冗余链路
链路冗余技术

链路冗余技术:保障您网络通畅的最佳方案网络通信时常发生因链路故障而失去连接的现象,导致网络中断和数据丢失。
这种情况下,链路冗余技术可以帮助您保障网络的稳定性和可靠性。
在一般的网络架构中,通过在通信的路径上增加多条链路,同时对传输的数据进行备份存储,实现对链路的冗余备份,避免单点故障,并增加网络的吞吐量和带宽利用率。
目前比较常见的链路冗余技术有VRRP(Virtual Router Redundancy Protocol)、HSRP (Hot Standby Router Protocol)、GLBP(Gateway Load Balancing Protocol)等。
VRRP技术通过虚拟路由器实现链路冗余,当主路由器出故障时,备用路由器可以实时接管主路由器的工作。
而HSRP则通过选主机制确保高可用性的路由器成为主机,并通过心跳检测机制不断监测链路的连接状态、负载均衡等情况。
GLBP技术则是一种较为高级的链路冗余技术,可以实现对多个网关的负载均衡和链路的冗余备份,效果更加优异。
通过采用链路冗余技术,可以有效地消除网络故障带来的影响,降低企业的维护成本并提高网络的可用性。
如果您的企业需要一种高效可靠的网络保障技术,不妨考虑使用链路冗余技术。
核心交换机的链路聚合、冗余、堆叠、热备份是什么?

核心交换机的链路聚合、冗余、堆叠、热备份是什么?什么是核心交换机的链路聚合、冗余、堆叠、热备份,今天我们一起来了解这些专业术语!链路聚合是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。
链路聚合一般用来连接一个或多个带宽需求大的设备,例如连接骨干网络的服务器或服务器群。
它可以用于扩展链路带宽,提供更高的连接可靠性。
1、举例公司有2层楼,分别运行着不同的业务,本来两个楼层的网络是分开的,但都是一家公司难免会有业务往来,这时我们就可以打通两楼之前的网络,使具有相互联系的部门之间高速通信。
如下图:如上图所示,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,且SwitchA和SwitchB 之间有较大的数据流量。
用户希望SwitchA和SwitchB之间能够提供较大的链路带宽来使相同VLAN间互相通信。
同时用户也希望能够提供一定的冗余度,保证数据传输和链路的可靠性。
创建Eth-Trunk接口并加入成员接口,实现增加链路带宽,2台交换机分别配置Eth-Trunk1 分别将需要通信的3条线路的端口加入Eth-Trunk1,设置端口trunk,允许相应的vlan通过;这样两楼的网络就可以正常通信了。
2、实现配置步骤:在SwitchA上创建Eth-Trunk1并配置为LACP模式。
SwitchB配置过程与SwitchA类似,不再赘述system-view[HUAWEI] sysname SwitchA[SwitchA]interface eth-trunk 1[SwitchA-Eth-Trunk1] mode lacp[SwitchA-Eth-Trunk1] quit配置SwitchA上的成员接口加入Eth-Trunk。
SwitchB配置过程与SwitchA 类似,不再赘述[SwitchA] interface gigabitethernet 0/0/1[SwitchA-GigabitEthernet0/0/1] eth-trunk 1[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] eth-trunk 1[SwitchA-GigabitEthernet0/0/2] quit[SwitchA] interface gigabitethernet0/0/3[SwitchA-GigabitEthernet0/0/3] eth-trunk 1[SwitchA-GigabitEthernet0/0/3] quit在SwitchA上配置系统优先级为100,使其成为LACP主动端[SwitchA] lacp priority 100在SwitchA上配置活动接口上限阈值为2[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] max active-linknumber 2[SwitchA-Eth-Trunk1] quit在SwitchA上配置接口优先级确定活动链路[SwitchA] interface gigabitethernet0/0/1[SwitchA-GigabitEthernet0/0/1] lacp priority 100[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] lacp priority 100[SwitchA-GigabitEthernet0/0/2] quit 链路冗余为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的效率、稳定性,这里的备份连接也称为备份链路或者冗余链路。
链路冗余方案

链路冗余方案在现代社会中,网络已经成为人们生活中不可或缺的一部分。
无论是个人还是企业,都离不开网络的支持和连接。
然而,网络中的链路故障常常会给人们的生活和工作带来麻烦和困扰。
为了解决这个问题,人们提出了链路冗余方案。
链路冗余指的是在网络中同时使用多条物理链路进行数据传输。
当其中一条链路出现故障时,其他链路可以自动接管,确保数据传输的连续性和可靠性。
这种方案不仅可以提高网络的可用性,还可以减少数据丢失的可能性。
链路冗余方案有多种实现方式,下面将介绍几种常见的方法。
1. 多路径路由协议多路径路由协议通过为数据包选择多个最佳路径,实现链路冗余。
常见的多路径路由协议包括OSPF和BGP等。
这些协议通过不断监测网络拓扑和链路状态,动态选择最优路径,从而避免单一链路的故障对整个网络造成影响。
2. 链路聚合技术链路聚合技术是将多个物理链路绑定在一起,形成一个逻辑链路。
这样可以将网络流量均衡地分发到不同的链路上,从而提高网络的带宽利用率。
当其中一条链路故障时,流量可以自动转移到其他链路上,不会中断数据传输。
3. 冗余交换机设计在企业网络中,冗余交换机设计是常见的链路冗余方案。
通过将多个交换机连接成环形拓扑或者使用堆叠技术,实现冗余链路的部署。
当一条链路出现故障时,其他链路可以接管其工作,确保网络的正常运行。
4. 备用链路备用链路是一种简单而有效的链路冗余方案。
当主链路出现故障时,备用链路可以迅速接管数据传输。
这种方案可以应用于各种网络环境,包括家庭网络和企业网络等。
链路冗余方案的应用可以在很多场景中发挥重要作用。
比如,在金融行业中,如果没有链路冗余方案,银行系统的数据传输可能会中断,导致客户无法及时进行转账和交易。
而在医疗行业中,链路冗余方案可以保证医院信息系统的稳定运行,确保医生能够及时获取患者的病历和诊断结果。
然而,链路冗余方案也存在一些挑战和限制。
首先,部署链路冗余方案需要消耗更多的资源,包括物理设备和网络带宽等。
核心交换机的链路聚合、冗余、堆叠、热备份是什么?

核心交换机的链路聚合、冗余、堆叠、热备份是什么?什么是核心交换机的链路聚合、冗余、堆叠、热备份,今天我们一起来了解这些专业术语!链路聚合是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。
链路聚合一般用来连接一个或多个带宽需求大的设备,例如连接骨干网络的服务器或服务器群。
它可以用于扩展链路带宽,提供更高的连接可靠性。
1、举例公司有2层楼,分别运行着不同的业务,本来两个楼层的网络是分开的,但都是一家公司难免会有业务往来,这时我们就可以打通两楼之前的网络,使具有相互联系的部门之间高速通信。
如下图:如上图所示,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,且SwitchA和SwitchB 之间有较大的数据流量。
用户希望SwitchA和SwitchB之间能够提供较大的链路带宽来使相同VLAN间互相通信。
同时用户也希望能够提供一定的冗余度,保证数据传输和链路的可靠性。
创建Eth-Trunk接口并加入成员接口,实现增加链路带宽,2台交换机分别配置Eth-Trunk1 分别将需要通信的3条线路的端口加入Eth-Trunk1,设置端口trunk,允许相应的vlan通过;这样两楼的网络就可以正常通信了。
2、实现配置步骤:在SwitchA上创建Eth-Trunk1并配置为LACP模式。
SwitchB配置过程与SwitchA类似,不再赘述system-view[HUAWEI] sysname SwitchA[SwitchA]interface eth-trunk 1[SwitchA-Eth-Trunk1] mode lacp[SwitchA-Eth-Trunk1] quit配置SwitchA上的成员接口加入Eth-Trunk。
SwitchB配置过程与SwitchA 类似,不再赘述[SwitchA] interface gigabitethernet 0/0/1[SwitchA-GigabitEthernet0/0/1] eth-trunk 1[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] eth-trunk 1[SwitchA-GigabitEthernet0/0/2] quit[SwitchA] interface gigabitethernet0/0/3[SwitchA-GigabitEthernet0/0/3] eth-trunk 1[SwitchA-GigabitEthernet0/0/3] quit在SwitchA上配置系统优先级为100,使其成为LACP主动端[SwitchA] lacp priority 100在SwitchA上配置活动接口上限阈值为2[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] max active-linknumber 2[SwitchA-Eth-Trunk1] quit在SwitchA上配置接口优先级确定活动链路[SwitchA] interface gigabitethernet0/0/1[SwitchA-GigabitEthernet0/0/1] lacp priority 100[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] lacp priority 100[SwitchA-GigabitEthernet0/0/2] quit 链路冗余为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的效率、稳定性,这里的备份连接也称为备份链路或者冗余链路。
第5章 管理交换网络中的冗余链路

6
BPDU(网桥协议数据单元)
交换机之间交换BPDU(网桥协议数据单元)数据帧 源地址:交换机MAC;目的地址:0180.C200.0000(多播:桥组) BPDU的组成: 1.版本号:00(IEEE 802.1D) ;02(IEEE 802.1W) 2.Bridge ID(交换机ID=交换机优先级+交换机MAC地址) 3.Root ID(根交换机 ID) 4.Root Path Cost(到达根的路径开销) 5.Port ID(发送BPDU的端口ID=端口优先级+端口编号) 6.Hello Time(定期发送BPDU的时间间隔) 7.Max-Age Time(保留对方BPDU消息的最长时间) 8.Forward-Delay Time(发送延迟:端口状态改变的时间间隔) 9.其他一些诸如表示发现网络拓扑变化、本端口状态的标志位。
192.168.1.1 255.255.255.0
43
配置一个AP 的流量平衡算法:
Switch(config) # aggregateport load-balance {dst-mac |src-mac |ip} 要将AP 的流量平衡设置恢复到缺省值,可以在全 局配置模式下使用: no aggregateport loag-balance 命令。
44
显示aggregate port
SwB
SwC
19
19
SwE
假设SwA为根交换机
12
生成树的比较规则
生成树的选举过程中,应遵循以下优先顺序来选择 最佳路径: 1.比较Root path cost; 2.比较Sender`s bridge ID;
3.比较Sender`s port ID;
4.比较本交换机的port ID。
5-共享式以太网——以太网中的冗余链路

Switch# show aggregateport [port-number]{load-balance |summary} Switch# show interface aggregateport N
端口聚合配置实例
在SW1上查看配置结果:
SW1#show aggregatePort 1 summary
二层交换机上的配置(思科)
S2860(config)#hostname L2-SW L2-SW(config)# interface vlan 1 ip addr 192.168.1.2 255.255.255.0 no shut exit interface range fastEthernet 0/1-2 channel-group 1 mode on(将端口1,2加入聚合 口1,同时创建该聚合端口) no shut exit interface port-channel 1 switchport mode trunk(聚合口设置为串口) no shut exit port-channel load-balance dst-mac
AggregatePort MaxPorts SwitchPort Mode Ports
------------- -------- ---------- ------ ---------------------------------Ag1 8 Enabled ACCESS Fa0/1 ,Fa0/2
三层交换机上的配置(思科)
S3750(config)#hostname L3-SW L3-SW(config)# interface vlan 1 ip addr 192.168.1.1 255.255.255.0 no shut exit interface range fastEthernet 0/1-2 channel-group 1 mode on(将端口1,2加入聚合 口1,同时创建该聚合端口) exit interface port-channel 1 swit tr en dot switchport mode trunk(聚合口设置为串口) exit int rang fa0/1-2 swit tr en dot swit mode trunk no shut exit port-channel ? port-channel load-balance dst-mac
路由器冗余设计及高可用性配置

路由器冗余设计及高可用性配置在现代网络中,路由器作为核心设备之一,负责将数据包从源设备传输到目标设备。
为了确保网络的稳定性和可靠性,冗余设计和高可用性配置在路由器中变得越来越重要。
本文将介绍路由器冗余设计的概念,并详细讨论如何配置实现高可用性。
一、路由器冗余设计概述路由器冗余设计是一种通过增加备用设备来提供冗余,以确保在主设备发生故障时网络服务的连续性。
主要的路由器冗余设计包括冗余路由器、冗余链路和冗余接口。
1. 冗余路由器冗余路由器是指在网络中设置备用路由器,当主路由器出现故障时,备用路由器能够自动接管主路由器的任务。
常见的冗余路由器技术包括热备份路由器(HSRP)、虚拟路由冗余协议(VRRP)和基于隧道的冗余路由器(TGRE)。
2. 冗余链路冗余链路是指为相同的网络连接提供备用路径,以便在主链路故障时实现数据的冗余传输。
通过设置备用链路,可以增加网络的可用性和容错能力。
常见的冗余链路技术包括热备份链路(HSB)、链路聚合(Link Aggregation)和静态路由。
3. 冗余接口冗余接口是指为主接口提供备用接口,以提供对同一网络的冗余连接。
通过设置冗余接口,可以实现对主接口故障的快速切换,从而减少因主接口故障而导致的网络中断时间。
常见的冗余接口技术包括冗余接口卡(RIC)、虚拟接口红利(VIF)和链路聚合。
二、高可用性配置高可用性配置是指通过合理的配置手段,提高网络设备的性能和可靠性,确保网络服务的连续性和稳定性。
在路由器中实现高可用性配置的关键配置包括设备冗余、链路冗余和路由协议冗余。
1. 设备冗余配置设备冗余配置是指在网络中设置备用设备,以实现在主设备故障时的自动备援。
具体配置包括创建冗余设备组、配置备用设备的优先级和设置IP地址等。
例如,在HSRP中,可以通过配置虚拟IP地址和优先级来实现冗余路由器的自动切换。
2. 链路冗余配置链路冗余配置是指为相同的网络连接提供备用路径,以实现链路的冗余传输。
链路冗余技术

链路冗余技术链路冗余技术是一种网络设计和管理技术,它通过在网络中增加冗余链路来提高网络的可靠性和可用性。
在传统的网络设计中,网络管理员通常会使用单一链路连接网络设备,这种设计方式存在单点故障的风险,一旦链路出现故障,整个网络就会瘫痪。
而链路冗余技术可以有效地解决这个问题。
链路冗余技术的核心思想是在网络中增加多条冗余链路,这些链路可以在主链路出现故障时自动接管数据传输任务,从而保证网络的连通性和可靠性。
在链路冗余技术中,常用的实现方式包括STP (Spanning Tree Protocol)、RSTP(Rapid Spanning Tree Protocol)、MSTP(Multiple Spanning Tree Protocol)等。
STP是最早的链路冗余技术,它通过计算网络中的最短路径来避免网络中的环路,从而保证数据的正常传输。
但是STP存在收敛时间长、带宽利用率低等问题,因此在实际应用中逐渐被RSTP和MSTP 所取代。
RSTP是STP的改进版,它通过快速收敛机制来缩短网络恢复时间,从而提高网络的可用性。
MSTP则是在RSTP的基础上进一步优化,它可以将网络划分为多个区域,每个区域内部使用独立的STP实例,从而提高网络的可扩展性和灵活性。
除了STP、RSTP和MSTP之外,链路冗余技术还有其他实现方式,例如VRRP(Virtual Router Redundancy Protocol)、HSRP(Hot Standby Router Protocol)等。
这些技术都可以有效地提高网络的可靠性和可用性,但是在实际应用中需要根据具体情况选择合适的技术方案。
链路冗余技术是一种非常重要的网络设计和管理技术,它可以有效地提高网络的可靠性和可用性,从而保证网络的正常运行。
在实际应用中,网络管理员需要根据具体情况选择合适的技术方案,并进行合理的配置和管理,才能充分发挥链路冗余技术的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生成树协议的配置
配置交换机优先级
Switch(config)#spanning-tree priority <0-61440> (“0”或“4096”的倍数、共16个、缺省32768)
恢复到缺省值
Switch(config)# no spanning-tree priority
配置交换机端口的优先级
所有非根交换机选择一条到达根交换机的最短路径
A为根交换机
switchA
switchB
switchC
生成树协议避免环路(续)
所有非根交换机产生一个到达根交换机的端口—根端口(Root Port)
A为根交换机
switchA
根端口
switchB
switchC
生成树协议避免环路(续)
每个LAN都会选择一台设备为指定交换机,通过该设备的端口连接到根,该 端口为指定端口( Designated port )
显示端口生成树协议的状态
Switch#show spanning-tree interface fastethernet <02/1-24>
实验拓扑
F0/1
F0/1
工作目标
在两交换机上配置RSTP,实现冗余链路
过程细分
在两交换机上配置RSTP 按拓扑连接线缆,查看交换机上生成树状态 拔掉一根线缆,查看丢包情况
多帧复制和MAC地址表不稳定
PC1在我 的F0/5口
去往PC1的帧 F0/5 SwitchA F0/3
PC1在我 的F0/3口
PC1
环路问题的解决
1、主要链路正常时,断开 备份链路
2、主要链路出故障时,自 动启用备份链路
生成树协议
生成树协议概述
生成树协议(spanning-tree protocol)由IEEE 802.1d标准定义 生成树协议的作用是为了提供冗余链路,解决网络环路问题
课程议题
构建中型办公网络(续)
冗余链路
网络中存在的单点故障
故障
网络中的单点故障可导致网络的无法访问
交换网络中的冗余链路
故障
在网络中提供冗余链路解决单点故障问题
冗余链路出现的问题—环路
广播风暴
发送一个广播帧
冗余链路会造成网络环路,当交换网络中出现环路会产生广播风暴、多帧 复制和MAC地址表不稳定等现象。严重影响网络正常运行。
生成树协议通过SPA(生成树算法)生成一个没有环路的网络,当主要链
路出现故障时,能够自动切换到备份链路,保证网络的正常通信
BPDU(网桥协议数据单元)
Protocol ID Version Message Type Flags Root ID Cost of Path
Root ID:由2字节优先级和6字节MAC组成 Cost of Path:路径开销是从Switch到Root Bridge的方向叠加的 Port ID:端口信息由1字节端口优先级和1字节端口 ID组成 Maximum Time:当一段时间未收到任何BPDU, 生存期达到Max Age时,网桥则认为该端口连 接的链路发生故障。默认20秒 Hello Time:发送BPDU的周期,默认2秒 Forward Delay:BPDU全网传输延迟,默认15秒
Block
20秒最大生存时间
Listening 15秒转发延时 learning 15秒转发延时 Forwarding
生成树经过一段时间(默认值是50秒左右)稳定之后,所有端口要么进入转
发状态,要么进入阻塞状态。
IEEE 802.1w—快速生成树协议
快速生成树协议概述
快速生成树协议RSTP(Rapid Spannning Tree Protocol) IEEE 802.1w
Switch(config)#interface interface-type
interface-number
Switch(config-if)#spanning-tree port-p显示生成树状态
Switch#show spanning-tree
Bridge ID Port ID Message Age
Maximum Time Hello Time Forward Delay
生成树协议避免环路
交换网络中所有交换机共同选举一台设备为根交换机(Root Bridge)
A为根交换机
switchA
switchB
switchC
生成树协议避免环路(续)
RSTP协议在STP协议基础上做了改进,使得收敛速度快得多(最快1秒 以内)
生成树协议的配置
开启生成树协议
Switch(config)#Spanning-tree
关闭生成树协议
Switch(config)#no Spanning-tree
配置生成树协议的类型
Switch(config)#Spanning-tree mode stp/rstp 锐捷全系列交换机默认使用MSTP协议
A为根交换机
switchA
根端口
switchB
switchC
指定端口
生成树协议避免环路(续)
将交换网络中所有设备的根端口(RP)和指定端口(DP)设为转发状 态(Forwarding),将其他端口设为阻塞状态(Blocking)
A为根交换机
switchA
RP
switchB
switchC
DP
生成树协议端口的状态