现代钢桥疲劳问题分析
桥梁疲劳

钢桥疲劳设计综述桥梁结构中的应力脉动主要是由活载及其引起的桥梁震动所造成的。
应力变动的幅度越大,即使平均应力小于屈服应力也会发生疲劳破坏。
铁路桥梁列车活载比较大,引起的震动也比较大,所以,铁路桥的疲劳问题更加突出。
公路桥中有些应力变化比较大的地方也要注意疲劳问题。
比如斜拉索如果经常发生风震也会发生疲劳问题。
造成疲劳破坏的原因有钢材的材料特性和局部拉应力的集中程度。
外因则是应力反复的循环特征和次数。
因此在计算结构进行疲劳研究时,需要对上述内因和外因做研究。
1.钢桥的疲劳特征钢桥的疲劳一般认为疲劳失效通常起始于高应力区,如几何突变处、受拉残余应力区和尖锐的不连续处(按裂纹处理)。
在循环应力作用下,疲劳裂纹始于此处,最终在剩余界面不能承受荷载峰值时构件失效。
疲劳裂纹的扩展近似沿最大主应力的垂直方向,其扩展速率成指数增长,早期增长较慢,占疲劳寿命的大部分。
由于这个原因,要较发现钢结构的裂纹则比较困难。
在设计钢桥时,比较容易发生疲劳裂纹的部位有:焊缝的根部或焊址、倒角、冲孔或钻孔、剪开边或锯开边、高接触压力下的表面、张紧索的根部、材料的不连续处或焊接缺陷、由于机械损伤而形成的刻痕或擦痕。
另外,在荷载具有较高动静比、荷载作用频繁、采用焊接、复杂接头的部位、环境的影响也会引起疲劳。
2.疲劳的分析处理方法疲劳的分析处理方法主要有以下四类:(1)无限寿命设计无限寿命设计方法的出发点是构件在设计应力下能够长期的安全使用。
对于等循环应力,即应力幅和平均应力不随时间变化的稳定交变应力状态,无限寿命设计方法的强度条件是构件的工作应力不小于等幅疲劳应力极限强度。
对于随时间变化的不稳定的交变应力状态,可按最大应力幅小于构件的疲劳应力极限进行设计。
无限寿命设计作为一种简化的设计方法,往往使设计的构件过于笨重。
为了充分利用材料的承载潜能,设计应力水平不断提高,疲劳设计方法也从无限寿命设计进入有限寿命设计阶段。
(2)安全寿命设计安全寿命设计是保证结构在一定使用期内不发生疲劳破坏,因此允许构件的工作应力超过疲劳极限。
操作例题_03_钢桥疲劳分析

1. 打开结构模型
文件 > 打开...
操作步骤 Procedure
1. 选择 [Fatigue_Analysis.feb]
疲劳分析结果 确认考虑平均应力(Goodman, Gerber)或不考虑平均应力时的损伤程度和反 复循环次数。即确认疲劳引起的损伤以及在疲劳荷载作用下发生疲劳破坏时 循环次数(疲劳寿命)。
midas FEA Training Series
钢桥的疲劳分析
一. 概要
1. 分析概要
钢桥的疲劳裂纹一般是由焊接缺陷、结构的几何形状引起的应力集中、结构 的应力变动幅度以及重复加载等原因引起的。重复加载会引起疲劳裂纹发 展,严重时会引起结构破坏,因此对抗疲劳较弱的部位应进行分析确定其抗 疲劳能力。 本例题中钢桥采用焊接和螺栓连接,分析采用S-N曲线方法即应力-寿命方 法确定结构的疲劳寿命和损伤度。
2. 分析步骤
疲劳分析的步骤如下:
1) 首先做结构静力分析确定最大和最小应力的绝对值或者计算von Mises 应力,从而获得应力幅。
2) 当作用应力为变幅时,使用可将各应力幅组成起来的雨流计数法(Rain flow counting)和S-N曲线计算。
3) 考虑平均应力的影响确定疲劳寿命和损伤度。
1. 点击 [添加]
5. 鼠标按住荷载组拖放到使用位置
2. 名称:输入 [Linear]
6. 勾选 [各荷载组为独立的荷载工况]
3. 在分析类型中选择 [线性静态] 7. 点击 [确认]
4. 在初始单元和初始边界中勾选 [全部]
分析概要
本例题是介绍疲劳分析的过程和查看结果的方法,所以省略了建模的过程, 直接打开已经建立的模式。 例题模型是使用钢桥面板的箱形桥梁,跨度为27.5m,用板单元模拟。桥幅 宽度为15m,梁高为2.5m,横隔梁间距为5.0m,上部U型加劲肋间距为0.64 m。
钢结构桥梁的疲劳与寿命评估

钢结构桥梁的疲劳与寿命评估钢结构桥梁作为现代城市交通的重要组成部分,承载着大量的车辆和行人通行任务。
然而,长期以来,由于外界环境和车辆荷载的作用,钢结构桥梁容易受到疲劳损伤,严重影响其使用寿命和安全性。
因此,进行钢结构桥梁的疲劳与寿命评估是至关重要的。
一、疲劳损伤机理疲劳是指物体在经历了一定次数的应力循环加载后发生损伤的现象。
钢结构桥梁受到交通荷载作用时,会产生周期性的应力变化,而长期循环加载会导致钢构件内部的裂纹逐渐扩展,最终引发疲劳破坏。
常见的疲劳损伤机理包括低周疲劳、高周疲劳和蠕变疲劳等。
低周疲劳是指加载周期较长,应力变化较大的疲劳损伤,主要发生在大型移动荷载作用下;高周疲劳是指加载周期较短,应力变化较小的疲劳损伤,主要发生在交通荷载作用下;蠕变疲劳则是由于长期受到恶劣环境条件作用下,钢结构桥梁会出现温度变形和应力松弛,从而引发蠕变破坏。
二、疲劳与寿命评估方法为了确保钢结构桥梁的安全使用和延长其寿命,需要进行疲劳与寿命评估。
在评估过程中,可以采用以下方法:1. 材料试验与力学性能研究:通过对钢材料的拉伸试验、冲击试验等试验手段,获取钢材料的力学性能参数,进而分析其疲劳性能。
2. 荷载测量与应力分析:通过悬挂应变片、应变计等装置对桥梁进行实时荷载测量与应力分析,以获取荷载数据与桥梁的应变应力分布情况。
3. 疲劳寿命计算:根据钢材料的疲劳试验数据和荷载数据,采用伤害累积理论来计算钢结构桥梁的疲劳寿命。
4. 结构健康监测:借助现代技术手段,如无损检测、振动测试等,对钢结构桥梁的健康状况进行实时监测,及时发现疲劳裂纹、变形等问题。
5. 寿命预测与可靠性评估:通过建立可靠性模型,综合考虑材料的疲劳特性、载荷环境、结构健康状况等因素,对钢结构桥梁的寿命进行预测与评估。
三、寿命延长与维护策略对于已经投入使用的钢结构桥梁,为了延长其寿命和保障其安全,需要采取适当的维护策略。
具体策略包括:1. 定期巡查与检测:定期对钢结构桥梁进行巡查与检测,发现潜在的裂纹、变形等问题,并采取相应的预防性维修措施。
桥梁结构的疲劳分析

桥梁结构的疲劳分析桥梁作为重要的交通基础设施,负责着人们的出行安全和物资流通的重要任务。
然而,随着桥梁使用年限的增长以及不断变化的交通需求,桥梁结构的疲劳问题也变得越发突出。
本文将围绕桥梁结构的疲劳问题展开分析,从疲劳的定义、疲劳破坏机理和常见的疲劳分析方法等方面来探讨桥梁结构的疲劳分析。
一、疲劳的定义在桥梁结构中,疲劳指的是长期重复荷载作用下引起的结构损伤和破坏的现象。
桥梁结构所承受的荷载并非是一次性的冲击荷载,而是长期累积作用下的交通荷载、风荷载、温度荷载等。
这种长期累积的作用使得桥梁结构中的金属材料产生了初次损伤,并逐渐扩展和累积,最终导致结构的疲劳破坏。
二、疲劳破坏机理桥梁结构的疲劳破坏是一个渐进的过程,具体表现为以下几个阶段:1. 起始阶段:在长期交通荷载的作用下,结构表面出现微小的裂纹和扭曲,但并不会对桥梁的整体强度和稳定性产生明显影响。
2. 扩展阶段:随着时间的推移,裂纹逐渐扩大和延伸,出现了局部应力集中现象。
这一阶段的疲劳裂纹扩展速度较慢,但会逐渐影响到桥梁的结构性能。
3. 快速扩展阶段:当裂纹达到一定长度后,由于应力集中效应和材料力学性能的变化,裂纹扩展速度会迅速增加,甚至可能会出现突然失效的情况,给桥梁结构带来巨大的破坏风险。
三、常见的疲劳分析方法1. 经验法:经验法是基于历史数据和实际经验进行的疲劳分析方法。
通过对类似桥梁结构的历史疲劳破坏数据进行统计和分析,得出一些经验性的结论,用于指导类似结构的疲劳设计和评估。
2. 应力范围法:应力范围法是一种基于疲劳破坏理论的分析方法,通过计算结构在不同工况下的应力范围,并与材料的疲劳性能曲线进行比较,来判断结构的疲劳寿命和安全性。
3. 有限元法:有限元法是一种基于数值分析的疲劳分析方法,通过建立桥梁结构的有限元模型,考虑各种工况下的荷载作用,计算结构的应力分布和变形情况,进而判断结构的疲劳寿命和可能出现的破坏部位。
四、桥梁结构的疲劳防护措施为了提高桥梁结构的疲劳寿命和安全性,需要采取一系列的疲劳防护措施,包括:1. 合理的设计和施工:在桥梁结构的设计和施工过程中,应考虑到疲劳问题,并合理配置材料和构造,避免应力集中和缺陷的产生。
现代钢桥新型结构型式及其疲劳问题分析

seict n . i l ,iia mmai dt tos rvnigft u i r i mo e s e  ̄ de . pc i i s Fn l ts l s fa o a y S u O r e h mehd eet i e aue n dm el gs z e p n ag fl t
K Y WO D s e b d e E R S t [ r g e i ft u ai e g ft u a ai et d g o c N -e m c o ae a eb a a h r n g w le it e djn d o ot orpe t [ r t i se h o e
这些 特点 可能会 导致 大 型复杂 结构 疲 劳和 断裂 的概
个重 要 问题 。2 0世 纪 6 0年 代 , 洲 公 路 网得 到 欧
了高速 发展 , 由于 当 时对 公 路 桥梁 疲 劳 性 能认 识不 足, 在规 范 中没 有规 定进 行抗疲 劳设 计 , 建造 的钢桥 中出现 了许 多设 计 不 合 理 的 焊接 接 头 , 随 后 H益 在
中, 钢桥构件 的疲 劳性 能在设计 时需特 别关注。在 对钢桥疲 劳性能 影响 因素 、 钢桥 疲 劳设 计关键参 数 以及 疲 劳荷
栽分析的基础上 , 对现 代 钢 桥 中的 一 些典 型 构 造 细 节 的 疲 劳 性 能 进 行 了 分析 , 对 防 止 钢 桥 疲 劳 的 方 法进 行 了 总 并
ABS RACr A u e fse l rd e du ig Smen wstp so tu tr n n fcu epo essweeb i n T n mb ro te i g si dn O e y e f rcue a d ma ua tr rc se r ul i b n s s t
钢梁混凝土桥梁的疲劳性能研究

钢梁混凝土桥梁的疲劳性能研究随着交通工具的不断发展和交通运输的日益繁忙,桥梁建设已经成为现代化城市发展的重要组成部分。
而桥梁建设中的关键问题之一就是如何确保桥梁的安全性和耐久性。
在桥梁的设计中,钢梁混凝土结构是常用的一种结构形式。
本文将围绕着钢梁混凝土桥梁的疲劳性能进行研究,对其相关内容进行探究。
一、疲劳性能的定义和影响因素疲劳性能是指材料或结构在交变载荷作用下表现出来的抵抗力。
任何一个结构体系,都会受到外部载荷的作用,并且在长期使用过程中不断受到反复的载荷作用,导致结构的疲劳损伤。
因此,疲劳性能是衡量一个结构体系寿命的重要指标之一。
影响钢梁混凝土桥梁疲劳性能的主要因素包括:材料的强度、承载能力、几何形状、工程施工质量等。
二、疲劳性能的试验研究为了研究钢梁混凝土桥梁的疲劳性能,一般需要进行试验研究。
其中,大样本试验是研究钢梁混凝土桥梁疲劳性能的常用方法。
大样本试验是指将钢梁混凝土桥梁的完整结构放置在特制试验台上,通过反复施加载荷来模拟实际工况下的载荷作用。
试验结果可以评估钢梁混凝土桥梁的耐久性和疲劳寿命。
另外,还可以使用小样本试验方法来研究钢梁混凝土桥梁的疲劳性能。
该方法利用试验材料进行破坏试验,通过测试结果来研究材料内部的断裂机制和疲劳破坏形态。
这种方法的优点是可以通过多次破坏试验来获得更多的数据,得到较准确的试验结果。
但是,其不足之处在于仅限于研究材料的疲劳性能,无法考虑结构复杂情况下的影响因素。
三、桥梁疲劳的修复和加固方法由于桥梁的使用过程中,往往会受到不同程度的疲劳损伤,因此,对于具有一定历史的桥梁来说,必须进行定期检测和修复。
桥梁的修复方法主要包括焊接、强化、防震等措施。
其中,钢板强化是提高桥梁疲劳寿命的常用技术。
通过在桥梁梁上设置加强板,可以提高钢梁混凝土桥梁的整体承载能力,改善其疲劳性能。
此外,对于新建桥梁来说,也可以采取预应力技术、金属脱氧和高强度钢筋等措施来加固桥梁的疲劳性能。
钢桥疲劳分析

Stress 0
Typical curve for concrete steel reinforcement
Rod
Stress range
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
S-N 曲线
钢桥疲劳分析
Advanced Nonlinear and Detail Analysis
2. 分析步骤
钢桥疲劳分析
1) 首先做结构静力分析确定最大和最小应力的绝对值或者计算von Mises 应力,从而获得应力幅。 2) 当作用应力为变幅时,使用可将各应力幅组成起来的雨流计数法(Rain flow counting)和S-N曲 线计算。
Fatigue damage = 0.9 means: 1,000 load cycles can be applied before fatigue failure.
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
钢桥疲劳分析
MIDAS IT
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
5. 疲劳分析
钢桥疲劳分析
BS 5400中,对钢桥不同构造细节分为9个等级。在本案例中,主要分析U型肋与横隔板相接处的疲
劳效应。该部位为BS5400规范c细节分级。将对应等级参数从表格中选取带入S-N曲线方程式中, 得到该分级的疲劳曲线。
Advanced Nonlinear and Detail Analysis
当代钢桥疲劳理论与设计

当代钢桥疲劳理论与设计当代钢桥是各种桥梁形式中最常见的一种,具有重要的交通功能。
钢桥的设计需要考虑到各种负载条件,其中之一就是疲劳负载。
本文将会介绍当代钢桥疲劳理论与设计,以及欧洲规范中对疲劳设计的要求。
首先,我们来了解一下疲劳。
疲劳是物体在连续受到反复交变荷载作用下发生的破坏现象。
对于钢桥来说,疲劳是由于车流荷载的不断通过而逐渐造成的。
钢桥疲劳实际上是一个复杂的问题,需要综合考虑材料的本身特性、结构的形式和交通负载的影响等众多因素。
目前,工程实践中使用的疲劳计算方法主要有应力幅法和循环应力范围法。
应力幅法是最常用的疲劳计算方法之一,它根据应力历程的变化,以及材料的疲劳性能来评估结构的疲劳寿命。
通过应力幅法,可以得到结构在不同循环数下的疲劳寿命曲线,进而判断结构是否满足设计要求。
循环应力范围法是另一种常用的疲劳计算方法,它通过将应力历程拆分成若干个循环,然后对每一个循环的应力范围进行评估,并根据循环应力范围来计算结构的疲劳寿命。
循环应力范围法相对于应力幅法更加简化,适用范围更广。
在欧洲规范中,对钢桥的疲劳设计有着详细的要求。
根据规范的要求,钢桥的疲劳设计需要考虑桥墩、主梁、横梁和桥面板等结构部件的疲劳寿命。
规范规定了疲劳分级和荷载历程的选择方法,以及疲劳设计的验算方法。
对于疲劳分级,规范根据桥梁的交通量和重要程度将其分为6个疲劳类别。
不同的疲劳类别对应不同的疲劳寿命要求和设计方法。
对于荷载历程的选择,规范提供了一系列的荷载历程,包括不同类型的车流荷载、横风荷载和地震荷载等。
设计时需要根据实际情况选择合适的荷载历程,并进行综合考虑。
在疲劳设计的验算方法方面,规范要求使用极限状态法进行计算。
具体的计算方法包括众多公式和计算规则,需要结合实际情况进行具体设计。
除了上述内容,欧洲规范还对材料的疲劳性能和结构的细节设计等方面有着详细的要求。
在材料方面,规范对钢材的抗拉强度、屈服强度和疲劳极限等性能进行了要求。