第五章常微分方程习题
常微分方程 第五章 线性微分方程组(3)

推论5.4 线性齐次方程组(5.2)的线性无关解的个数不能多于n 个.
3.刘维尔公式 齐次方程组(5.2)的解和其系数之间有下
列联系. 定理5.7 如果
是齐次方程组(5.2)的n个解,则这n个解的朗斯基行列式 与方程组(5.2)的系数有如下关系式
实际上,这个推论是定理5.3的逆否命题. 推论5.2 如果方程组(5.8)的n个解的朗斯基行列式 W(x)在其定义区间I上某一点x0等于零,即
则该解组在I上必线性相关.
实际上,这个推论是定理5.4的逆否命题.
推论5.3 方程组(5.2)的n个解在其定义区间I 上线性无关的充要条件是它们的朗斯基行列式 W(x)在I上任一点不为零.
条件的充分性由推论5.1立即可以得到. 必要性用反证法及推论5.2证明是显然 的.证毕.
2.一阶线性齐次微分方程组解空间的结构.
我们把一阶线性齐次方程组(5.2)的n个线 性无关解称为它的基本解组.
例4 易于验证向量函数
是方程组
的基本解组. 定理5.5 方程组(5.2)必存在基本解组.
定理5.6 如果 是齐次方程组(5.2)的基本解组,则其线性组合
的一阶微分方程组。
含有n个未知函数 的一阶微分方程组的一般形式为:
此方程组在
上的一个解,是这样的一组函数
使得在
上有恒等式
含有n个任意常数 的解
称为方程组的通解. 如果通解满足方程组
则称后者为(1)的通积分. 如果已求得(1)的通解或通积分,要求满足初始条件
的解,可以把此初始条件代入通解或通积分之中,得到关于 的n个方程式,如果从其中解得
这个关系式称为刘维尔(Liouville)公式.
第五章-微分方程

第五章 微分方程第一节 微分方程的基本概念 一、基本概念微分方程的定义:①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解:微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数)(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解.初始条件与特解:用未知函数与其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。
例1 课本294页 例1二、独立的任意常数线性相关与线性无关:设)(),(21x y x y 是定义在区间),(b a 的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 的任一x ,恒有0)()(2211=+x y k x y k成立,则称函数)(),(21x y x y 在区间),(b a 线性相关,否则称为线性无关.显然,函数)(),(21x y x y 线性相关的充分必要条件是)()(21x y x y 在区间),(b a 恒为常数. 如果)()(21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 线性无关.独立的任意常数:在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中,1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关.例2 课本297页 例4第二节 可分离变量的微分方程 一、定义形如)()(d d y g x f xy= 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数.二、求解方法可分离变量的微分方程)()(d d y g x f xy=的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ⎰⎰=x x f y y g d )(d )(.[例1]求微分方程ydy dx y xydy dx +=+2的通解.解先合并dx 与dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解.)1(122-=-x C y注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下,用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中.[例2] 已知 ,tan 2cos )(sin 22x x x f +=' 当10<<x 时,求).(x f解设,sin 2x y =则,21sin 212cos 2y x x -=-=.1sin 1sin cos sin tan 22222yyx x x x x -=-==所以原方程变为,121)(y y y y f -+-='即.112)(yy y f -+-=' 所以 =)(y f ⎪⎪⎭⎫ ⎝⎛-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<<x第三节 线性微分方程 一、一阶线性微分方程定义 :形如)()(d d x Q y x P xy=+. 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 都是x 的已知连续函数,“线性”是指未知函数y 和它的导数y '都是一次的. 求解方法 :一阶线性微分方程)()(d d x Q y x P xy=+的求解方法,一般有如下两步: 第一步:先用分离变量法求一阶线性微分方程)()(d d x Q y x P xy=+所对应的齐次线性微分方程0)(d d =+y x P xy的通解⎰=-x x P c C y d )(e . 第二步:设⎰=-x x P x C y d )(e )(为一阶线性微分方程)()(d d x Q y x P xy=+的解,代入该方程后,求出待定函数)(x C .第三步: 将)(x C 代入⎰=-xx P x C y d )(e )(中,得所求一阶线性微分方程)()(d d x Q y x P xy=+的通解. 注:只要一阶线性微分方程是)()(d d x Q y x P xy=+的标准形式,则将⎰=-x x P x C y d )(e )(代入一阶线性微分方程后,整理化简后,必有)(e )(d )(x Q x C xx P =⎰'-,该结论可用在一阶线性微分方程的求解过程中,以简化运算过程. 一阶线性微分方程)()(d d x Q y x P xy=+的求解公式: ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C x x Q y x x P x x P d e )(e d )(d )( (其中C 为任意常数). [例1] 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的 C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .[例2] 求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u uln ln ln 1-=-,将x y u =代入原方程,整理得原方程的通解为yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy xy 分离变量,得xy x y2d d =,x x yyd 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解.二、二阶常系数齐次线性微分方程定义:形如0=+'+''qy y p y的微分方程(其中q p ,均为已知常数,称为二阶常系数齐次线性微分方程. 求解方法:求解二阶常系数齐次线性微分方程,一般分为如下三步:第一步 写出方程0=+'+''qy y p y 的特征方程 02=++q pr r ,第二步 求出特征方程的两个特征根 1r ,2r ,第三步 根据下表给出的三种特征根的不同情形,写出0=+'+''qy y p y 的通解.[例3] 求微分方程02=+'-''y y a y 的通解.解 原方程对应的特征方程为 0122=+-ar r ,244222,1-±=a a r =12-±a a ,(1)当1>a ,即 1>a 或1-<a 时,特征方程有两个不相等的实根121-+=a a r ,122--=a a r ,故原方程的通解为xa a xa a C C y )1(2)1(122e e ---++=.(2)当1=a ,即1=a 或1-=a 时,特征方程有两个相等的实根 a r r ==21, 故原方程的通解为 axx C C y e )(21+=.(3)当1<a ,即 11<<-a 时,特征方程有两个共轭复根 22,11i a a r -±=,故原方程的通解为)1sin 1cos (e 2221x a C x a C y ax -+-=.三、二阶常系数非齐次线性微分方程定义:形如)(x f qy y p y =+'+''的微分方程(其中q p ,均为已知常数),称为二阶常系数非齐次线性微分方程.求解方法:求解二阶常系数非齐次线性微分方程, 一般分为如下三步:第一步 先求出非齐次线性微分方程)(x f qy y p y =+'+''所对应的齐次线性微分方程方程0=+'+''qy y p y 的通解c y ;第二步 根据下表设出非齐次线性微分方程)(x f qy y p y =+'+''的含待定常数的特解p y ,并将p y 代入非齐次线性微分方程)(x f qy y p y =+'+''解出待定常数,进而确定非齐次方程)(x f qy y p y =+'+''的一个特解p y ;第三步 写出非齐次线性微分方程)(x f qy y p y =+'+''的通解p c y y y +=.方程)(x f qy y p y =+'+''的特解p y 的形式表注:①表中的)(x P m 为已知的m 次多项式,)(x Q m 为待定的m 次多项式,如C Bx Ax x Q ++=22)( (C B A ,,为待定常数).②在设微分方程 xm x P qy y p y λe )(=+'+''的特解时,必须注意把特解p y 设全.如:2)(x x P m =,那么 2120)(b x b x b x Q m ++=,而不能设20)(x b x Q m =.另外,微分方程的特解都是满足一定初始条件的解,上面所求的特解p y 一般不会满足题设初始条件,因此需要从通解中找出一个满足该初始条件的特解.[例4] 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解 对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.[例5] 求微分方程 x y y y x2sin e 842=+'-''的通解.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
第五章:常微分方程数值解法第一节欧拉法

《常微分方程》第五章练习题

x
y
C1
e3t 2e3t
C2
et 2et
3、满足初值条件的解为
~
(t )
et e t
4、方程组的通解为
x y
C1e2t
4 5
C2e7t
1 1
。
4
5、所求基解矩阵为 (2 e
3t
3)e
3t
e 3t (2 3)r
3t .
6、 (t )
e3t [E
t(A
3E)]
A1 (t)
A2 (t)
,t
(a,b) .
部分参考答案 一、填空题
1、 (t) (t)C
2、(t) exp[(t t0 )A]
t t0
exp[(t s)A] f (s)ds
3、必要
t t0
1 (s) f
(s)ds
三、计算题
1、
A
4 3
3
4
2、原方程组的通解为
x ' Ax ce mt 有一解形如(t) pemt ,其中 c , p 是常数向量.
3
4、证明:如果 φ(t) 是方程组 x Ax 满足初始条件 φ(t0 ) η 的解,那么
φ(t) [exp A(t t0 )]η 。
5、证明:如果 Φ(t),Ψ (t) 在区间 a t b 上是 n 阶线性方程组
1、向量
X1
(t)
2et 0
,
X
2
(t)
t 2et et
的伏朗斯基行列式
W (t) =(
).
A 、0 ; B 、 tet ; C 、2 e t ; D 、2 e2t .
2、有关矩阵指数 exp A 的性质,以下说法正确的是( )
常微分方程数值解法欧拉法

)
f ( xn1, yn1)
hL
y(k ) n 1
yn1
L
hL
k 1
y(0) n 1
yn1
Q
hL 1,
y (k 1) n 1
yn1 (k
)
在迭代公式中取极限,有
yn1 yn h f ( xn1, yn1 ) 因此yn(k1)的极限就是隐式方程的解
几何意义
y
设已知曲线上一点 Pn (xn , yn ),过该 点作弦线,斜率为(xn+1 , yn +1 ) 点的 方向场f(x,y)方向,若步长h充分小, 可用弦线和垂线x=xn+1的交点近似 曲线与垂线的交点。
式。隐式公式不能直接求解,一般需要用Euler显式公式
得到初值,然后用Euler隐式公式迭代求解。因此隐式公
式较显式公式计算复杂,但稳定性好
y0 n1
yn
h
y(k 1) n1
yn
h
f (xn , yn )
f
( xn1 ,
y(k) n1
)
收敛性
y (k 1) n 1
yn1
h
f
( xn1,
y(k ) n 1
如何求解
解析解法:(常微分方程理论)
只能求解极少一类常微分方程;实际中给定的问题不一 定是解析表达式,而是函数表,无法用解析解法。
数值解法: 求解所有的常微分方程
计算解函数 y(x) 在一系列节点 a = x0< x1<…< xn= b
处的近似值 yi y( xi ) (i 1, ... , n)
y(xn1) y(xn ) hy(xn ) y(xn ) yn
y(xn1) yn1 yn h f (xn , yn )
第五章 常微分方程初值问题数值解法

则有
yn 1 yn hf ( xn , yn )
( 5.2 ) Euler格式
例5.1 用Euler格式解初值问题
2x y y y y (0) 1
取步长h=0.1.
(0 x 1)
Euler格式的具体形式为
y n 1 y n hf ( x n , y n ) 2 xn yn 0.1( yn ) yn 0.2 xn 1.1 yn yn
计算公式的精度 常以Taylor展开为工具来分析计算公式的精度. 为简化分析,假定yn是准确的,即在 yn y ( xn ) 的前提下估计误差 y ( xn 1 ) yn 1 Euler格式的局部截断误差 由 从而 局部截断误差
f ( xn , yn ) f ( xn , y ( xn )) y '( xn ) y ( xn 1 ) yn 1 y ( xn 1 ) ( yn hf ( xn , yn )) y ( xn 1 ) y ( xn ) hy '( xn )
y ( xn ), y ( xn 1 ), 的近似值 y1 , y2 , , yn , yn 1 ,
相邻两个节点的间距 h xi 1 xi 称为步长,步 长可以相等,也可以不等.本章总是假定h为定数, 称为定步长,这时节点可表示为
xn x0 nh , n 0,1, 2,
由f ( xn 1 , yn 1 ) f ( xn 1 , y ( xn 1 )) f y ( xn 1 , )( yn 1 y ( xn 1 )) f ( xn 1 , y ( xn 1 )) y '( xn 1 )(在xn点Taylor展开) h2 y '( xn ) hy ''( xn ) y '''( xn ) ... 2 3 2 h h 因此yn 1 y ( xn ) hy '( xn ) y ''( xn ) y '''( xn ) 2 4 h f y ( xn 1 , )( yn 1 y ( xn 1 )) 2 h2 h3 y ( xn 1 ) y ( xn ) hy '( xn ) y ''( xn ) y '''( xn ) 2 3!
常微分方程-习题作业-第五章第四节作业及详细解答

2. 设函数 f (t, x) 在 (t, x) 平面上某区域 G 内连续, 关于 x 满足 Lipschitz 条件, L 是 Lipschitz
常数,
ϕ1(t),
ϕ2(t)
分别是方程
dx dt
=
f (t, x)
的
1和
2 逼近解, 都在区间 [t1, t2] 上有定义,
t0 ∈ [t1, t2] 且
|ϕ1(t0) − ϕ2(t0)| ≤ δ.
用 Gronwall 不等式证明:当 t ∈ [t1, t2] 时
|ϕ1(t) − ϕ2(t)| ≤ δeL|t−t0| + L eL|t−t0| − 1 , 其中 = 1 + 2. 证明: 不妨设 t ≥ t0, t ≤ t0 的情况可类似地证明. 由假设, 我们有:令 ϕ(t) = ϕ1(t来自 − ϕ2(t), 则t
ϕ1(t) − ϕ2(t) = ϕ1(t0) − ϕ2(t0) + ϕ(τ )dτ.
t0
因此,
|ϕ(t)| ≤ ≤
+ L ϕ1(t0) − ϕ2(t0) +
t
+ Lδ + L|ϕ(τ )|dτ.
t0
t
ϕ(τ )dτ
t0
由 Gronwall 不等式得: |ϕ(t)| ≤ ( + Lδ)eL(t−t0). 由此得:
故所给结论成立.
t
|ϕ1(t) − ϕ2(t)| = ϕ1(t0) − ϕ2(t0) + ϕ(τ )dτ
t0 t
≤ δ + ( + Lδ)eL(τ−t0)dτ
t0
= δeL|t−t0| + L eL|t−t0| − 1 .
微分方程数值解第五章答案

微分⽅程数值解第五章答案第五章1,0,0, (,0)1/2,0,0,0.x u uu x x t x x ?>?1. 对初值问题=2试分别⽤左偏⼼格式、LW 格式计算其数值解u , k =1,2,3,4, 取/1/h τ=.k 解: 矩形⽹格剖分区域. 取空间步长h , 时间步长τ的矩形⽹格剖分区域, ⽤节点表⽰坐标点0,1,2,...;j =±±(,)j k (,)(,)j k x t jh k τ=, 0,1,2,3,4.k =0=+???kjk j x u t u (1)左偏⼼格式:,在t 上⽤向前差商,x 上⽤向后差商,得011=?++hu u u u kj k j k jk j τ中国地质⼤学(北京)廉海荣编 1,因为2/1/=h τ,整理得到k j k j k ju u u 212111+=?+ 把已知条件离散成,则可以根据下⼀层求上⼀层的值得到,=1,2,3,4,下图中节点处值即为求出来的值:>=<0,00,2/10,1j j j =0j u k k u k uLW 格式: )2(2)(21122111kj k j k j k j k j k jk ju u u r a u u ar u u++=+++ 在本题中,2/1/,1===h r a τ,整理得到:中国地质⼤学(北京)廉海荣编 2k j k j k j k ju u u u 111814383+?+?+=,同理可根据边值条件,根据下⼀层求上⼀层的值得到,k =1,2,3,4,下图中节点处值即为求出来的值:>=<0,00,2/10,1j j j =0j u k u k u0, 0,0x<, u(x,0)=(x), 0x<, u(0,t)=(t), 0. u u a t T t x t T ?ψ+=<≤<∞?≤∞??≤≤??中国地质⼤学(北京)廉海荣编32. 试对初边值问题其中建⽴以下差分格式 0a >111102k k k k j jj j u u u u ahτ+++++=1,(a )1111111()222k k k k k kj jj j j j u u u u u u a h hτ++++?+++(b )0=. 试分析它们的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 常微分方程 §1 常微分方程的基本概念与分离变量法1.xy dxdy 2=,并求满足初始条件:0,1x y ==的特解.2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5.x ydy edx-=答案1.通解2x y ce =;特解2x y e = 2.通解1ln 1y c x=++;另有解0y =;特解11ln 1y x=++3.ln ;0x y xy c y -+== 4.1lny cyx +=5.y x e e c =+§2 一阶线性微分方程1.(1)( )是微分方程。
(A )(B )(C )(D )(2)( )不是微分方程。
(A )(B )(C )(D )2.求微分方程的通解;(2)。
(1)3.求微分方程的特解(1);(2)4.解下列微分方程;(2);(1)答案1.(1)B;(2)C2.(1)y=cx;(2)y4-x4=C。
3.(1)2/x3;(2)。
4.(1); (2)y=Csinx;§3 二阶常系数线性微分方程1.求下列微分方程的通解;(2);(1)(3)(5)2.求微分方程的特解3.求下列微分方程的通解(1); (2) ;(3); (4)。
4.求方程2100y y y '''++=满足初始条件02x y==和01x y ='=的特解5.求方程221y y y x '''+-=+的一个特解6.求方程22x y y y xe '''+-=的一个特解7.求方程32(41)x y y y x e '''-+=-的一个特解答案1.(1) ; (2);(3); (4) ;(5) ; (6) 。
2.3.(1);(2) ;(3) ;(4) 。
4.(2cos 3sin 3)x y e x x -=+ 5.2411y x x =--- 6.(4)x y x e =- 7.(23)x y x x e =--总复习题1、1)、微分方程232()20d y dy x dxdx++=的阶数是( )A.1B.2C.3D.0 2)、下列微分方程中,是一阶方程的是( ) A.2y x y '=+ B.2()0x y y e '''++= C.220d x xy dy+= D.444d S S S dt+=3)、方程322321xx d yd ye e dx dx++= 的通解中应包含的任意常数的个数为( )A.2B.3C.4D.04)、微分方程34()0x y yy '''-=的阶数是( ) A.1 B.2 C.3 D.4 5)、下列函数中,( )是微分方程y y xx'+=的解A.213x+ B.313xx+C. 213x-+ D.213xx+6)、方程30xy y '+=的通解是( )A.3x -B.x C xeC. 3x C -+D. 3Cx - 7)、方程y xdy dx e dx +=的通解是( ) A.x y C xe = B.x y xe C =+ C.ln(1)y Cx =-- D.ln(1)y x C =-++8)、方程sin cos cos sin x ydx x ydy =满足04x y π==的特解是( )A.2sin sin 2y x =B. 2cos cos 2y x =C. 2sin cos 2y x =D. 2cos sin 2y x =9)、0x d y y d x -=的通解是( )A.y Cx =B.C y x=C.x y Ce =D.ln y C x =10)、方程ln xdy y ydx =的一个解为( )A.ln y x =B.sin y x =C.x y e =D.2ln y x = 11)、方程22904d y x dx-=的通解是( )A.338y x x =+ B. 338y x C x=+ C. 31238y x C x C =++ D. 338y x x C=++12)、下列函数中,是微分方程220xd ye dx-=的解的是( )A.ln(1)y x =-B. ln(1)y x =--C.1x e x -=-D.x y e x =+ 13)、函数y=cosx 是方程( )的解 A.0y y ''+= B.20y y '+= C.0y y '+= D. cos y y x ''+=2、指出下列方程中哪些是微分方程, 并说明它们的阶数:1)、120d y yd x-=2)、22y y x =+ 3)、2s i n 0x dy y d x +=4)、2223td y ye dt+=5)、3y y x '''+= 6)、2yd y d x x y=+7)、2()0x y y ''''-=3、判别下列微分方程属于何种类型:1)、2si n 0x d y y d x +=2)、23tdy y edt+=3)、2dx dy x y=+4)、4(1)3(1)xx y y e x '+-=+5)、22d yyd x x y x=-6)、2(1)2c o s x y x y x'++=4、求下列微分方程的通解: 1)、l n 0x y y y '-=2)、l n l n 0y d x x d y +=3)、t a n d y yyd x xx=+5、验证下列函数(其中C 为任意常数)是否是相应的微分方程的解,是通解还是特解:1)、222,,xy y y C x y x '=== 2)、,s i n ,3s i n 4c o s y yy xy x x ''=-==-3)、22,,xxdy y y ey C edx===6、求下列微分方程的通解: 1)、21y y '+= 2)、22(1)1y y x x '-=++3)、22(2)0x dy xy x dx +-=4)、xdy y edx -+=5)、32dy xy x dx-= 6)、22s i n 3y y x xx'-=7)、2(1)2c o s 0x y x y x '++-=7、求下列微分方程满足初始条件的特解:1)、1200(),0,1x x y y yy ==''''===2)、200(1)3,0,0x x x y xy yy ==''''--===8、求下列微分方程满足所给初始条件的特解: 1)、00340,0,5x x y y y y y ==''''--===-2)、00250,2,15x x y y yy =='''+===3)、004290,0,15x x y y y yy ==''''++===9、求下列微分方程的通解: 1)、2xy y e ''-=2)、22x y y y e '''+-=总复习题1、1):B 2):A 3):B 4):B 5):D 6):D 7):C 8):B 9):A 10):C 11):C 12):D 13):A2、1):是,一阶; 2):不是; 3):是,一阶; 4):是,二阶; 5):是,二阶; 6):是,一阶; 7):是,三阶 3、1):一阶可分离变量的微分方程; 2):一阶非齐次线性微分方程 3):关于,x x '的一阶非齐次线性微分方程; 4):一阶非齐次线性微分方程; 5):一阶齐次方程; 6):一阶非齐次线性微分方程 4、1):ln y cx = 2):22(ln )(ln )x y c += 3):a r c s i n ()y x cx =5、1):通解,特解; 2):特解,特解; 3):不是,通解6、1):212xy c e -=+; 2):2()(1)y xc x =++; 3):23x c y x=+;4):()xy e x c -=+; 5):23223xy c e =-; 6):21(c os 3)3y x c x =-;7):2si n 1x c y x +=+7、1):312(2)123y x =+-; 2):23(a r c s i n )2y x=;8、1):4x x y e e -=-+; 2):2c o s 53s i n 5y x x=+; 3):23si n 5xy e x-=9、1):21213xxxy c e c ee-=++; 2):212xx x y c e c e e -=++;。