电力系统的接线方式

合集下载

380三相4线正确接法

380三相4线正确接法

380三相4线正确接法在工业和商业领域,三相电力系统得到广泛应用。

三相电力系统可以有效地提供大功率电力,并减少电力传输中的功率损耗。

而在三相电力系统中,正确的接线方法非常重要,可以确保电力系统的安全和稳定运行。

对于380V三相电力系统,最常见的接线方式是4线制。

它包含三个相线和一个零线,用于提供电力供应同时保持电路的平衡。

下面将介绍380V三相4线正确接法的具体步骤。

首先,我们需要确认电源的相序。

三相电力系统中的三个相线通常被标记为A、B和C。

正确的相序是非常重要的,以确保电力系统的正常运行。

通常,电源供应商会提供关于相序的信息。

如果没有这些信息,你可以使用一个三相电压表来测试相序。

确保相序正确后,才能进行下一步的接线工作。

接下来,我们需要准备好三个电源插座和一个三相插头。

电源插座应具备良好的绝缘性能,并且能够承受所需的电流负荷。

三相插头应与电源插座匹配,并且应正确连接到电源线缆。

在进行实际的接线过程中,需要注意以下几点:1.首先,将三根相线(A、B和C)分别连接到三个电源插座上的线框(L1、L2和L3)。

确保接线牢固,并紧固好接线螺母。

2.接下来,将零线连接到三个电源插座上的零线框(N)。

在连接过程中,要确保零线与相线的连接是正确的,以避免电流回流的问题。

3.最后,将三个电源插座上的地线连接到一个共同的接地线上。

接地线的作用是为了保障安全,并防止电路中出现漏电等问题。

完成以上接线步骤后,我们需要进行一次全面的检查。

确保所有接线都连接正确,并且没有松动或暴露的电线。

在接线完成后,我们可以插入三相插头,并将其连接到三个电源插座上。

此时,三相电力系统便可以正常供电。

总之,正确的380V三相4线接法对于电力系统的安全和稳定运行至关重要。

在进行接线工作时,我们必须注意相序的正确性,并确保所有接线牢固可靠。

通过遵循正确的接线方法,我们能够有效地利用三相电力系统,并确保其长期稳定运行。

电力系统母线接线几种方式

电力系统母线接线几种方式

电力系统母线接线有几种方式?有何特点?母线接线主要有以下几种方式:(1)单母线。

单母线、单母线分段、单母线加旁路和单母线分段加旁路。

(2)双母线。

双母线、双母线分段、双母线加旁路和双母线分段加旁路。

(3)三母线。

三母线、三母线分段、三母线分段加旁路。

(4) 3/2接线、3/2接线母线分段。

(5) 4/3接线。

(6)母线一变压器一发电机组单元接线。

(7)桥形接线。

内桥形接线、外桥形接线、复式桥形接线。

(8)角形接线(或称环形)。

三角形接线、四角形接线、多角形接线。

电力系统母线接线方式有以下特点:(1)单母线接线。

单母线接线具有简单清晰、设备少、投资小、运行操作方便且有利于扩建等优点,但可靠性和灵活性较差。

当母线或母线隔离开关发生故障或检修时,必须断开母线的全部电源。

(2)双母线接线。

双母线接线具有供电可靠、检修方便、调度灵活或便于扩建等优点。

但这种接线所用设备(特别是隔离开关)多,配电装置复杂,经济性较差;在运行中隔离开关作为操作电器,容易发生误操作,且对实现自动化不便;尤其当母线系统故障时,须短时切除较多电源和线路,这对特别重要的大型发电厂和变电所是不允许的。

(3)单、双母线或母线分段加旁路。

其供电可靠性高,运行灵活方便,但投资有所增加,经济性稍差。

特别是用旁路断路器带该回路时,操作复杂,增加了误操作的机会。

同时,由于加装旁路断路器,使相应的保护及自动化系统复杂化。

(4) 3/2及4/3接线。

具有较高的供电可靠性和运行灵活性。

任一母线故障或检修,均不致停电;除联络断路器故障时与其相连的两回线路短时停电外,其他任何断路器故障或检修都不会中断供电;甚至两组母线同时故障(或一组检修时另一组故障)的极端情况下,功率仍能继续输送。

但此接线使用设备较多,特别是断路器和电流互感器,投资较大, 二次控制接线和继电保护都比较复杂。

(5)母线一变压器一发电机组单元接线。

它具有接线简单,开关设备少,操作简便,宜于扩建,以及因为不设发电机出口电压母线,发电机和主变压器低压侧短路电流有所减小等特点。

电力系统接线方式

电力系统接线方式

电力系统接线方式电力系统中性点是指星形连接的变压器或发电机的中性点。

电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。

电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。

电力系统中性点接地方式主要是技术问题,但也是经济问题。

在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。

简言之,电力系统的中性点接地方式是一个系统工程问题。

接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与人地作良好的电气连接称为接地。

根据接地的目的不同,分为工作接地和保护接地。

工作接地是指为运行需要而将电力系统或设备的某一点接地。

如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。

保护接地是指为防止人身触电事故而将电气设备的某一点接地。

如将电气设备的金属外壳接地、互感器二次线圈接地等。

接地方式主要有2种,即直接接地系统和不接地系统。

1.中性点直接接地系统中性点直接接地系统一一又称人电流系统;适于UOkV以上的供电系统,380V以卞低压系统。

直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。

随着电力系统电压等级的增高和系统容量增人,设备绝缘费用所占比重也越来越人。

中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。

所以,UOkV及以上系统均采用中性点直接接地方式。

对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。

对于高压系统,如UOkV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受J 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资人人增加;另外11ORV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在llOkV以上供电系统,多采用中性点直接接地系统。

电力系统的接线方式和电压等级

电力系统的接线方式和电压等级

第五节电力系统的接线方式和电压等级一、电力系统的接线方式(一)系统发展的基本结构型式近代电力系统的接线是很复杂的,这是由于一个具有一定规模的电力系统常常是逐步发展壮大的,往往包括了各种新旧设备,反映了新老技术的结合,这是电力系统的有一个特点。

下面首先从发展的角度来研究系统结构的基本型式。

通常,根据电源位置、负荷分布等的不同,电力系统的结构是各不相同的,但大致可区别为下列两类。

(1)大城市型。

这类系统是面向大城市为中心的负荷密度很高的地区供电的电力系统,它以围绕城市周围的环形系统作为主干(见图1—9)。

其电源中既有一些地区性火电厂,也有从远方水电厂、矿口火电厂以及核能电厂输送来的功率。

(2)远距离型。

这类系统一般是指通过远距离输电线路把远处的大型水电厂、矿口火电厂、核能电厂的功率送往负荷中心的开式系统,如图1—10所示。

这这种大容量、远距离的功率输送,既可以采用超高压交流输电线路,也可以用超高压直流或交、直流并列的输电线路。

(二)电力网络的接线电力网络的接线大致可以分为无备用和有备用两种类型。

(1)无备用网络接线。

用户只能从一个方向取得电源的接线方式,也成为开始电力网。

这类接线方式可以分为单回路放射式、单回路干线式、单回路链式等,如图1—11所示。

无备用接线的主要优点是简单、经济、运行方便,主要缺点是可靠性差,因而不能用于对重要用户供电。

(2)有备用网络接线。

它是指用户可以从两个或两个以上方向取得电源的接线方式,如双回路的放射式、环网以及两端供电网络等,如图1—12所示。

有备用接线的特点是供电可靠,缺点是运行操作和继电保护复杂、经济性也较差。

但是由于保证对用户不间断供电是电力系统的首要目标之一,所以目前以有备用网络接线(尤其是两端供电方式)采用较多。

二、电力系统的额定电压等级我们知道,电力系统中的电机、电器和用电设备都规定有额定电压,只有在额定电压下运行时,其技术经济性能才最好,也才能保证安全可靠运行。

4-1 电力系统的接线方式(2018)

4-1 电力系统的接线方式(2018)

母线隔离开关
单母线接线图 16
母线隔离开关
断路器
17
线路隔离开关
接地刀闸
18
接地刀闸
19
电气倒闸操作
通过操作隔离开关、断路器以及挂、拆接地线将 电气设备从一种状态转换为另一种状态的有序操 作,叫做倒闸操作。
电气设备工作状态:运行、冷备用、热备用、检 修。
20
电气倒闸操作
运行状态:电气设备所连的断路器、隔离开关都在合闸位 置。
36
3)一个半断路器接线(3/2接线)
优点:可靠性高、操作 检修方便、运行灵活。 (两组母线同时故障, 一个半断路器接线还可 以输送功率。)
联络断路器
缺点:设备多,投资多、 继电保护、自动重合闸 和二次回路较复杂。
联络断路器故障时与其相连的 两条回路会短时停电
37
3)一个半断路器接线(3/2接线)
一组主母线运行,另一组主母线备用时,当工 作母线检修时的倒闸操作顺序
l1
l2
l3
l4
等电位操作
W2 W1
QF
G1
母联断路器
G2
30
优点:可靠性较高、调 度灵活、扩建方便
缺点: 1)接线复杂、设备增多,经济性差; 2)当母线故障或检修时,隔离开关作为倒换操作电器
(等电位操作),容易误操作。
避免误操作的措施: 1)严格执行“操作票”工作监管步骤; 2)采用“五防”开关:防止带负荷拉合隔离开关;防
为什么装2个? 可以是1个,但是为了便于在检修跨 条支路的隔离开关时在两侧也形成明 显的电位开断点,所以装设两台,互 为检修电位隔离点。
48
3)角形接线
特点:1)断路器接成环形电路,进出线数等 于断路器数;

电力系统的接线方式汇总

电力系统的接线方式汇总
重庆水利电力职业技术学院
学习任务三 电力系统接线方式和电压等级 电力系统的接线方式
电力系统是最大的人工系统,它敷设在非常广大的地 域上,因而任何人想在不长的时间内看到整个系统的全部 连接的实际情况那是不可能的,然而只能通过看元件连接 情况的单线图,从而了解到整个系统的连接情况。
1、电力系统接线图 电力系统的接线图有两种:电气接线图和地理接 线图。 电气接线图较详细地表示出电力系统各主要元件 之间的电气联系,但不能反映各发电厂,变电所的 相对地理位置。 在地理接线图上,各发电厂,变电所的例表示出 来,但各主要元件之间的电气联系却不能在图中表 示清楚。因此,这两种接线图常配合使用。
2、电力系统接线 电力系统的接线方式应能满足电力系统运行的基 本要求: (1)必须保证用户供电的可靠性 (2)必须能灵活地适应各种可能地运行方式 (3)应力求节约设备和材料,减少设备费用和运 行费用,使电网地建设和运行比较经济; (4)应保证各种运行方式下运行人员能安全操作。
电力系统的接线方式大致可分无备用和有备用两类。 (1)无备用接线。用户只能从一个方向取得电源的 接线方式,包括单回路放射式,干线式和链式网络, 如图所示。这类接线适用于向二类负荷供电。
(a)
无备用接线方式 放射式 (b) 干线式 (c) 链式
(2)有备用接线。它是用户可以从两个或两个以上 方向取得电源的接线方式,如图所示的双回路放射式, 干线式,链式以及环式和两端供电网络。
有备用接线方式 (a)放射式 (b) 干线式 (c)链式 (d) 环式 (e) 两端供电网
这类接线适用于对一,二类负荷尤其是一类负 荷供电,应当优先考虑采用有备用接线

电力系统的中性点运行方式有几种?各种接线方式是什么?

电力系统的中性点运行方式有几种?各种接线方式是什么?

电力系统的中性点运行方式在三相电力系统中,发电机和变压器的中性点有三种运行方式:即中性点不接地系统;中性点经阻抗接地系统;中性点直接接地系统。

前两种合称小接地电流系统,后一种称大接地电流系统。

1. 中性点不接地的三相系统中性点不接地的电力系统2. 中性点经消弧线圈接地系统中性点经消弧线圈接地的电力系统3. 中性点直接接地系统中性点直接接地的电力系统。

当发生单相接地时,故障相由接地点通过大地形成单相短路,单相短路电流很大,故又称其为大接地电流系统。

在低压配电系统中,我国广泛采用中性点直接接地的运行方式,从系统中引出中性线(N)、保护线(PE)或保护中性线(PEN)。

低压配电系统按保护接地形式分为TN系统、TT系统和IT系统。

其中TN系统又分为:TN—C系统、TN—S系统和TN—C—S系统。

《供配电系统设计规范》(GB 50052—2009)中规定:TN系统—在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过PE线与该点连接。

TN—S系统—在TN系统中,整个系统的中性线与保护线是分开的。

TN—C—S系统—在TN 系统中,系统中有一部分中性线与保护线是合一的。

TN—C系统—在TN系统中,整个系统的中性线与保护线是合一的。

在TN—C、TN—S和TN—C—S系统中,为确保PE线或PEN线安全可靠,除电源中性点直接接地外,对PE线和PEN线还必须设置重复接地。

低压配电TN系统如图9-6所示。

三、电力系统的中性点运行方式1.中性点不接地的三相系统2.中性点经消弧线圈接地系统3.中性点直接接地系统4.低压配电系统的接地形式a.TN—C系统b.TN—S系统c. TN—C—S系统。

电力系统的接线

电力系统的接线
第二章 电力系统的接线
第一节 电气主接线 第二节 电力设备及其选择的一般原则 第三节 电力网接线及中性点接地方式 第四节 直流输电
本章重点:电气主接线、电力网 接线及中性点接地方式
电力系统的接线
1
• 无论电力系统在正常工况下运行的经济性, 调度操作的灵活性、方便性,供电的可靠 性,还是系统在故障工况下进行故障隔离、 检修,修复后的供电恢复操作甚至电气设 备的选择等,都与电力系统接线方式密切 相关。
双母线带旁母
– (a)设专用的旁路断路器 – (b)旁路断路器兼作母联断路器 – (c)母联断路器兼作旁路断路器
电力系统的接线
15
第一节 电气主接线(有汇流母线)
一台半断路器接线(3/2接线)
– 每两个回路用三台断路器串成 一串接在两组母线上
• 完整串运行——两组母线和同一 串的三台断路器都投入工作,形 成多环路状供电
– 双母线接线的优点:
• (1)供电可靠——通过两组母线、隔离开关的倒换 操作,可以轮流检修一组母线而不致供电中断;一 组母线故障后能迅速恢复供电,检修任一回路的母
线隔离开关,只停该回路
• (2)调度灵活——各个电源和负荷可以任意分配到 某一组母线上,能灵活地适应系统各种运行方式调
度和潮流变化的需要。
• 合母线隔离开关QS21 • 合线路隔离开关QS22 • 投入断路器QF2
– 切断电路时:
• 断开断路器QF2 • 断线路隔离开关QS22 • 断母线隔离开关QS21
电力系统的接线
第一节 电气主接线(有汇流母线)
6
第一节 电气主接线(有汇流母线)
– 单母线接线的适用范围
• 只适用于可靠性、灵活性要求不高,小容量的配电 装置,若采用成套开关柜可相应地提高可靠性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隔离开关:没有灭弧功能,开合电流能力极 低,设备检修时起着明显的隔离作用。
接地开关:在检修设备时合上,让设备(线 路)可靠接地。
A
19
1)单母线接线:只有一组母
线,进出线都并接在这组母线
线路隔离开关

接地刀闸
出线1 出线2 出线3
QSo QSL
QF
QSB
W
母线隔离开关
单A 母线接线图
20
倒闸操作
2)当任一出线断路器检修时,必须停止该
回路的工作。
A
27
适用:中、小容量发电厂的6~10kV接线和 6~220kV变电所配电装置中。 1)用于6~10kV接线时,每段容量不宜超过 25MW,出线回路过多,影响供电可靠性 ; 2)用于35kV接线时,出线回路数为4~8回为
宜; 3)用于110~220kV接线时,出线回路数为 2~4回为宜。
• 缺点:可靠性、灵活性差
1)当母线或母线隔离开关故障或检修时,造成全厂(所) 停电;
2)当出线断路器检修时,必须停止该回路的工作。
3)电源只能并列运行,不能分列运行,线路侧短路时,有 较大的短路电流。
• 适用于只有一台发电机和一台主变的中小型发电
厂或变电所的6~220kV的配电装置
A
25
一类用户
❖ 中压配电网的主要接线方式
放射式 树干式 环网式
A
11
❖ 中压配电网的主要接线方式
10(6)kV
380V/220V
A
网单 络电
源 双 回 路 树 干 式
12
10(6)kV
10(6)kV
具有公共备用干线的放射式网络
A
13
10(6)kV
环 网 供 电 网 络
A
14
二、发电厂、变电所的主接线
定义——发电厂或变电所的所有高压电气设备通过 连接线组成的,用来接受和分配电能的强电流、高 电压电路,又称电气一次接线图或电气主系统
(a) 双回路网络的优缺点
简单方便、可靠性高 经济性差
A
8
(b)
(c)
(d)
环网供电的优缺点
可靠、经济 操作复杂、故障时电压质量差�
A
9
电磁环网
QF
一般情况中,往往在高一级电压线路投入运行初期,由于高一级电压网络尚
未形成或网络尚不坚强,需要保证输电能力或为保重要负荷而又不得不电
磁环网运行。
A
10
经济性——在满足可靠性和灵活性的前提下,满足 经济合理的基本要求。做到投资省、占地少、电能 损耗小。
A
17
2.主接线的基本形式
单母线接线 有汇流母线 双母线接线
带有旁路母线的接线
无汇流母线
单元接线 桥形接线 多角形接线
A
18
母线:保证电源并列工作,又能使任一出线 都可以从母线获得电能。
断路器:具有灭弧功能,可用来开断或闭合 负荷电流、开断短路电流。
QSW→QSl→QF
倒闸操作原则:
隔离开关相对断路器而言,“先通后断”。
母线(电源侧)隔离开关相对线路(负荷侧)隔 离开关而言,“先通后断”。
A
23
出线1
出线2 出线3
单 母
QSo
QSl
线

QF


QSw
W


作 断开顺序:
QF→QSl→QSW
单母线接线的优缺点
• 优点:结构简单、清晰,使用设备少、投资小、 运行操作方便,便于扩建
L1 L2
L3 L4






QF1
分段数越多,故障时停电的范围就越小。
A
26
图2-2 单母线分段接线
缺点:
优点:
1)对重要用户可以从不 同段引出两回馈线,由 两个电源供电;
2)当一段母线发生故障 (或检修),仅停该段 母线,非故障段母线仍 可继续工作。
1)当母线或母线隔离开关故障或检修时, 接在该段母线上的回路必须全部停电 ;
• 发电厂和变电所的电气设备可分为运行、 检修和备用三种状态,将设备由一种状态 改变为另一种状态的一系列有序操作称为 倒闸操作。
• 倒闸操作必须严格遵守有关规程规定,应 准确无误地填写操作票,认真执行操作监 护制度。
A
21
出线1
出线2 出线3

母 线
QSo
QSl

QF

送 电
QSw
W


关合顺序:
➢ 对接线方式有些什么基本要求?
➢ 接线的基本形式有哪些?
➢ 有何特点?
➢ 典型的接线方式?
A
15
A
16
1.对电气主接线的基本要求
可靠性——供电可靠性是电力生产的首要任务,主 接线的拟定应首先满足这一基本要求。
灵活性——主接线应能适用于各种工作情况和运行方 式,能根据运行情况方便地退出和投入电气设备。
第四章 电力系统的接线方式
A
1
电力网
作用 输电网
要求
作用 配电网
要求
A
3
输电网
• 作用:将各种大型发电厂的电能安全、可 靠、经济地输送到负荷中心。
• 要求:供电可靠性要高;符合电力系统运 行稳定性的要求;便于系统实现经济调度 ;具有灵活的运行方式且适应系统的发展 需要;还需考虑电网投资及管理运行费用, 并比较不同接线方案下的线损等。
适用: 出线数较多的110kV及以上的高压配电装
置中,断路器检修时间长、停电影响也较大。 一般35 kV以下配电装置多为屋内型,为
节省建筑面积,降低造价都不设旁路母线。
A
31
W3
旁单 路母
QS QS 3 QF 4



W1
QS QS
W2
1)旁路母线接至Ⅰ段母线1运行时2,要闭合隔离开关QS1、
QS4及QF (此时QS2、QS3断开);
A
28
单母线带旁路适用范围:出线回路数较多的110kV及以上系统
W2 带
旁 路
QS2

QF
旁路母线
线

QS1
W1

母 线
正常运行时, QF2和QS3断开,
工作母线

旁母不用。
线
电源侧
A
29
l1


QS3

线
l1
QF1




QF1
电源侧
W2
QS2 QF
QS1
W1
当与旁母相连的 任一出线断路器检 修时,不中断该回 路供电。
2Q3))S及3旁Ⅰ及隔路、Q正离F母Ⅱ(常开线两此时关接段时旁Q至母QSS路Ⅱ线11、、段合母QQ母并S线S4线为2断W在运单开电3不闭行母)源带合时线。侧,运电状要行,态闭分;,合则段Q隔S要断3离、闭路开合Q关器S隔4QQ、S离F21开、
A
5
一、电力网的接线
1.无备用接线方式(单回路)
负荷点 电源点放射式 Nhomakorabea干线式
链式
用户只能从单方向的一条线路获得电源,简称开式网
A
6
1.无备用接线方式(单回路)
❖优缺点
•简单方便,投资少 •可靠性低,任何一段故障或检修 都会影响对用户的供电
❖适用范围 •普通负荷
A
7
2.有备用接线方式
用户可从两个或以上方向获得电源,简称闭式网
A
4
配电网 • 作用:将本地区小型发电厂或输电网送来
的电能通过合适的电压等级配送到每个用 户。 • 要求:接线简单明了,结构合理,便于运 行及维护检修,减少占用城市空间;供电 可靠性和安全性要求高,尽可能做到中心 变电所有来自不同地点的两个电源,至少 满足“N-1”准则;符合配电自动化发展的要 求。
相关文档
最新文档