第五讲分子的对称性与群论基础

合集下载

分子的对称性与点群

分子的对称性与点群

x' x cos sin 0x
y'
C
2
y
s
in
cos
0 y
z' z 0 0 1 z
1 0 0x x
0
1 0 y y
0 0 1 z z
C 对称操作 使空间1某点p(x,y,z)变换到另一个点p’(x’,y’,z’) 3
x' y' z'
C1 3
x
y
水分子属C2v点群。C2轴经过O原子、平分∠HOH, 分子所在平面是一个σv平面,另一个σv平面经过O 原子且与分子平面相互垂直。
H
O H
C2轴
与水分子类似的V型分子,如SO2、NO2、ClO2、H2S, 船式环已烷(图IV)、 N2H4(图V)等均属C2v点群。属C2v点群的其它构型的分子有稠环化合物菲(C14H10) (图VI),茚,杂环化合物呋喃(C4H4O)、吡啶(C5H5N)等。
in ={E (n为偶数),i (n 为奇数)}
坐标原点的对称中心的反演操作i的表示矩阵为:
1 0 0
i
0
1
0
0 0 1
x 1 0 0 x x
i
y
0
1
0
y
y
z 0 0 1 z z
如果每一个原子都沿直线通过分子中心移动,达到这个中心的另一边的相等 距离时能遇到一个相同的原子,那么这个分子就具有对称中心 i。显然,正方形 的PtCl42-离子有对称中心,但四面体的SiF4分子就没有对称中心。
(图IV)也是C3对称性分
子。
CO2H
H
HO
H
C3
CH3
C1
Cl

分子对称性和群论初步

分子对称性和群论初步
对称操作连续作用能使分子图形完全复原的最少次数。
Cn轴产生n个旋转操作的周期均为n。
(2)对称轴 (Cn )和旋转操作 (Cn )

对称元素: 旋转轴C2 对称操作: 旋转
H2O中的C2
H2O2中的C2
NH3中的C3轴
SF6中的C4轴
Fe(C5H5)2中的C5轴
C6H6中的C6轴
N2中的C∞轴
(3)对称面 s 和反映操作 s

对称面
相当于一个镜面,把分子图形分成两个完全相等的对称 部分,两部分之间互为镜中映象;对称面所相应的对称 操作是镜面的一个反映,在对称面的反映操作下,分子 图形相等的两部分互相交换位置,相同性质的点(同类 原子)彼此置换。显然,反映操作的周期为2,即:
ˆ ˆ =E s

操作定义
Cn旋转轴能生成n个旋转操作,记为:
2 ˆ ˆ n, Cn , C

, ˆn=E ˆ C Cn
n 1 n
ˆk 若取逆时针方向的旋转为正操作,表示为 C n,则顺 k ˆ 时 针 旋 转 为 逆 操 作 , 表 示 为C n ,不难理 (nk )。 ˆk ˆ 解C n =C n
操作的周期
S8
2.5 假轴向群 Sn群
Sn:有一个 n重象转轴,须考虑 n的奇偶性。 n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。

第五讲:分子的对称性与群论基础 群表示与不可约表示

第五讲:分子的对称性与群论基础 群表示与不可约表示

下标1 —— 下标2 ——
V 1
V 1
1 C 2
1 C 2
上标′ —— 上标〞 ——
16
h 1
h 1
下标g —— 下标u ——
i 1
i 1
群表示和不可约表示
3. 广义正交定理(矩阵元正交定理)
2
ˆ f r f r R
群表示和不可约表示
1. 群表示
2)、 等价表示 定义:如果群的表示 与 ’ 的矩阵,以同一相似变换相 关联,则 与 ’ 为等价表示。
:
E, A, B, C, .......
' : E' , A', B' , C' , ......
两者等价,是指满足下列关系: A P 1AP, B' P 1BP, C' P 1CP, .......
1 2 3 2
C32 1 1
3 2 1 2
V (XZ)
1 -1
V’
1 -1
1 2 3 2 3 2 1 2
V”
1 -1
1 3 2 2 3 1 2 2
1 / 2 3 2 0 3 2 1/ 2 0 σ V 0 0 1
4
群表示和不可约表示
1. 群表示
选取基函数为:
g1 , g 2 , g 3 x 2 ,2 xy, y 2
1/ 4 3 2 C3 3 4 1 / 2 34 3 2 3/ 4 3 4 14
1/ 2 σV 3 2 0

分子的对称性与点群

分子的对称性与点群

分子的对称性与点群摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。

分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。

例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。

关键词:对称性点群对称操作一.对称操作与点群如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。

一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。

描述分子的对称性时,常用到“点群”的概念。

所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。

而全部对称元素的集合构成对称元素系。

每个点群具有一个持定的符号。

一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。

二.分子中的对称元素和对称操作2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。

作分别用E、 E^表示。

这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作分别用C n、C^n表示。

如果一个分子沿着某一轴旋转角度α能使分子复原,则该分子具有轴C n,α是使分子复原所旋转的最小角度,若一个分子中存在着几个旋转轴,则轴次高的为主轴(放在竖直位置),其余的为副轴。

分子沿顺时针方向绕某轴旋转角度α,α=360°/n (n=360°/α(n=1,2,3……)能使其构型成为等价构型或复原,即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分子具有 n 次对称轴。

n是使分子完全复原所旋转的次数,即为旋转轴的轴次,对应于次轴的对称操作有n个。

C n n=E﹙上标n表示操作的次数,下同﹚。

如NH3 (见图 1)旋转 2π/3 等价于旋转 2π (复原),基转角α=360°/n C3 - 三重轴;再如平面 BF3 分子,具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以上的旋转轴,则轴次最高的为主轴。

分子对称性和点群

分子对称性和点群

例二:置换群(群元素为变换位置的操作,乘法规则为从右到左 相继操作). S3 群 ( 三阶置换群 )
1 2 3 E 1 2 3 1 2 3 A 1 3 2
1 2 3 D 2 3 1 1 B 3 1 2 2 3 2 1 2 3 3 1
{E,D,F}构成S3的一个3阶子群
AA BB CC E
{E,A}、 {E,B}、 {E,C}分别构成S3的2阶子群
3.2.4 群的共轭类
共轭元素: B=X-1AX ( X,A,B都是群G的元素) (A和B共轭)
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx,
第三章
分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子 量子态及相关光谱有极大帮助. 确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
A4 =E
(2)非循环群
欲构成非循环群,只可能是各元素的逆元素为自身 即 A2 =B 2 =C 2 =E ,再根据重排定理即可得乘法表
3.2.3 群的子群
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集合 H 也 满足群的四个条件,则称 H 是 G 的子群. • 1) 封闭性 • 2) 结合律: H属于G并且为相同的乘法规则,因此结合律显然满足 • 3) 恒等元素:针对每个子群加入群G的恒等元素即可 • 4) 逆元素 因此满足条件1)与4)是证明子群成立的关键. 显然, 恒等元素 E 单独构成的群和群 G 自身是平庸子群.

2分子对称性和群论初步

2分子对称性和群论初步

点群表示 点群示例
C
nv
= E ,C ,C n
2 n
,

,C
n 1 n

1 v
,s
,s
2 v
,


,s
n v

C2 v
C2 H 2Cl2
C3 v
NH 3
C v
CO
C3v
3). Cnh群
群中含有一个Cn轴,还有一个垂直于Cn轴σh面
点群示例
C 2h
C4 H 6
S8
2.5 假轴向群 Sn群
Sn:有一个n重象转轴,须考虑n的奇偶性。n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。
s Z 2
Y x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4 3 旋转90◦ 2 4 3
1
2
1
2
1
反映
4 3

分子的对称性和群论初步

分子的对称性和群论初步
属4阶群
H3BO3分

C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。

分子的对称性与群论初步

分子的对称性与群论初步

4.3.1 4.3.1 单轴群 单轴群
包括Cn、Cnh、Cnv、Cni(n为奇数)、Sn(n为4
的整数倍)群。共同特点是旋转轴只有一条(但
不能说只有一条旋转轴,因为还可能有某些镜面
或对称中心存在)。
Cn 群:只有一条n次旋转轴。 C2
1,1´-氯代联苯
C2
R2 R2 R1
R1
C3
9-甲基非那啉
+ e
e
时间与空间的对称:狭义相对论
质量与能量的对称:狭义相对论 E=mc2
4.2 分子的对称操作与对称元素
对称操作:不改变图形中
对称元素: 旋转轴 对称操作: 旋转
任何两点的距离而能使图形复
原的操作叫做对称操作; 对称元素:对称操作据以 进行的几何要素叫做对称元素; 对称图形: 能被一个以上 的对称操作(其中包括不动操 作)复原的图形叫做对称图形。
的n个镜面σv 。
C3v
1-氮杂双环[2,2,2]辛烷
Sn群:分子中只有Sn,且n为4的整数倍。
S 4群
环辛四烯衍生物 3,4,3´,4´-四甲基螺(1.1´)吡咯烷正离子
4.3.2 4.3.2 双面群 双面群
包括Dn、Dnh、Dnd。共同特点是旋转轴除了主轴
Cn外,还有与之垂直的n条C2副轴。
用,是物理学的一个术语,意思就是力量,
质点跟质点之间之力量)。
——杨振宁
分子轨道对称性守恒原理
电荷对称:
一组带电粒子 极性互换, 其相 互作用不变(但在 弱相互作用下这 种对称被部分破 坏 )。
粒子与反粒子:
所有的微观粒子,都存在着反粒子,它们
的质量、寿命、自旋、同位旋相同,而电荷、
重子数、轻子数、奇异数等量子数的符号相反。 粒子与反粒子是两种不同的粒子(某些中性玻 色子与其反粒子相同)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档