函数单调性习题大全

合集下载

单调性常考典例好题集含详解

单调性常考典例好题集含详解

单调性好题一、单选题1 .设α∈R,函数/(幻在区间(0,+∞)上是增函数,则()(7、 ( 7、 A. ∕(α~+α + 2)>∕ — B. ∕(tz 2 +a + 2^< f —∖4√14,2 .设函数∕(x)= 2]<2,若J&+1R/(2—1 ),则实数。

的取值范围是()∖x ∖x≥2B.(-∞,2]C. [2,6]D. [2,+∞)3 .对任意x ∈R,函数f(x)表示—•¥ + 3,3%+,,一一4工+ 3中较大者,则了。

)的2 2 最小值为( )A. 2B. 3C. 4D. 5与g(x) = q≡l 在区间口,2]上都是减函数,则。

的取值范x + 1围是()A. (^2,-l)u(l.2)B. (-l,0)u(0,2]C. (1,2]5 .函数∕(x) = ∣2x+3α∣的单调增区间为[l,y),则。

为( 2 A. — 1B. 1C.一36 .函数y = χ2-2χ + 3在闭区间付,m]上有最大值3,最小值为2, m 的取值范围是()A.(-OO ,2]B.[0,2]C.[l,2]D.[l,÷∞)(a-3)x + 5 , x ≤ 17 .己知函数出X)= 2a,若对R 上的任意实数X],X2(X1≠X2),恒有V , 入,1(x]X2)[f(Xi )-f(X2)] <。

成立,那么a 的取值范围是()A∙(0,3) B.(0,3] C.(0,2) θ.(0,2]8 .若函数∕(x) = (3Z -l)x + 5在R 上是增函数,则攵的范围是()9 .已知函数1R )= 乂2 + 4μ+ 2在区间(-8,6)上单调递减,则a 的取值范围是(C. /(/+〃 + 2)≥∕5>D. ∕(∕+α + 2)≤∕任4.若∕(r) =r ⅛24一1 q D. [1,2))2 D.——3A. (-∞,-∣), 1 、 B. (--,+∞)z l 、c. (-,+∞)D. y,g )10 .已知函数∕(x ) =/_丘_6在[2, 8]上是单调函数,则4的取值范围是( )A. (4,16)B. [4,161C. fl6, ÷∞)D. (- oo,4] U 口6, + 8)11.函数∕(N ) 4Λ2〃n+5在区间[-2,+8)上是增函数,在区间(一8,-2]上 是减函数,则/⑴等于 A. -7B. 1C. 17D. 251312.若函数y = —χ + 一,定义域和值域都是“,〃],则。

函数单调性的习题及答案

函数单调性的习题及答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x=是R 上的减函数,则()3y f x =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x )∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

(完整版)函数单调性练习题

(完整版)函数单调性练习题

函数单调性练习题1. 已知函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 .2.讨论函数f(x)=21xax - (a≠0)在区间(-1,1)内的单调性.3.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数?4. 已知:f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (x 2-1)求x 的取值范围.5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.6.函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值范围是( ).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )8.已知f (x )在其定义域R +上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤39.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.10.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3.11.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -=(1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f 。

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,那么f (1)等于 〔 〕 A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的递增区间是 〔 〕 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,那么实数a 的取值范围是 〔 〕A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) 〔 〕 A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x+1)|<1的解集的补集是 〔 〕 A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞〕D .(-∞,-1)∪[2,+∞〕8.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕 A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,那么以下不等式中正确的选项是〔 〕 A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,那么 〔 〕 A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,那么()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,那么a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.函数f (x )=x ax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,那么f (1)=0.②在等式中令x=36,y=6那么.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,那么f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,那么f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,那么f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,那么f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

完整版)函数的单调性练习题及答案

完整版)函数的单调性练习题及答案

完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。

[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。

[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。

4.如果函数f(x)=kx+b在R上单调递减,则(C。

b>0)5.在区间(-∞,0)上为增函数的是(B。

y=x^2)6.函数f(x)=2x-x^2的最大值是(B。

1)7.函数y=x+x^-2的最小值是(A。

0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。

3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。

证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。

11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。

函数单调性练习题高中

函数单调性练习题高中

函数单调性练习题高中一、选择题1. 设函数f(x) = x^3 3x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,1)上单调递减,在(1,+∞)上单调递增D. f(x)在(∞,1)上单调递增,在(1,1)上单调递减,在(1,+∞)上单调递增2. 已知函数f(x) = (1/2)^x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,+∞)上单调递减D. f(x)在(∞,0)上单调递增,在(0,+∞)上单调递减二、填空题1. 已知函数f(x) = x^2 2x,求f(x)的单调递增区间:______。

2. 已知函数f(x) = 3x^3 9x,求f(x)的单调递减区间:______。

三、解答题1. 已知函数f(x) = x^3 6x^2 + 9x,求f(x)的单调区间。

2. 已知函数f(x) = (1/3)^x 2x,求f(x)的单调区间。

3. 设函数f(x) = x^2 4x + 3,求f(x)的单调区间。

4. 已知函数f(x) = 2x^3 3x^2 12x + 5,求f(x)的单调区间。

5. 设函数f(x) = (1/2)^x + x^2 4x,求f(x)的单调区间。

6. 已知函数f(x) = x^4 4x^3 + 6x^2,求f(x)的单调区间。

7. 设函数f(x) = 3x^3 9x^2 + 5,求f(x)的单调区间。

8. 已知函数f(x) = (1/3)^x x^3 + 2x^2,求f(x)的单调区间。

9. 设函数f(x) = 2x^4 8x^3 + 12x^2,求f(x)的单调区间。

10. 已知函数f(x) = x^5 5x^4 + 10x^3,求f(x)的单调区间。

四、判断题1. 函数f(x) = x^2 + 2x在整个实数域上单调递增。

函数的单调性练习题(含标准答案)

函数的单调性练习题(含标准答案)

函数的单调性练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2- - 3函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞- -4C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.- -520.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.- - 6参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则- -7f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.- - 8(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y=2x +1 B .y=3x2+1 C .y=x2D .y=2x2+x +1 2.函数f(x)=4x2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A .-7 B .1 C .17 D .253.函数f(x)在区间(-2,3)上是增函数,则y=f(x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a ,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f(x)=8+2x -x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f(x)在区间(-∞,5)上单调递减,对任意实数t ,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( ) A .f(-1)<f(9)<f(13) B .f(13)<f(9)<f(-1) C .f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f(x)在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f(a)+f(b)≤-f(a)+f(b)]B .f(a)+f(b)≤f(-a)+f(-b)C .f(a)+f(b)≥-f(a)+f(b)]D .f(a)+f(b)≥f(-a)+f(-b)12.定义在R 上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x +2)图象的对称轴是x=0,则( )A .f(-1)<f(3)B .f (0)>f(3)C .f (-1)=f (-3)D .f(2)<f(3) 二、填空题:13.函数y=(x -1)-2的减区间是____. 14.函数y=x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f(x) = ax2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__. 三、解答题:17.f(x)是定义在( 0,+∞)上的增函数,且f(yx) = f(x)-f(y) (1)求f(1)的值.(2)若f(6)= 1,解不等式 f( x +3 )-f(x1) <2 . 18.函数f(x)=-x3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=21x -在区间[-1,1]上的单调性.20.设函数f(x)=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m -1)-f(1-2m)>0,求实数m 的取值范围.22.已知函数f(x)=xax x ++22,x ∈[1,+∞](1)当a=21时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f(1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f[x(x +3)]<f(36), 又f(x)在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f(x)在R 上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+22x )2+43x22].∵x1<x2,∴x2-x1>0而(x1+22x )2+43x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x2-x1>0,222111x x -+->0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=21x -在区间[-1,0]上是增函数,f(x)=21x -在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+)∞且x1<x2,则f(x1)-f(x2)=121+x -122+x -a(x1-x2)=1122212221+++-x x x x -a(x1-x2)=(x1-x2)(11222121++++x x x x -a)(1)当a ≥1时,∵11222121++++x x x x <1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴a ≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x1=0,x2=212aa-,满足f(x1)=f(x2)=1 ∴0<a <1时,f(x)在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x1|≥x1;122+x >x2;③从a 的范围看还须讨论0<a <1时f(x)的单调性,这也是数学严谨性的体现.21.解析: ∵f(x)在(-2,2)上是减函数∴由f(m -1)-f(1-2m)>0,得f(m -1)>f(1-2m)∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a=21时,f(x)=x +x21+2,x ∈1,+∞) 设x2>x1≥1,则f(x2)-f(x1)=x2+1122121x x x --=(x2-x1)+21212x x x x -=(x2-x1)(1-2121x x ) ∵x2>x1≥1,∴x2-x1>0,1-2121x x >0,则f(x2)>f(x1) 可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞)上的最小值为f(1)=27. (2)在区间[1,+∞)上,f(x)=xax x ++22>0恒成立⇔x2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性
一、选择题
1. 下列函数中,在区间
上为增函数的是( ).
A .
B .
C .
D .
2.函数 的增区间是( )。

A .
B .
C .
D .
3. 在
上是减函数,则a 的取值范围是( )。

A .
B .
C .
D .
4.当
时,函数
的值有正也有负,则实数a 的取值范围是( )
A .
B .
C .
D .
5.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( )
(A )必是增函数 (B )必是减函数 (C )是增函数或是减函数
(D )无法确定增减性
6.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 ( )
A )2()3()(->->f f f π
B )3()2()(->->f f f π
C )2()3()(-<-<f f f π
D )3()2()(-<-<f f f π
7.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1
()3f 的x 取值范围是
A .(
13

23
) B .(∞-,
23
) C .(
12

23
) D .⎪⎭

⎝⎛+∞,32
8.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2
)<0, 则a 的取
值范围是( ) A.(22,3)
B.(3,10)
C.(22,4)
D.(-2,3)
9.若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩
是R 上的减函数,那么a 的取值范围是( )
A.(0,1)
B.1(0,)3
C.11
[,)73
D.1
[,1)7
10.已知函数f (x )=⎩
⎪⎨
⎪⎧
a x
, x <0,
(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2)
x 1-x 2
<0成
立,则a 的取值范围是
( )
A .(0,3)
B .(1,3)
C .(0,1
4
]
D .(-∞,3)
二、填空题
1.函数
,当
时,是增函数,当
时是减函数,则
f(1)=_____________ 2.已知
在定义域内是减函数,且
,在其定义域内判断下列函数的单调性:

( 为常数)是___________; ②
( 为常数)是___________;

是____________; ④
是__________.
3.函数f (x ) = ax 2
+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .
三、解答题
1.求函数
的单调递减区间.
2.证明函数x x x f 3)(3
+=在),(+∞-∞上是增函数
3.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

4.定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若
0)54()1(2
>-+--a f a a f ,求实数a 的范围。

5.设 是定义在
上的增函数, ,且
,求满
足不等式 的x 的取值范围.
6.已知f (x )的定义域为(0,+∞),且在其定义域内为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )-f (x -2)>3.
7.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1. (1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.。

相关文档
最新文档