操作和检修,减少机组因电气原因造成停机等。本文依托某2×30MW公用热电厂进行设计主接线,通过技术经济比较,达到技术先进、经济合理、安全适用的目的。 1.2厂用电系统设计的意义 厂用电系统是火力发电厂的重要组成部分,厂用电系统的任何故障都会影响正常生产,严重的会直接造成停产。火力发电厂有大量的辅机设备,大部分辅机

均由电动机拖动,厂用电量巨大,一般热电厂的厂用电率为8%~10%甚至更高,且对电源的可靠性要求高,一般情况不允许突然中断。 厂用电供电的可靠性和经济性不仅与发电厂的运行操作、维护检修和设备质量等有着密切的关系,其很大程度上取决于厂用电接线设计是否正确、合理,厂用电的电压等级和厂用电源的引接方式是否合适,备用电源与工作电源切换是否灵活可靠等。由此可见,厂用电系统的设计直接关系到整个电厂以后运行的安全、可靠性,它的确定就代表着电厂基本轮廓的确定,基本组成设备的确定,投资成本的确定,因此合理的厂用电接线,适当的电压等级,对于保证机组的安全连续满发、降低厂用电率、方便操作和维护、节约投资、缩短建设工期、控制造价等有着重要的意义。 1.3 本文的主要工作 1.3.1 学习关于电气主接线和厂用电接线的设计方法和流程。 1.3.2 根据各设计规范选择各主要设备、导体的型式,并了解校核方法。 1.3.3 通过设计和探讨,加深对所学知识的掌握,为以后运用于实践中打好基础。 第2章电气主接线设计要求及方案确定 2.1电气主接线设计的要求 发电厂的主接线设计要求非常严格,在设计时不仅要按照国家相关的法律法规严格执行外,其经济性、合理性、可靠性等都直接关系到以后的运行安全和经济效益。所以,对发电厂电气主接线设计一般应满足以下几点:

详细解读电力系统主接线的基本要求、基本形式和接线方式

详细解读电力系统主接线的基本要求、基本形式和接线方式导读 主接线是实现电能输送和分配的一种电气接线。变配电站的主接线是由各主要电气设备(包括变压器、开关电器、母线、互感器及连接线路等)按一定顺序连接而成的、接受和分配电能的总电路。本期专题将详细解读电力系统主接线的基本要求、基本形式和接线方式。 主接线一般需符合电力系统对本电站在供电可靠性和电能质量方面的要求,技术先进,经济合理,接线简单、清晰,操作维护方便和具有一定的灵活性,并能适应工程建设不同阶段的要求。 对主接线的要求 电气主接线应满足下列基本要求: 1)牵引变电所、铁路变电所电气主接应综合考虑电源进线情况(有无穿越通过)、负荷重要程度、主变压器容量和台数,以及进线和馈出线回路数量、断路器备用方式和电气设备特点等条件确定,并具有相应的安全可靠性、运行灵活和经济性。 2)具有一级电力负荷的牵引变电所,向运输生产、安全环卫等一级电力负荷供电的铁路变电所,城市轨道交通降压变电所(见电力负荷、电力牵引负荷)应有两回路相互独立的电源进线,每路电源进线应能保证对全部负荷的供电。没有一级电力负荷的铁路变、配电所,应有一回路可靠的进线电源,有条件时宜设置两回路进线电源。 3)主变压器的台数和容量能满足规划期间供电负荷的需要,并能满足当变压器故障或检修时供电负荷的需要。在三相交流牵引变电所和铁路变电所中,当出现三级电压且中压或低压侧负荷超过变压器额定容量的15%时,通常应采用三绕组变压器为主变压器。 4)按电力系统无功功率就地平衡的要求,交流牵引变电所和铁路变、配电所需分层次装设并联电容补偿设备与相应主接线配电单元。为改善注入电力系统的谐波含量,交流牵引变电所牵引电压侧母线,还需要考虑接入无功、谐波综合并联补偿装置回路(见并联综合补偿装置)。对于直流制干线电气化铁路,为减轻直流12相脉动电压牵引网负荷对沿线平

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引水

电力系统设计讲义6.doc

第六节电气主接线设计 电气主接线体现了发电厂、变电站电气系统的主体结构,也是构成电力系统的重要环节,与电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。因此,电气主接线方案设计是电力系统设计和发电厂、变电所电气设计的主要部分,必须正确处理好各方面的影响,全面分析其相互关系,通过技术经济综合比较,合理确定主接线方案,以满足可靠性、灵活性和经济性三项基本要素。 一、电气主接线设计原则 发电厂、变电所电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合实际工程情况,综合分析装机容量、机组台数、接入系统方式、主要负荷性质及线路回数,及燃料、水源、厂区地形、地质、水文、气象、交通运输等基础资料,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行维护方便,并尽可能地节约投资。 二、选择主接线的依据 在选择电气主接线时,应以下列各点作为设计依据: 1.发电厂、变电所在电力系统中的地位和作用 分析所设计的发电厂、变电所的类型、性质、规模,在电力系统地理接线图与电气接线图中所处的位置及所担负的任务,从而明确其对电气主接线可靠性、灵活性、经济性的具体要求。 电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。大型主力火电厂靠近煤矿或沿海、沿江地区,并接入330~500kV超高压电网;地区电厂靠近负荷中心的城镇,一般接入110~220kV电网,也有接入更高一级电压电网的;企业自备电厂则以对本企业供电供热为主,并与地区电网相连;中小型电厂常用发电机电压馈线向附近供电。 电力系统中变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以高压供电,电压为330~500kV;地区重要变电所电压为220~330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV的。 2.发电厂、变电所的分期和最终建设规模 了解系统的逐年电力电量平衡,以及系统装机容量、备用容量、最大单机容量等状况。对于发电厂,应根据电力系统规划容量、负荷增长速度和电网结构等因素,明确初期装机容

低压配电系统的接线方案

摘要 工厂变电所是供电系统的核心,在工厂中占有特别重要的地位。变电所的主要作用是:从电力系统接受电能,经过变压器降压,然后按要求把电能分配到各车间供给各类用电设备。变电所一次,二次接线方案的确定.高低压电气设备,高压开关柜,低压配电屏的合理选择对于变电所很重要.其电气主接线是按照一定的工作顺序和规程要求。电力系统称为三相对称系统,所以电气主接线图通常以单线图来表示,使其简单清晰。通过设计可巩固各课程理论知识,了解工厂供电电能分配等各种实际问题,培养独立分析和解决实际工程技术问题的能力,同时对电力工业的有关政策、方针、技术规程有一定的了解,在计算图、编号、设计说明书等方面得到训练,为以后工作奠定基础。 关键词:电力系统;低压配电屏;主变压器

目录 一、确定低压配电系统的接线方案及负荷计算 (1) (一)接线方案 (1) (二)负荷计算 (1) 1机加一车间 (1) 2机加二车间 (2) 3铸造车间 (3) 4机修车间 (4) 5装配车间 (5) 6热处理车间 (6) 7照明负荷计算 (7) (三)无功补偿容量 (7) 二、变压器选择 (9) (一)选择变压器位数应考虑的原则 (9) (二)电容器柜的选择 (9) (三)工厂变电所的主变压器装设方案 (9) (四)主结线方案的选择 (10) 三、高压一次方案的确定 (10)

四、二次回路 (11) (一)控制信号回路 (11) (二)有功无功电能计算 (12) (三)电压电流测量回路 (12) (四)过电流保护 (13) 五、变电所的结构 (13) (一)确定变电所结构原则 (13) (二)变电的总体布置要求 (14) (三)根据原则设计变电所图 (14) 六、接地电阻的计算 (15) (一)接地装置设计要求 (15) (二)接地图 (16) 七、结论 (16) 八、参考文献 (17) 九、附录 (18) 十、致谢 (26)

低压配电系统型式(图解)

低压配电系统型式(图解) 低压配电系统中常用的型式有:IT系统、TT系统、TN系统,下面我们做分别介绍。? 一、IT型? 如下图? ? 必须说明:(略) 二、TT型? 如下图? ?

必须说明:? 《农村低压电力技术规程》DL/T499-2001中规范:? 3.4.5采用TT系统时应满足的要求:? 1、采用TT系统,除变压器低压侧中性点直接接地外,中性线不得再行接地,且应保持与相线(火线)同等的绝缘水平。? 2、为了防止中性线的机械断线,其截面积应满足以下要求:? 相线的截面积S:S≤16平方毫米中性线截面积S0:S0=S(与相线一样)? 相线的截面积S:16<S≤35平方毫米中性线截面积S0:S0=16? 相线的截面积S:S>35平方毫米中性线截面积S0:S0=S/2(相线的一半)? 3、电源进线开关应隔离(能断开)中性线,漏电保护器必须隔离(能断开)中性线。? 4、必须实施剩余电流保护(即必须安装漏电保护开关),包括:?

(1)剩余电流总保护、剩余电流中级保护(必要时),其动作电流应满足:? 剩余电流总保护和是及时切除低压电网主干线和分支线路上断线接地等产生较大剩余电流的故障。? 剩余电流总保护器的动作电流整定:? 总保护整定? 剩余电流较小的电网非阴雨季节为50mA阴雨季节为200mA? 剩余电流较大的电网非阴雨季节为100mA阴雨季节为300mA? (2)剩余电流末级保护? 剩余电流中末级保护装于用户受电端(即终端用户,例如家庭用电,或某台用电设备),其保护范围是防止用户内部绝缘破坏,发生人身间接接触触电等而产生的剩余电流所造成的事故。对直接接触触电,仅作为基本保护措施的附加保护。? 剩余电流中末级保护应满足以下条件:? Re×Iop≤Ulim? 式中:? Re—受电设备外露可导电部分的接地电阻(Ω)? Ulim—安全电压极限(正常情况下可按50V交流有效值考虑)? Iop—剩余电流保护器的动作电流(A)? Iop整定值:≤30mA? 5、配电变压器低压侧及出线回路,均应装设过电流保护,包括:短路保护和过负荷保护。? 三、TN型? TN系统:包括TN—C、TN—C—S、TN—S三种系统? 1、TN—C系统? 如下图? ?

低压配电一次、二次接线图区别与联系

按照国家颁布的有关电气技术标准,使用电气系统图形符号和文字符号表示电气装置中的各元件及其相互联系的工程图,称为电气接线图,又叫电气线路图。电气线路图按其在电力系统中的作用,可分为一次接线图和二次接线图。 (1)一次接线图也叫主接线图,是表示电能输送和电能分配路线的接线图。与一次接线直接相连接的电气设备,称为一次设备或一次元件。一次接线图一般用单线绘出,图中的设备(如开关)位置都是无电压时的位置。图一是低压配电的一次接线图,包括以下三个单元: 第一个单元由配电变压器B、电流互感器(三只)1LH、刀开关1DK、自动空气开关1ZK和连接导线组成,它是电能输入部分。 第二个单元由刀开关2DK、电流互感器(三只)2LH、自动空气开关(四只)2ZK-5ZK和连接导线组成。 第三个单元由刀开关3DK、熔断器1RD和2RD、电流互感器(单只)3LH 和4LH及连接导线组成。 第二个单元和第三个单元是电能输出(分配)部分。 B、1LH、1DK、1ZK等都是一次设备。 图一:低压配电一次接线图

(2)二次接线图上述一次接线图所绘出的三个单元,只表明电能的输送和分配,而未表明电路的控制、指示、监控、测量和保护,表明电路的控制、指示、监控、测量和保护电器正常运行的接线图,称为二次接线图,也叫副接线图。与二次接线直接相连的电器,称为二次设备或二次元件。 二次接线图往往只汇出一次接线图中的一个单元的某一元件。某一参量或表明某一功能。例如,图二是图一中电能输入单元的电流互感器1LH(电流参量)的电流测量二次接线图。由该图可见,电流表A就是二次元件。 图二:电流测量二次接线图 如有侵权请联系告知删除,感谢你们的配合!

相关文档
最新文档