常微分方程第五章测试题及参考答案
《常微分方程》考试参考答案(A卷)

《常微分方程》考试参考答案(A卷)《常微分方程》考试参考答案(A 卷)一、填空题(每空2分,共30分)1、()dy y g dx x = ln y x c x=+ 2、()()dy f x y dx= 2x y e = 3、2222M N y x= 4、1212(,)(,)f x y f x y L y y -≤-5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x tc x t +=对于所有[,]t a b ∈ 都成立()0w t ≡6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c tc t -=+++7、322x xy y c -+=二、判断题(每题2分,共10分)1、√2、×3、×4、√5、√三、计算题(每题15分,共60分)1、解:231()dy y dx x x y +=+ 变量分离231y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x xλ+=-++ 2211ln 1ln ln 122y x x +=-+ 22ln(1)(1)2ln ||y x x ++=从而解得通解为:222(1)(1)x y cx ++=2、解:先求30dx x dt+=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+ ∴原方程的通解为:533211()55t t t t x e c e ce e --=+=+3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解特征函数42()210F λλλ=-+= 123411λλ==-从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C ===21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++4、解:令cos sin y p t x t '==?=2cos dy pdx tdt == 原方程的通解为:11sin 242y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y Rf M max f x y y y L y -∈?===-=≤=?∴11min(,)min(1,)44b h a M === 从而解存在区间为114x +≤ 231123221327()011()3311()[()]3311111139186342o o x x x y x x dx x x x x dx x x x x --====+=-+=---+?? 2(21)1(21)!24o ML y y h +-≤=+。
《常微分方程》第五章练习题

x
y
C1
e3t 2e3t
C2
et 2et
3、满足初值条件的解为
~
(t )
et e t
4、方程组的通解为
x y
C1e2t
4 5
C2e7t
1 1
。
4
5、所求基解矩阵为 (2 e
3t
3)e
3t
e 3t (2 3)r
3t .
6、 (t )
e3t [E
t(A
3E)]
A1 (t)
A2 (t)
,t
(a,b) .
部分参考答案 一、填空题
1、 (t) (t)C
2、(t) exp[(t t0 )A]
t t0
exp[(t s)A] f (s)ds
3、必要
t t0
1 (s) f
(s)ds
三、计算题
1、
A
4 3
3
4
2、原方程组的通解为
x ' Ax ce mt 有一解形如(t) pemt ,其中 c , p 是常数向量.
3
4、证明:如果 φ(t) 是方程组 x Ax 满足初始条件 φ(t0 ) η 的解,那么
φ(t) [exp A(t t0 )]η 。
5、证明:如果 Φ(t),Ψ (t) 在区间 a t b 上是 n 阶线性方程组
1、向量
X1
(t)
2et 0
,
X
2
(t)
t 2et et
的伏朗斯基行列式
W (t) =(
).
A 、0 ; B 、 tet ; C 、2 e t ; D 、2 e2t .
2、有关矩阵指数 exp A 的性质,以下说法正确的是( )
常微分方程第5章答案

x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数. 解:a) u(0)= =u (t)= = u(t)又v(0)= =v (t)= = = v(t)因此u(t),v(t)分别是给定初值问题的解.b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令x =x, x = x , 得即又x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x =x(1)=其中x=.b) 令=x ===则得:且(0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中x= .c) 令w =x,w =,w =y,w =y ,则原初值问题可化为:且即ww(0)= 其中w=3. 试用逐步逼近法求方程组=x x=满足初始条件x(0)=的第三次近似解.解:0241201 杨素玲02412—02 02412—031.试验证=是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。
解:令的第一列为(t)= ,这时(t)= = (t)故(t)是一个解。
同样如果以(t)表示第二列,我们有(t)= = (t)这样(t)也是一个解。
常微分方程习题及评分标准答案

常微分⽅程习题及评分标准答案常微分⽅程分项习题⼀、选择题(每题3分)第⼀章:1.微分⽅程''20y xy y +-=的直线积分曲线为()(A )1y =和1y x =- (B )0y =和1y x =- (C )0y =和1y x =+ (D )1y =和1y x =+ 第⼆章:2.下列是⼀阶线性⽅程的是()(A )2dy x y dx =- (B )232()0d y dy xy dx dx-+= (C )22()0dy dy x xy dx dx +-= (D )cos dy y dx= 3.下列是⼆阶线性⽅程的是()(A )222d y dyxx y dx dx +=- (B )32()()0dy dy xy dx dx -+= (C )2(1)0dy x xy dx +-= (D )22cos cos d y y x dx=4.下列⽅程是3阶⽅程的为()(A )'23y x y =+ (B )3()0dy xy dx+= (C )3223()0dy d yx y dx dx+-= (D )3cos dy y dx = 5.微分⽅程43()()0dy dy dyx dx dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )46.⽅程2342()20dy d yx y dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )4 7.针对⽅程dy x ydx x y-=+,下列说法错误的是().(A )⽅程为齐次⽅程(B )通过变量变换yu x=可化为变量分离⽅程(C )⽅程有特解0y =(D )可以找到⽅程形如y kx =的特解(1y x =- 8.针对⽅程2sin (1)y x y '=-+,下列说法错误的是().(A )为⼀阶线性⽅程(B )通过变量变换1u x y =-+化为变量分离⽅程(C )⽅程有特解12y x π=++(D )⽅程的通解为tan(1)x y x C -+=+ 9.伯努利⽅程n y x Q y x P dxdy)()(+=,它有积分因⼦为()(A )(1)()n P x dx e -? (B )()nP x dx e ?(C )(1)()n P x dx xe -? (D )()nP x dx xe ?10.针对⽅程2(cos sin )dyy y x x dx+=-,下列说法错误的是().(A )⽅程为伯努利⽅程(B )通过变量变换2z y =可化为线性⽅程(C )⽅程有特解0y =(D )⽅程的通解为1sin x y Ce x=-11.⽅程2()dy yxf dx x=经过变量变换()可化为变量分离⽅程。
常微分方程知到章节答案智慧树2023年齐鲁师范学院

常微分方程知到章节测试答案智慧树2023年最新齐鲁师范学院第一章测试1.二阶微分方程的含有两个任意常数的解一定是通解。
()参考答案:错2.满足初值条件的解称为是微分方程的特解。
()参考答案:对3.一阶微分方程的通解表示平面上的一条曲线。
( )参考答案:错4.不是线性微分方程的方程一定是非线性微分方程。
( )参考答案:对5.函数为任意常数是方程的通解。
( )参考答案:对第二章测试1.一阶非齐次线性微分方程的任意两个解之差必为相应的齐次线性微分方程的解。
()参考答案:对2.微分方程()参考答案:二阶线性微分方程3.微分方程的满足的特解为()参考答案:4.微分方程的通解为()参考答案:5.若一阶微分方程有积分因子,则积分因子一定是唯一的。
()参考答案:错第三章测试1.所有的微分方程都可以通过初等积分法求得其通解。
()参考答案:错2.要求得一阶微分方程的特解,应该给定一个初值条件。
()参考答案:对3.李普希兹条件是一阶微分方程初值问题解存在唯一的充要条件。
()参考答案:错4.存在唯一性定理中解的存在区间是唯一的。
()参考答案:错5.微分方程初值问题的解只要存在就一定唯一。
()参考答案:错第四章测试1.若函数在区间上线性相关,则在上它们的伏朗斯基行列式。
()参考答案:错2.如果方程的解在区间上线性无关,则在这个区间的任何点上都不等于零,即()参考答案:对3.由n阶齐线性方程的n个解构成的伏朗斯基行列式或者恒等于零。
( )参考答案:对4.n阶齐线性方程可以有n+1个线性无关的解。
()参考答案:错5.是方程的通解。
()参考答案:对第五章测试1.如果矩阵,维列向量是可微的,则()参考答案:对2.向量是初值问题在区间上的解。
()参考答案:对3.设是矩阵,则。
()参考答案:对4.如果向量函数在区间线性相关,则它们的伏朗斯基行列式,。
( )参考答案:对5.如果,在区间上是的两个基解矩阵,那么,存在一个非奇异常数矩阵,使得在区间上。
常微分方程第五章考试卷3

常微分方程第五章测试卷(3)班级__________姓名__________学号________得分__________ 一、 填空(每空3分,共30)1、若A 是n*n 常数矩阵,则矩阵指数expA=2、在用皮卡逐步逼近法求方程组η=+=')(),()(0t x x f x t A x 的近似解时,若取ηϕ=)(00t ,则=)(t k ϕ3、方程组'()x A t x =的n 个解12(),(),,()n x t x t x t 线性无关的充要条件是 。
4、我们称 为'()x A t x =的一个基本解组。
5、'()x A t x =一定存在一个基解矩阵()t ϕ,如果()t ψ是'()x A t x =的任一解,那么 。
6、若()t ψ是'()x A t x =的基解矩阵,则向量函数()t ϕ= 是'()()x A t x f t =+的满足初始条件0()0t ϕ=的解。
7、若12(),(),()a t a t f t 是[],a b 上的连续函数,12(),()x t x t 是方程"'12()()0x a t x a t x ++=的两个线性无关解,则"'12()()()x a t x a t x f t ++=的通解为: 。
8、若()t ψ是常系数线性方程组'()x A t x =的基解矩阵,则exPAt =。
9、若矩阵A 具有n 个线性无关的特征向量12,,,n v v v ,它们对应的特征值分别是12,,,n λλλ ,那么矩阵()t ψ= 是常系数线性方程组'()x A t x =的一个基解矩阵。
10、若()t ψ是'()x A t x =的基解矩阵,则'()()x A t x f t =+满足0()x t η=的解()t ϕ= 。
二、 计算(每题14分,共56分) 1、试用逐步逼近法求方程组 '0110x x ⎡⎤=⎢⎥-⎣⎦ 12x x x ⎡⎤=⎢⎥⎣⎦满足初始条件0(0)1x ⎡⎤=⎢⎥⎣⎦第三次近似解。
(完整版)常微分方程习题及解答

常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
常微分课后答案第五章

常微分课后答案第五章第五章 线性微分方程组§5.1 存在唯一性定理习题5.11.给定方程组x x ⎥⎦⎤⎢⎣⎡-='0110,⎪⎪⎭⎫ ⎝⎛=21x x x . (*))a 试验证⎪⎪⎭⎫ ⎝⎛-=t t t u sin cos )(,⎪⎪⎭⎫ ⎝⎛=t t t v cos sin )(分别是方程组(*)的满足初始条件⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫⎝⎛=10)0(v 的解;)b 试验证)()()(21t v c t u c t w +=是方程组(*)的满足初始条件⎪⎪⎭⎫⎝⎛=21)(c c t w 的解,其中21,c c 是任意常数.证明)a ⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫ ⎝⎛=10)0(v 显然.)(0110sin cos 0110cos sin )(t u t t t t t u ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=',)(0110cos sin 0110sin cos )(t v t t t t t v ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=',所以⎪⎪⎭⎫ ⎝⎛-=t t t u sin cos )(,⎪⎪⎭⎫⎝⎛=t t t v cos sin )(分别是方程组(*)的满足初始条件⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫ ⎝⎛=10)0(v 的解.)b ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=2121211001)0()0()0(c c c c v c u c w ,又)(0110)(0110)()()(2121t v c t u c t v c t u c t w ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-='+'=')(0110))()((011021t w t v c t u c ⎪⎪⎭⎫⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-=,所以)()()(21t v c t u c t w +=是方程组(*)的满足初始条件⎪⎪⎭⎫⎝⎛=21)(c c t w 的解,其中21,c c 是任意常数.2.将下面的初值问题化为与之等价的一阶方程组的初值问题:)a t e tx x x -=+'+''72,7)1(=x ,2)1(-='x ;)b tte x x =+)4(,1)0(=x ,1)0(-='x ,2)0(=''x ,0)0(='''x ;)c ⎩⎨⎧=-'+-''=+-'+''tx y y y e y x y x t cos 15132,675,1)0(=x ,0)0(='x ,0)0(=y ,1)0(='y .(提示:令y w y w x w x w '=='==4321,,,)解 )a 设x x x x '==21,,则21x x x ='=',te tx xx x -+--=''='12272,即与该初值问题等价的一阶方程组的初值问题为⎪⎩⎪⎨⎧-==+--='='-.2)1(,7)1(,27,2121221x x e x tx x x x t)b 设x x x x x x x x'''=''='==4321,,,,则21x x x ='=',32x x x =''=',43x x x ='''=',tte xx +-='14,则得等价的一阶方程组的初值问题为⎪⎪⎩⎪⎪⎨⎧+-='='='='tte x x x x x x x x 14433221,,,,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0211)0()0()0()0()0(4321x x x x x .)c 令y w y w x w x w'=='==4321,,,,有⎪⎪⎩⎪⎪⎨⎧+-+='='+--='='tw w w w w w e w w w w w w t cos 13215,,567,431443431221 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1001)0()0()0()0()0(4321w w w w w ,为与原初值问题等价的一阶方程组的初值问题. 3.试用逐步逼近法求方程组xx ⎪⎪⎭⎫⎝⎛-='0110,⎪⎪⎭⎫⎝⎛=21x x x满足初始条件⎪⎪⎭⎫ ⎝⎛=10)0(x 的第三次近似解.解 ⎪⎪⎭⎫⎝⎛=10)(0t ϕ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎰110011010)(01t ds t tϕ, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=⎰2210211011010)(t t ds s t tϕ,第三次近似解为 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎰2213610221*********)(t t t ds s s t t ϕ.§5.2 线性微分方程组的一般理论习题5.21.试验证⎥⎦⎤⎢⎣⎡=Φ12)(2t t t t是方程组x t tx ⎥⎥⎦⎤⎢⎢⎣⎡-='22102,⎥⎦⎤⎢⎣⎡=21x x x在任何不包含原点的区间b t a ≤≤上的基解矩阵. 证明 设⎪⎪⎭⎫⎝⎛=t t t 2)(21ϕ,⎪⎪⎭⎫ ⎝⎛=1)(2t t ϕ,则由于)(22102221022)(12221t t t t t t t t t ϕϕ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=',)(22101221001)(2222t t t t t t t ϕϕ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=',所以)(,)(21t t ϕϕ都是方程组的解,因而[])()()(21t t t ϕϕ=Φ是所给方程组的解矩阵.又由于在任何不包含原点的区间],[b a 上,0)(det 2≠-=Φt t (],[b a t ∈),故)(t Φ是所给方程组的基解矩阵. 2.考虑方程组xt A x )(=', (5.15)其中)(t A 是区间b t a ≤≤上的连续n n ⨯矩阵,它的元素为)(t a ij,n j i ,,2,1, =.)a 如果)(,,)(,)(21t x t x t x n是(5.15)的任意n 个解,那么它们的Wronsky 行列式)](,,)(,)([21t x t x t x W n满足下面的一阶线性微分方程Wt a t a t a W nn )]()()([2211+++=' .(提示:利用行列式的微分公式,求出W '的表达式);)b 解上面的一阶线性微分方程,证明下面的公式:⎰=+++tt nn dss a s a s a e t W t W 02211)]()()([0)()( ,],[,0b a t t∈.证明 )a)()()()()()()()()()()()()()()()()()()(212222111211212222111211t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t W nn n nn n nn n n n n '''++'''='+=∑∑∑===)()()()()()()()()()()()(212222111121111t x t x t x t x t x t x t x t at x t at x t ann n n n nk kn knk k knk k k∑∑∑===+nk kn nknk k nknk k nkn n t x t at x t at x t at x t x t x t x t x t x 112112222111211)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()(21222211121121222211121111t x t x t x t x t x t x t x t x t x t a t x t x t x t x t x t x t x t x t x t a nn n n n n nn nn n n n n++=)()]()([11t W t a t a nn ++= ,所以)(t W 是一阶线性微分方程Wt a t a t a W nn )]()()([2211+++=' 的解.)b 由)a 知,Wt a t a t aW nn )]()()([2211+++=' ,分离变量后两边积分求解得⎰=+++tt nn dss a s a s a cet W 02211)]()()([)( ,t t =时就得到)(0t W c =,所以⎰=+++tt nn dss a s a s a et W t W 02211)]()()([0)()( ,],[,0b a t t ∈.3.设)(t A 为区间],[b a 上的连续n n ⨯实矩阵,)(t Φ为方程x t A x )(='的基解矩阵,而)(t x ϕ=为其一解.试证:)a 对于方程yt Ay T)(-='的任一解)(t ψ必有=)()(t t Tϕψ常数;)b )(t ψ为方程yt Ay T)(-='的基解矩阵的充要条件是存在非奇异的常数矩阵C ,使Ct t T=Φψ)()(.证明)a 由于)(t ϕ是方程x t A x )(='的解,故有)()()(t t A t ϕϕ=',)(t ψ为方程yt A y T )(-='的解,故)()()(t t A t T ψψ-='.所以[][])()()()]([)()()()()()(t t t t t t t t t t TTTTTϕψϕψϕψϕψϕψ'+'='+'=')()()()()]()([t t A t t t t A TT T ϕψϕψ+-=)()()()()()(=+-=t t A t t t A t T T ϕψϕψ,所以=)()(t t Tϕψ常数.)b “⇒” )(t Φ是方程x t A x )(='的基解矩阵,因此)()()(t t A t Φ=Φ',)(t ψ是方程yt Ay T)(-='的基解矩阵,故)()()(t t A t T ψ-=ψ',且0)(det ≠Φt 和0)(det ≠t ψ.所以[][])()()()]([)()()()()()(t t t t t t t t t t TTTTTΦ'ψ+Φψ'=Φ'ψ+Φ'ψ='Φψ)()()()()]()([t t A t t t t A TTTΦψ+Φψ-=)()()()()()(=Φψ+Φψ-=t t A t t t A t T T , 故)()(t t TΦψ是常数矩阵,设Ct t T=Φψ)()(,则)(det )(det )(det )(det )]()(det[det ≠Φ⋅ψ=Φ⋅ψ=Φψ=t t t t t t C T T ,因此存在非奇异常数矩阵C ,使Ct t T=Φψ)()(.“⇐”若存在非奇异常数矩阵C ,使Ct t T=Φψ)()(,则有)(det )(det )(det )(det )]()(det[det 0t t t t t t C T T Φ⋅ψ=Φ⋅ψ=Φψ=≠,所以0)(det ≠ψt ,即)(t ψ是非奇异矩阵或说)(t ψ的各列是线性无关的.又[])()()()()]([)()()(])([)()(0t t A t t t t t t t t t T T T t T Φψ+Φψ'=Φ'ψ+Φ'ψ='Φψ=,并注意到)(det ≠Φt ,有)()()]([t A t t T T ψ-=ψ',即)()()(t t A t T ψ-=ψ'.从而)(t ψ是方程yt Ay T)(-='的基解矩阵.4.设)(t Φ为方程Ax x ='(A 为n n ⨯常数矩阵)的标准基解矩阵(即E =Φ)0(),证明)()()(001t t t t -Φ=ΦΦ-,其中0t 为某一值.证明 由于A 为n n ⨯常数矩阵,故A 在),(∞+-∞有定义、连续,从而它的解也在),(∞+-∞连续可导.由)(t Φ为方程Ax x ='的基解矩阵,故),(∞+-∞∈∀t ,有0)(det ≠Φt ,并且有)()(t A t Φ=Φ',从而对某个0t ,有)(det 0≠-Φt t ,且)()()()(])([00000t t A t t t t t t t t -Φ=-Φ'='-⋅-Φ'='-Φ,即)(0t t -Φ亦为方程Ax x ='的基解矩阵.由推论2*,存在一个非奇异常数矩阵G ,使得在区间),(∞+-∞上,G t t t )()(0Φ=-Φ.又因为Gt t tE )()()0(000Φ=-Φ=Φ=,所以)(01t G -Φ=.因此)()()(001t t t t -Φ=ΦΦ-,其中0t 为某一值.5.设)(,)(t f t A 分别为在区间],[b a 上连续的n n ⨯矩阵和n 维列向量.证明方程组)()(t f x t A x +='存在且最多存在1+n 个线性无关解. 证明 设方程组xt A x )(='的基解矩阵为)](,,)(,)([)(21t t t t n ϕϕϕ =Φ,而)(~t ϕ是方程组)()(t f x t A x +='的一个特解,则其通解为)(~)(t c t x ϕ+Φ=,其中c 是任意的常数列向量.若)(t f 不恒为0,则)(~t ϕ必与)(,,)(,)(21t t t n ϕϕϕ 线性无关,从而)(~t ϕ,)(~)(1t t ϕϕ+,)(~)(2t t ϕϕ+,)(~)(,2t t ϕϕ+ 线性无关,即方程组)()(t f x t A x +='存在1+n 个线性无关解.又假若)(t x 是方程组)()(t f x t A x +='的任意一个解,则一定有确定的常数列向量c ,使得)(~)()(t c t t x ϕ+Φ=,将其加入)(~t ϕ,)(~)(1t t ϕϕ+,)(~)(2t t ϕϕ+,)(~)(,2t t ϕϕ+ 这一组向量就线性相关,故方程组)()(t f x t A x +='的任何2+n 个解必线性相关.从而方程组)()(t f x t A x +='存在且最多存在1+n 个线性无关解.6.试证非齐线性微分方程组的叠加原理:设)(,)(21t x t x 分别是方程组)()(1t f x t A x +=',)()(2t fx t A x +='的解,则)()(21t x t x +是方程组)()()(21t f t f x t A x ++='的解. 证明 因为)(,)(21t x t x 分别是方程组)()(1t f x t A x +=',)()(2t fx t A x +='的解,故)()()()(111t f t x t A t x +=',)()()()(222t f t x t A t x +=',所以有)]()()([)]()()([)()(])()([22112121t f t x t A t f t x t A t x t x t x t x +++='+'='+)()()]()()[(2121t f t f t x t x t A +++=,所以)()(21t x t x +是方程组)()()(21t f t f x t A x ++='的解. 7.考虑方程组)(t f Ax x +=',其中⎪⎪⎭⎫⎝⎛=2012A ,⎪⎪⎭⎫ ⎝⎛=21x x x ,⎪⎪⎭⎫⎝⎛=t t t f cos sin )(. )a 试验证⎪⎪⎭⎫ ⎝⎛=Φt t te te e t 2220)(是Ax x ='的基解矩阵;)b 试求)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解)(t ϕ.证明)a 00)(det 4222≠==Φtt t te ete e t ,),(∞+-∞∈∀t 成立.而)(0201220)12(2)(222222t A e te e e e t e t t t tt t tΦ=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+=Φ',所以)(t Φ是Ax x ='的基解矩阵.)b ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Φ--10101)(222241s e e se e es s s s s s,这样,由定理8,方程组满足初始条件⎪⎪⎭⎫ ⎝⎛=00)0(ψ的解就是⎰⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t s t t ttds s s s e e te e ds s f s t t 0222201cos sin 1010)()()()(ψ⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=-t s t t tds s s s s e e te e 02222cos cos sin 0⎪⎪⎪⎪⎭⎫ ⎝⎛+-++++--⎪⎪⎭⎫ ⎝⎛=--52)cos 2(sin 51252)cos 2sin 14sin 5cos 10(251022222t t e t t t t t t e e te e t tt tt⎪⎪⎪⎪⎭⎫ ⎝⎛-+--+=)cos 2sin 2(51)cos sin 75(252222t t e t t e te t tt ,对应的齐线性方程组满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(h ϕ的解就是⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t t t t th h e t e E e te e t t 2212221)1(110)0()0()()(ϕϕ,所以,所求方程组)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解为⎪⎪⎪⎪⎭⎫⎝⎛-+-+--=+=)cos 2(sin 5153)cos sin 7(252)1527(251)()()(22t t e t t t e t t t t t h ψϕϕ.8.试求)(t f Ax x +=',其中⎪⎪⎭⎫ ⎝⎛=2012A ,⎪⎪⎭⎫ ⎝⎛=21x x x ,⎪⎪⎭⎫⎝⎛=t t t f cos sin )( 满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解)(t ϕ.解 由上题知⎪⎪⎭⎫⎝⎛--=t t h e t e t 22)1()(ϕ,且这里⎰⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t s s t t ttds e s e e te e ds s f s t t 0222220101010)()()()(ψ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎰t t t t t t t t tte e t t t e te e ds s e te e 222222202222121010,所以,所求方程组)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解为⎪⎪⎪⎭⎫ ⎝⎛-+-=+=t t h e t e t t t t t 222)1()211()()()(ψϕϕ.9.试求下列方程的通解:)a t x x sec =+'',22ππ<<-t ; )b te x x 28=-'''; )c te x x x =+'-''96.解 )a 易知对应的齐线性方程0=+''x x 的基本解组为t t x cos )(1=,t t x sin )(2=,用公式(5.31)来求方程的一个解.这时1cos sin sin cos )](,)([21=-=tt t t t x t x W ,取0=t,有 ⎰⎰-=-=t t t sdss t s t ds s f s x s x W s x t x s x t x t 0212112sec )sin cos cos (sin )()](,)([)()()()()(0ϕtt t t sds t ds t tt cos ln cos sin tan cos sin 0+=-=⎰⎰所以方程的通解为tt t t t c t c x cos ln cos sin sin cos 21+++=. )b 由于特征方程083=-λ的根是21=λ,i313,2±-=λ,故对应的齐线性方程的基本解组为te t x 21)(=,te t x t 3cos )(2-=,tet x t3sin )(3-=.原方程的一个特解由公式(5.29)有(取0=t),∑⎰==313213210)()](,)(,)([)](,)(,)([)()(k tt k k dss f s x s x s x W s x s x s x W t x t ϕ,其中)](,)(,)([)(321t x t x t x W t W =)3sin 3cos 3(2)3sin 33(cos 24)3sin 3cos 3()3sin 33(cos 23sin 3cos 222t t e t t e e t t e t t e e te te e t t tt t tt t t +----+-=------312=,)](,)(,)([)(3211t x t x t x W t W =)3sin 3cos 3(2)3sin 33(cos 21)3sin 3cos 3()3sin 33(cos 03sin 3cos 0t t e t t e t t e t t e te te t t t t t t +----+-=------te 23-=,)](,)(,)([)(3212t x t x t x W t W =)3cos 33sin 3()3sin 3cos 3(214)3sin 3cos 3(023sin 0222t t e t t e e t t e e te e t t tt tt t -=+--=---,)](,)(,)([)(3213t x t x t x W t W =)3sin 33cos 3(1)3sin 33(cos 240)3sin 33(cos 203cos 222t t e t t e e t t e e te e t t tt tt t +-=--+-=---.所以⎰⎰-+⋅=--ts s tts stdse s s e t e ds e eet 020222312)3cos 33sin 3(3cos 3123)(ϕ⎰+-+-ts s tdse s s e t e 02312)3sin 33cos 3(3sin)3cos 33(sin 324124112122t t e e te t t t ++-=-,故通解tt tte t c t c e ec t x 23221121)3sin 3cos ()(+++=-.)c 特征方程0962=+-λλ,得到特征根32,1=λ,故对应的齐线性方程的基本解组为te t x 31)(=,tte t x 32)(=,tttt tee t ete e t W 63333)31(3)(=+=.取0=t,由(5.31),得特解⎰⎰⋅-=-=t sss t st tt dse e se e e te ds sf s W s x t x s x t x t 06333321120)()()()()()()(ϕtt t ts t e te e ds e s t e 33023412141)(++=-=⎰-,所以得到通解tt e et c ct x 41)()(321++=.10.给定方程)(78t f x x x =+'+'',其中)(t f 在+∞<≤t 0上连续,试利用常数变易公式,证明:)a 若)(t f 在+∞<≤t 0上有界,则上面方程的每一个解在+∞<≤t 0上有界;)b 若当∞→t 时,0)(→t f ,则上面方程的每一个解)(t ϕ,满足0)(→t ϕ(当∞→t 时). 证明 对应的特征方程0782=++λλ有特征根7,1--,故对应的齐线性方程的基本解组te t x -=)(1,tet x 72)(-=,ttt t tee e e e t W 87767)(------=--=.由公式(5.31)得原方程的一个特解(0=t)为⎰⎰-------=-=t s st st tt dss f e e e e e ds s f s W s x t x s x t x t 08772112)(6)()()()()()()(~0ϕ⎰⎰---=t s t t s t dss f e e ds s f e e 0770)(61)(61,所以方程的任一解可写为⎰⎰-----++=t st t s t ttdss f e e ds s f e e ec e c t 0770721)(61)(61)(ϕ.)a 由于)(t f 在+∞<≤t 0上有界,故0>∃M ,),0[∞+∈∀t ,有M t f ≤)(.又由于10≤<-te ,107≤<-te,从而当),0[∞+∈t 时,⎰⎰⋅+⋅++≤--ts t ts t ds e M e ds e M e c c t 0770216161)(ϕ=)1(42)1(67721-+-++--tt t t e e M e e M c c)1(42)1(6721t t e M e M c c ---+-++=M c c 21421++<,即方程的每一个解在+∞<≤t 0上有界.)b 当∞→t 时,0)(→t f ,故由⎰⎰-----++=ts t ts t t t ds s f e e ds s f e e e c e c t 0770721)(61)(61)(ϕ知,若⎰t sdss f e)(有界,则)(0)(610∞→→⎰-t ds s f e e t st ,若⎰t sdss f e)(无界,由于)(s f 在),0[∞+连续,故⎰t s dss f e 0)(为无穷大量,因此0)(lim 616)(lim 6)(lim )(61lim 00====∞→∞→∞→-∞→⎰⎰t f et f e e ds s f e ds s f e e t t t t t tst t s t t ,即总有)(0)(610∞→→⎰-t ds s f e e t st .同理)(0)(61077∞→→⎰-t ds s f e e t st .从而对方程的每一个解)(t ϕ,有)(0)(∞→→t t ϕ.11.给定方程组x t A x )(=',这里)(t A 是区间],[b a 上的连续n n ⨯矩阵.设)(t Φ是它的一个基解矩阵,n 维向量函数),(x t F 在∞<≤≤x b t a ,上连续,],[0b a t∈.试证明初值问题:⎩⎨⎧=+='ηϕ)(,),()(0t x t F x t A x(*)的唯一解)(t ϕ是积分方程组⎰--ΦΦ+ΦΦ=tt dss x s F s t t t t x 0))(,()()()()()(101η (**)的连续解.反之,(**)的连续解也是初值问题(*)的解. 证明)(t ϕ是初值问题(*)的解,故))(,()()()(t t F t t A t ϕϕϕ+=',这说明),(x t F 是t 的向量函数,于是由公式(5.27)得⎰--ΦΦ+ΦΦ=t t ds s s F s t t t t 0))(,()()()()()(101ϕηϕ,即)(t ϕ是积分方程组(**)的连续解.反之,设)(t ϕ是积分方程组(**)的连续解,则有⎰--ΦΦ+ΦΦ=t t ds s s F s t t t t 0))(,()()()()()(101ϕηϕ,两端对t 求导,就有))(,()()())(,()()()()()(11010t t F t t ds s s F s t t t t t t ϕϕηϕ---ΦΦ+ΦΦ'+ΦΦ'='⎰))(,(]))(,()()()[(0101t t F ds s s F s t t tt ϕϕη+Φ+ΦΦ'=⎰-- ))(,(]))(,()()()[()(0101t t F ds s s F s t t t A t t ϕϕη+Φ+ΦΦ=⎰-- ))(,(]))(,()()()()()[(0101t t F ds s s F s t t t t A t t ϕϕη+ΦΦ+ΦΦ=⎰--))(,()()(t t F t t A ϕϕ+=,即)(t ϕ也是初值问题(*)的解.§5.3 常系数线性微分方程组习题5.31.假设A 是n n ⨯矩阵,试证:)a 对任意的常数21,c c 都有A c A c A c A c 2121exp exp )exp(⋅=+;)b 对任意整数k ,都有kAA kexp )(exp =.(当k是负整数时,规定kk A A --=])[(exp )(exp 1.证明 )a 因为))(())((1222121A c A c A c c A c A c ==,所以矩阵Ac 1与A c 2可交换,故Ac A c A c A c 2121exp exp )exp(⋅=+.)b ①先证明N k ∈∀,有kAA kexp )(exp =,这只须对k 施以数学归纳法. 当1=k 时,)1exp(exp )(exp 1A A A ⋅==成立,设当k 时,kAA k exp )(exp =,则当1+k 时,有Ak A kA A A A k k )1exp(exp exp exp )(exp )(exp 1+===+,故对一切自然数k ,kAA kexp )(exp =.②)0exp(0exp )(exp 0A E A ===.③若k 是负整数,则N k ∈-,注意到)exp()(exp 1A A -=-,并由以上证明应用于矩阵A -,就有kAA k A A A k k k exp )](exp[)][exp(])[(exp )(exp 1=--=-==---,由①②③,对一切整数k ,均有kAA kexp )(exp =.2.试证:如果)(t ϕ是Ax x ='满足初始条件ηϕ=)(0t 的解,那么ηϕ)]([exp )(0t t A t -=.证明 由于 ηηϕ⋅⋅-='-='A t t A t t A t )]([exp ])([exp )(0,)(})]({[exp 0t A t t A A ϕη=-=,又ηηηϕ==⋅=E A t )]0[exp()(0,故ηϕ)]([exp )(0t t A t -=是方程组Axx ='满足初始条件ηϕ=)(0t 的解.由解的唯一性,命题得证.3.试计算下列矩阵的特征值及对应的特征向量.)a ⎪⎪⎭⎫ ⎝⎛3421; )b ⎪⎪⎪⎭⎫⎝⎛---244354332;)c ⎪⎪⎪⎭⎫⎝⎛-102111121;)d ⎪⎪⎪⎭⎫ ⎝⎛---6116100010.解 )a 特征方程0543421)det(2=--=----=-λλλλλA E ,特征值11-=λ,52=λ,对应于特征值11-=λ的特征向量⎪⎪⎭⎫ ⎝⎛=21u u u 必须满足方程组0)(1=+-u E A λ,得到0≠∀α,⎪⎪⎭⎫ ⎝⎛-=11αu 是对应于特征值11-=λ的特征向量.类似地可求得对应于特征值52=λ的特征向量为⎪⎪⎭⎫ ⎝⎛=21βv ,其中0≠β的任意常数.)b 特征方程0)2)(1)(2(244354332)det(=++-=---+---=-λλλλλλλA E ,特征值21-=λ,12-=λ,23=λ.对应于特征值21-=λ的特征向量u 必须满足方程组0)(1=+-u E A λ,得到≠∀α,⎪⎪⎪⎭⎫ ⎝⎛=110αu 是对应于特征值21-=λ的特征向量.类似地,可以求出对应于特征值12-=λ以及23=λ的特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛=011βv (0≠β的任意常数)和⎪⎪⎪⎭⎫ ⎝⎛=111γw (0≠γ的任意常数).)c 特征方程0)1)(3(12111121)det(2=+-=---+----=-λλλλλλA E ,特征值12,1-=λ,33=λ.对应于特征值12,1-=λ的特征向量⎪⎪⎪⎭⎫ ⎝⎛=321u u u u 必须满足方程组0)(1=+-u E A λ,得0≠∀α,⎪⎪⎪⎭⎫ ⎝⎛--=212αu 是对应于特征值12,1-=λ的特征向量.类似地,可以求出对应于特征值33=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=212βv (0≠β的任意常数).)d 特征方程0)3)(2)(1(61161001)det(=+++=+--=-λλλλλλλA E ,特征值11-=λ,22-=λ,33-=λ.由0)(1=+-u E A λ,推出0≠∀α,⎪⎪⎪⎭⎫ ⎝⎛-=111αu 是对应于特征值11-=λ的特征向量.同样可求得对应于特征值22-=λ和33-=λ的特征向量分别为⎪⎪⎪⎭⎫⎝⎛-=421βv (0≠β的任意常数)和⎪⎪⎪⎭⎫ ⎝⎛-=931γw (0≠γ的任意常数).4.试求方程组Ax x ='的一个基解矩阵,并计算Atexp ,其中A 为:)a ⎪⎪⎭⎫⎝⎛--2112;)b ⎪⎪⎭⎫⎝⎛3421;)c ⎪⎪⎪⎭⎫⎝⎛---244354332;)d ⎪⎪⎪⎭⎫⎝⎛--115118301.解)a 特征方程032112)det(2=-=--+=-λλλλA E ,得32,1±=λ是特征值.对应的特征向量分别为⎪⎪⎭⎫⎝⎛-=3211αu ,⎪⎪⎭⎫ ⎝⎛+=3212βu ,0,0≠≠βα为任意常数.所以方程组Axx ='的一个基解矩阵为⎪⎪⎭⎫ ⎝⎛+-=Φ--t ttt e e ee t 3333)32()32()(.133331323211)32()32()0()(exp ----⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-=ΦΦ=t ttt e e ee t At⎪⎪⎭⎫⎝⎛--+----+=----t ttttt tt e eee e ee e 33333333)32()32()32()32(63.)b 由第3题)a 立即得到方程组Ax x ='的一个基解矩阵为⎪⎪⎭⎫⎝⎛-=Φ--t tt te e e e t 552)(. 155121112)0()(exp ----⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=ΦΦ=t tt t e e e e t At⎪⎪⎭⎫ ⎝⎛+--+=----t t t t t t tt e e e e e e e e 55552)(2231.)c 由第3题)b 立即得到方程组Ax x ='的一个基解矩阵为⎪⎪⎪⎭⎫ ⎝⎛=Φ----t t t t tt t e e e e ee e t 222220)(.12222211011111100)0()(exp ------⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ΦΦ=t t tt tt t e e e e ee e t At⎪⎪⎪⎭⎫⎝⎛----+---=--------t tt t t tt tt t t tt t t t te e e e e e e e e e e e e e e e e 2222222222222. )d 特征方程)34)(3(11511831)det(2=--+=+------=-λλλλλλλA E ,特征值为31-=λ,723,2±=λ.对应的特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛-=4731αu ,⎪⎪⎪⎭⎫ ⎝⎛++-=7174532βu ,⎪⎪⎪⎭⎫⎝⎛+-+-=7174533γu ,γβα,,均为不等于零的任意常数.故方程组Ax x ='的一个基解矩阵为⎪⎪⎪⎪⎭⎫⎝⎛-++---=Φ-+--+--+-t tt tt tttt e e e ee e e e e t )72()72(3)72()72(3)72()72(3)17()17(4)574()574(7333)(.由)0()(exp 1-ΦΦ=t At 立即可得[])()()(exp 321t t t At ψψψ=,其中列向量函数⎪⎪⎪⎪⎭⎫⎝⎛-+++--+++--+++=-+--+--+-t t t t t t t t t e e e ee e e e e t )72()72(3)72()72(3)72()72(31)7514(2)7514(256)71349()49713(98)737(3)737(342841)(ψ, ⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-+-+-+=-+--+--+-t t t tt t t t t e e e e e e e e e t )72()72(3)72()72(3)72()72(31)714(2)714(256)753175()753175(98)757(3)757(3422521)(ψ,⎪⎪⎪⎪⎭⎫⎝⎛-++++--+++-+-=-+--+--+-t t t tt t t t t e e e e e e e e e t )72()72(3)72()72(3)72()72(31)7137()7137(112)98761()98761(196)714(3)714(3841261)(ψ.(该题计算量太大,作为该法的习题不是太好!)5.试求方程组Ax x ='的一个基解矩阵,并求满足初始条件ηϕ=)0(的解)(t ϕ:)a ⎪⎪⎭⎫⎝⎛=3421A ,⎪⎪⎭⎫⎝⎛=33η;)b ⎪⎪⎪⎭⎫⎝⎛--=115118301A ,⎪⎪⎪⎭⎫⎝⎛--=720η;)c ⎪⎪⎪⎭⎫ ⎝⎛-=102111121A ,⎪⎪⎪⎭⎫ ⎝⎛=001η.解 )a 由上题)b 知⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--1112231exp 55t tt te e e e At ,所以所求解为⎪⎪⎭⎫⎝⎛+-+==--t t t t e e e e At t 5542)(exp )(ηϕ.)b 由上题)d 知)0()(exp 1-ΦΦ=t At ,其中⎪⎪⎪⎪⎭⎫⎝⎛-++---=Φ-+--+--+-t tt tt tttte e e ee e e e e t )72()72(3)72()72(3)72()72(3)17()17(4)574()574(7333)(.所以所求解为⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛++---+--⋅Φ==720)714(2775)773(3)714(2775)773(33214422521)()(exp )(t At t ηϕ ⎪⎪⎪⎪⎭⎫⎝⎛-++--+--+-++-+=-+--+--+-t t t tt t t t t e e e e e e ee e )72()72(3)72()72(3)72()72(3)7317(3)78977(728)7160289(3)7374511(1274)7435(9)9172(35461261.)c 由第3题)c 知,矩阵A 的特征值为12,1-=λ,33=λ.对应于特征值33=λ的特征向量⎪⎪⎪⎭⎫ ⎝⎛=212αv (0≠α的任意常数).又由648324648)(32121=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-u u u u A E λ,得到⎪⎪⎪⎭⎫⎝⎛+-=)24(3331γβγβu (γβ,是任意常数),由⎪⎪⎪⎭⎫⎝⎛+-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=)24(3331212001γβγβαη解出41,21,41-===γβα.依公式(5.52),得满足初始条件ηϕ=)0(的解为⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛+++⎪⎪⎪⎭⎫ ⎝⎛=+++=--212120212124121241)]([)(33t tt t tt t e e u E A t E e Ev e t t t t t ϕ⎪⎪⎪⎭⎫⎝⎛--+=---)(2)(241333t t tt t t e e e e e e6.试求方程组)(t f Ax x +='的解)(t ϕ:)a ⎪⎪⎭⎫⎝⎛-=11)0(ϕ,⎪⎪⎭⎫ ⎝⎛=3421A ,⎪⎪⎭⎫⎝⎛=1)(t e t f ;)b ⎪⎪⎪⎭⎫ ⎝⎛=000)0(ϕ,⎪⎪⎪⎭⎫ ⎝⎛---=6116100010A ,⎪⎪⎪⎭⎫⎝⎛=-t e t f 00)(;)c ⎪⎪⎭⎫⎝⎛=21)0(ηηϕ,⎪⎪⎭⎫⎝⎛--=1234A ,⎪⎪⎭⎫⎝⎛-=t t t f cos 2sin )(.解 )a 由第4题)b 知,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--1112231exp 55t tt te e e e At ,由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--------t s s t s t s t s t t t t tds e e e e e e e e e 0)(5)()(5)(5511112231111112231⎪⎪⎪⎪⎭⎫ ⎝⎛+++-++-=--53109235420934355t t t t tt e e e e e e .)b 由第3题)d 知A 的特征值11-=λ,22-=λ,33-=λ,对应的特征向量分别为⎪⎪⎪⎭⎫⎝⎛-=111αu ,⎪⎪⎪⎭⎫ ⎝⎛-=421βv ,⎪⎪⎪⎭⎫ ⎝⎛-=931γw ,其中γβα,,均是不为零的任意常数.Ax x ='的一个基解矩阵为⎪⎪⎪⎭⎫⎝⎛---==Φ---------t tt tt tt t ttt te e e e e ee e e w e v e u et 3232329432][)(321λλλ.⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛---=Φ--13228615621941321111)0(11,而)0()(exp 1-ΦΦ=t At .由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---=---------000132286156943221323232t tt tt t t t te e ee e e e e e⎰⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---+-------------------t s s t s t s t s t s t s t s t s t s t dse e e e e e e e e e 0)(3)(2)()(3)(2)()(3)(2)(00132286156943221⎪⎪⎪⎭⎫⎝⎛-+-+---+-=⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=------------------⎰t t t tt t t t t t t s t s t t s t s t t s t s t e e e t e e e t e e e t ds e e e e e e e e e 3232320322322322916)72(38)25(4)32(419834221.)c A的特征方程0)2)(1(1234)det(=--=+--=-λλλλλA E ,求解得特征值11=λ,22=λ,对应的特征向量分别是⎪⎪⎭⎫ ⎝⎛=11αu ,⎪⎪⎭⎫ ⎝⎛=23βv ,其中βα,是不为零的任意常数.所以方程组Axx ='的一个基解矩阵为⎪⎪⎭⎫⎝⎛==Φt tt t tte e e e v eu e t 2223][)(21λλ,从而,⎪⎪⎭⎫⎝⎛--Φ=ΦΦ=-1132)()0()(exp 1t t At .由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-----t s t s t s t s t t t t tds s s e ee e e e e e 0)(2)()(2)(2122cos 2sin 113223113223ηη⎪⎪⎭⎫⎝⎛+-+-+-+-+⎪⎪⎭⎫ ⎝⎛-+--+-=t t e e t t e e e e e e t t t t t t t t cos 2sin 224cos sin 234)(2)23()(3)23(222211222112ηηηηηηηη⎪⎪⎭⎫⎝⎛+--+--+--+--=t t e e t t e e t t t t cos 2sin 2)(2)423(cos sin 2)(3)423(2211222112ηηηηηηηη.7.假设m 不是矩阵A 的特征值,试证非齐线性方程组mtce Ax x +='有一解形如mte t ρϕ=)(,其中ρ,c 是常数向量.证明 设方程组有形如mte t ρϕ=)(的解,代入方程得m tm t m t ce e A e m +=ρρ,由此得cA m +=ρρ,即cA mE =-ρ)(.因为m 不是矩阵A 的特征值,故0)det(≠-A mE ,即矩阵A mE -可逆,得到c A mE 1)(--=ρ唯一确定.所以方程组有一解m tm t e ce A mE t ρϕ=-=-1)()(8.给定方程组⎩⎨⎧=+'+-'=-'++'-''.02,023221122111x x x x x x x x x)a 试证上面方程组等价于方程组Au u =',其中⎪⎪⎪⎭⎫⎝⎛'=⎪⎪⎪⎭⎫ ⎝⎛=211321x x x u u u u ,⎪⎪⎪⎭⎫ ⎝⎛---=112244010A ;)b 试求)a 中的方程组的基解矩阵;)c 试求原方程组满足初始条件0)0(1=x ,1)0(1='x ,)0(2=x 的解.解 )a 设11x u=,12x u'=,23x u=,则原方程组化为⎪⎩⎪⎨⎧--='=''-+-=''='='=',2,23,32123331212211u u u x u u u u u x u u x u或⎪⎩⎪⎨⎧--='++-='='32133212212,244,uu u u u u u u u u ,即u u ⎪⎪⎪⎭⎫ ⎝⎛---='112244010或Au u ='.反之,设11u x =,21u x =',32u x=,则方程组Au u ='化为⎩⎨⎧-'-='+'+-=''.211221112,244x x x x x x x x即⎩⎨⎧=+'+-'=-'++'-''.02,023221122111x x x x x x x x x)b 由0)2)(1(11224401)det(=--=+----=-λλλλλλλA E ,得矩阵A的特征值01=λ,12=λ,23=λ.对应的特征向量分别为⎪⎪⎪⎭⎫⎝⎛=201αu ,⎪⎪⎪⎭⎫ ⎝⎛=122βv ,⎪⎪⎪⎭⎫ ⎝⎛=021γw ,其中γβα,,均为不等于零的任意常数.由此得Au u ='的一个基解矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==Φ0222021][)(22321t t tt t t t t e e e e e w e v e u e t λλλ.)c 求与之等价的方程组Au u =',满足初始条件η=⎪⎪⎪⎭⎫⎝⎛=010)0(u 的解ηη)0()()(exp )(1-ΦΦ==t At t u⎪⎪⎪⎭⎫ ⎝⎛-+-+-=⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-t tt t t t t t t t e e e e e e e e e e 226434121010012220121022202122122,所以,原方程组满足初始条件0)0(1=x ,1)0(1='x ,0)0(2=x 的解为⎪⎪⎭⎫⎝⎛-+-=t t t e e e t 2234121)(2ϕ.9.试用Laplace 变换法解第5题和第6题. 解 5.)a 方程组两边取Laplace 变换,有)()(s AX s sX =-η,即η=-)()(s X A sE ,由具体数值代入得方程组⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----33)()(342121s X s X s s ,根据Gramer 法则得 5211)(1-++=s s s X ,5411)(2-++-=s s s X,所以tte et -+=512)(ϕ,tte et --=524)(ϕ,故初值问题5.)a 的解为⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛=--t t t t e e e e t t t 552142)()()(ϕϕϕ.5.)b 对方程组两边施行Laplace 变换,并化简有η=-)()(s X A sE ,用具体数值代入得方程组⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+------720)()()(115118301321s X s X s X s s s ,根据Gramer 法则得)72(427291)72(4272913313)34)(3(1521)(21--+-+---+=--++-=s s s s s s s s X ,)72(1267376511)72(12673765113991)34)(3(14372)(222--+++--++-=--+-+-=s s s s s s s s s X ,)72(12678977)72(126789773952)34)(3(5127)(223----+-+-+-=--+-+-=s s s s s s s s s X ,所以ttt e e e t )72()72(31427291427291313)(-+-+---=ϕ,ttt ee e t )72()72(3212673765111267376511991)(-+-++-+-=ϕ,ttt ee e t )72()72(331267897712678977952)(-+---+--=ϕ,故初值问题5.)b 的解为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+--++-+-+---=⎪⎪⎪⎭⎫ ⎝⎛=-+--+--+-t t t t t t t t t e e e e e e ee e t t t t )72()72(3)72()72(3)72()72(3321126789771267897795212673765111267376511991427291427291313)()()()(ϕϕϕϕ.5.)c 对方程组两边施行Laplace 变换,并化简有η=-)()(s X A sE ,用具体数值代入得方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---+----001)()()(102111121321s X s X s X s s s ,根据Gramer 法则得31211121)(1-++=s s s X ,31411141)(2--+=s s s X,31211121)(1-++-=s s s X , 所以)(21)(31t te e t -+=ϕ,)(41)(32t te e t ---=ϕ,)(21)(33t te e t --=ϕ,故初值问题5.)a 的解为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程第五章测试题
班级__________姓名__________学号________得分__________
一、 填空(30分)
1、 在用皮卡逐步逼近法求方程组η=+=')(),()(0t x x f x t A x 的近似解时,若取ηϕ=)(0t ,则=)(t k ϕ( )。
2、 如果)(t A 是n n ⨯矩阵,)(t f 是n 维列向量,则它们在b t a ≤≤上满足( )时,方程组)()(t f x t A x +='满足初始 条件η=)(0t x 的解在b t a ≤≤上存在唯一。
3、 若)(),(),(21t f t a t a 是[b a ,]上的连续函数,)(),(21t x t x 是方程0)()(21=+'+''x t a x t a x 的两个线性无关解,则的通解为
( )。
4、 若)(t Φ和)(t ψ都是x t A x )(='的基解矩阵,则)(t Φ与)(t ψ具有关系( )。
5、 若A 是n n ⨯常数矩阵,则矩阵指数exPA=( )。
6、若A 矩阵具有n 个线性无关的特征向量n v v v ,,21,她们对应的特征值分别为n λλλ ,,21,那么矩阵)(t Φ=( )是常系数线性方程组Ax x ='的一个基解矩阵。
7、 若)(t Φ是x t A x )(=' 的基解矩阵,则)()(t f x t A x +='满足的解=)(t ϕ(
)。
8、 若)(t Φ是x t A x )(=' 的基解矩阵,则向量函数=)(t ϕ( )是)()(t f x t A x +='的满足初始条件 0)(0=t ϕ的解;向量函数=)(t ϕ( )是)()(t f x t A x +='的满足初始条件ηϕ=)(0t 的解。
9、 方程组x t A x )(='的n 个解)(,),(),(21t x t x t x n 线性无关的充要条件是( )。
10、若λ是0)det()(=-=A E P λλ的二重根,则对应λ方程组Ax x ='具
有( )形式的解,其中i x x x x x ,321⎥⎥⎥⎦
⎤⎢⎢⎢
⎣⎡=,均为t 的函数,],[,3,2,1b a t i ∈=。
二、解答题 (70分) 1、试用逐步逼近法求方程组x x ⎥⎦
⎤⎢
⎣⎡-='0110 ⎥⎦⎤⎢⎣⎡=21x x x 满足初始条件⎥⎦⎤⎢⎣⎡=10)0(x 的第三次近似解。
2、设)(t Φ为方程Ax x ='(A 为n n ⨯常数矩阵)的标准基解矩阵(即E =Φ)0()证明)()()(001t t t t -Φ=ΦΦ-,其中0t 为某一值。
3、考虑方程组)(t f Ax x +=',其中⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢
⎣⎡=t t t f x x x A cos sin )(,,201221,试证⎥⎦
⎤⎢⎣⎡=Φt t t
e te e t 2220)(是Ax x ='的基解矩阵。
4、假设m 不是矩阵A 的特征值,试证非齐线性方程组mt ce Ax x +='有一解形如mt pe t =)(ϕ,其中p c ,是常数向量。
5 假设)(x y ϕ=是二阶常系数线性微分方程初值问题⎩⎨
⎧='==+'+''1(),0)0(0y y by y a y 的解,试证⎰-=x dt t f t x y 0)()(ϕ是方程)(x f by y a y =+'+''的解,这里)(x f 为
已知连续函数。
6 试求 ⎪⎩⎪⎨⎧+-='-+='+-='z y x z z y x y z y x x 222的基解矩阵。